python非同步線程
⑴ python非同步和多進程有什麼區別
非同步本質還是由多線程來實現,但是是者運行環境/sdk/語言層面幫你隱藏了細節
非同步一般和多線程比較,至於和多進程比的一般也是多線程
多進程那就是內存等資源完全隔離開的,開銷比較大
⑵ python非同步協程跟多進程多線程哪個效率高
線程是操作系統能夠進行運算調度的最小單位。它被包含在進程之中,是進程中的實際運作單位。
一個程序的執行實例就是一個進程。每一個進程提供執行程序所需的所有資源。
PS:上面都是摘抄自網頁鏈接這里的,具體的可以看看這里,你的答案在圖片的最後一點。因為線程和進程是不能層面的定義,一個進程可以包括多個線程,所以沒有可比性~
⑶ python 非同步需要子線程嗎
非同步:一種通訊方式,對設備需求簡單。我們的PC機提供的標准通信介面都是非同步的。
非同步雙方不需要共同的時鍾,也就是接收方不知道發送方什麼時候發送,所以在發送的信息中就要有提示接收方開始接收的信息,如開始位,同時在結束時有停止位。
非同步的另外一種含義是計算機多線程的非同步處理。與同步處理相對,非同步處理不用阻塞當前線程來等待處理完成,而是允許後續操作,直至其它線程將處理完成,並回調通知此線程。
但此處需要明確的是:非同步與多線程與並行不是同一個概念.
不需要
⑷ 如何理解python的多線程編程
線程是程序員必須掌握的知識,多線程對於代碼的並發執行、提升代碼效率和運行都至關重要。今天就分享一個黑馬程序員Python多線程編程的教程,從0開始學習python多任務編程,想了解python高並發實現,從基礎到實踐,通過知識點 + 案例教學法幫助你想你想迅速掌握python多任務。
課程內容:
1.掌握多任務實現的並行和並發
2.掌握多進程實現多任務
3.掌握多線程實現多任務
4.掌握合理搭配多進程和線程
適用人群:
1、對python多任務編程感興趣的在校生及應屆畢業生。
2、對目前職業有進一步提升要求,希望從事python人工智慧行業高薪工作的在職人員。
3、對python人工智慧行業感興趣的相關人員。
基礎課程主講內容包括:
1.python多任務編程
基礎班課程大綱:
00-課程介紹
01-多任務介紹
02-進程介紹
03-使用多進程來完成多任務
04-多進程執行帶有參數的任務
05-獲取進程的編號
06-進程注意點
07-案例-多進程實現傳智視頻文件夾多任務拷貝器
08-線程介紹
09-使用多線程執行多任務
10-線程執行帶有參數的任務
11-主線程和子線程的結束順序
12-線程之間的執行順序是無序
13-線程和進程的對比
14-案例-多線程實現傳智視頻文件夾多任務拷貝器
15-課程總結
⑸ Python中進程與線程的區別是什麼
Num01–>線程
線程是操作系統中能夠進行運算調度的最小單位。它被包含在進程之中,是進程中的實際運作單位。
一個線程指的是進程中一個單一順序的控制流。
一個進程中可以並發多條線程,每條線程並行執行不同的任務。
Num02–>進程
進程就是一個程序在一個數據集上的一次動態執行過程。
進程有以下三部分組成:
1,程序:我們編寫的程序用來描述進程要完成哪些功能以及如何完成。
2,數據集:數據集則是程序在執行過程中需要的資源,比如圖片、音視頻、文件等。
3,進程式控制制塊:進程式控制制塊是用來記錄進程的外部特徵,描述進程的執行變化過程,系統可以用它來控制和管理進程,它是系統感知進程存在的唯一標記。
Num03–>進程和線程的區別:
1、運行方式不同:
進程不能單獨執行,它只是資源的集合。
進程要操作CPU,必須要先創建一個線程。
所有在同一個進程里的線程,是同享同一塊進程所佔的內存空間。
2,關系
進程中第一個線程是主線程,主線程可以創建其他線程;其他線程也可以創建線程;線程之間是平等的。
進程有父進程和子進程,獨立的內存空間,唯一的標識符:pid。
3,速度
啟動線程比啟動進程快。
運行線程和運行進程速度上是一樣的,沒有可比性。
線程共享內存空間,進程的內存是獨立的。
4,創建
父進程生成子進程,相當於復制一份內存空間,進程之間不能直接訪問
創建新線程很簡單,創建新進程需要對父進程進行一次復制。
一個線程可以控制和操作同級線程里的其他線程,但是進程只能操作子進程。
5,交互
同一個進程里的線程之間可以直接訪問。
兩個進程想通信必須通過一個中間代理來實現。
相關推薦:《Python視頻教程》
Num04–>幾個常見的概念
1,什麼的並發和並行?
並發:微觀上CPU輪流執行,宏觀上用戶看到同時執行。因為cpu切換任務非常快。
並行:是指系統真正具有同時處理多個任務(動作)的能力。
2,同步、非同步和輪詢的區別?
同步任務:B一直等著A,等A完成之後,B再執行任務。(打電話案例)
輪詢任務:B沒有一直等待A,B過一會來問一下A,過一會問下A
非同步任務:B不需要一直等著A, B先做其他事情,等A完成後A通知B。(發簡訊案例)
Num05–>進程和線程的優缺點比較
首先,要實現多任務,通常我們會設計Master-Worker模式,Master負責分配任務,Worker負責執行任務,因此,多任務環境下,通常是一個Master,多個Worker。
如果用多進程實現Master-Worker,主進程就是Master,其他進程就是Worker。
如果用多線程實現Master-Worker,主線程就是Master,其他線程就是Worker。
多進程模式最大的優點就是穩定性高,因為一個子進程崩潰了,不會影響主進程和其他子進程。(當然主進程掛了所有進程就全掛了,但是Master進程只負責分配任務,掛掉的概率低)著名的Apache最早就是採用多進程模式。
多進程模式的缺點是創建進程的代價大,在Unix/linux系統下,用fork調用還行,在Windows下創建進程開銷巨大。另外,操作系統能同時運行的進程數也是有限的,在內存和CPU的限制下,如果有幾千個進程同時運行,操作系統連調度都會成問題。
多線程模式通常比多進程快一點,但是也快不到哪去,而且,多線程模式致命的缺點就是任何一個線程掛掉都可能直接造成整個進程崩潰,因為所有線程共享進程的內存。在Windows上,如果一個線程執行的代碼出了問題,你經常可以看到這樣的提示:「該程序執行了非法操作,即將關閉」,其實往往是某個線程出了問題,但是操作系統會強制結束整個進程。
在Windows下,多線程的效率比多進程要高,所以微軟的IIS伺服器默認採用多線程模式。由於多線程存在穩定性的問題,IIS的穩定性就不如Apache。為了緩解這個問題,IIS和Apache現在又有多進程+多線程的混合模式,真是把問題越搞越復雜。
Num06–>計算密集型任務和IO密集型任務
是否採用多任務的第二個考慮是任務的類型。我們可以把任務分為計算密集型和IO密集型。
第一種:計算密集型任務的特點是要進行大量的計算,消耗CPU資源,比如計算圓周率、對視頻進行高清解碼等等,全靠CPU的運算能力。這種計算密集型任務雖然也可以用多任務完成,但是任務越多,花在任務切換的時間就越多,CPU執行任務的效率就越低,所以,要最高效地利用CPU,計算密集型任務同時進行的數量應當等於CPU的核心數。
計算密集型任務由於主要消耗CPU資源,因此,代碼運行效率至關重要。Python這樣的腳本語言運行效率很低,完全不適合計算密集型任務。對於計算密集型任務,最好用C語言編寫。
第二種:任務的類型是IO密集型,涉及到網路、磁碟IO的任務都是IO密集型任務,這類任務的特點是CPU消耗很少,任務的大部分時間都在等待IO操作完成(因為IO的速度遠遠低於CPU和內存的速度)。對於IO密集型任務,任務越多,CPU效率越高,但也有一個限度。常見的大部分任務都是IO密集型任務,比如Web應用。
IO密集型任務執行期間,99%的時間都花在IO上,花在CPU上的時間很少,因此,用運行速度極快的C語言替換用Python這樣運行速度極低的腳本語言,完全無法提升運行效率。對於IO密集型任務,最合適的語言就是開發效率最高(代碼量最少)的語言,腳本語言是首選,C語言最差。
相關推薦:
Python中的進程是什麼
⑹ python多線程的幾種方法
Python進階(二十六)-多線程實現同步的四種方式
臨界資源即那些一次只能被一個線程訪問的資源,典型例子就是列印機,它一次只能被一個程序用來執行列印功能,因為不能多個線程同時操作,而訪問這部分資源的代碼通常稱之為臨界區。
鎖機制
threading的Lock類,用該類的acquire函數進行加鎖,用realease函數進行解鎖
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.lock = threading.Lock() def add(self):
self.lock.acquire()#加鎖,鎖住相應的資源
self.num += 1
num = self.num
self.lock.release()#解鎖,離開該資源
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()#將num加1,並輸出原來的數據和+1之後的數據
print(self.item,value)for item in range(5):
t = jdThread(item)
t.start()
t.join()#使線程一個一個執行
當一個線程調用鎖的acquire()方法獲得鎖時,鎖就進入「locked」狀態。每次只有一個線程可以獲得鎖。如果此時另一個線程試圖獲得這個鎖,該線程就會變為「blocked」狀態,稱為「同步阻塞」(參見多線程的基本概念)。
直到擁有鎖的線程調用鎖的release()方法釋放鎖之後,鎖進入「unlocked」狀態。線程調度程序從處於同步阻塞狀態的線程中選擇一個來獲得鎖,並使得該線程進入運行(running)狀態。
信號量
信號量也提供acquire方法和release方法,每當調用acquire方法的時候,如果內部計數器大於0,則將其減1,如果內部計數器等於0,則會阻塞該線程,知道有線程調用了release方法將內部計數器更新到大於1位置。
import threadingimport timeclass Num:
def __init__(self):
self.num = 0
self.sem = threading.Semaphore(value = 3) #允許最多三個線程同時訪問資源
def add(self):
self.sem.acquire()#內部計數器減1
self.num += 1
num = self.num
self.sem.release()#內部計數器加1
return num
n = Num()class jdThread(threading.Thread):
def __init__(self,item):
threading.Thread.__init__(self)
self.item = item def run(self):
time.sleep(2)
value = n.add()
print(self.item,value)for item in range(100):
⑺ 如何用python簡單的設計開發非同步任務調度隊列
首先,客戶端可以直接扔任務到一個web services的介面上 –》 web api接收到任務後,會根據客戶端的ip和時間戳做task_id,返回給客戶,緊接著在redis裡面標記這任務的狀態。 格式為 func,args,kwargs,timeout=xx,queue_level=xx,interval_time=xx
主服務端:
一個線程,會不停的掃描那個redis hash表,取出任務的interval_time後,進行取模,如果匹配成功,就會塞到 redis sorted set有續集和裡面。
主線程,會不停的看看sorted set裡面,有沒有比自己實現小的任務,有的話,執行並刪除。 這里的執行是用多進程,為毛用多進程,因為線程很多時候是不好控制強制幹掉的。 每個任務都會用multiprocessing的方式去執行,去調用的時候,會多傳進一個task_id,用來把相關的進度推送到redis裡面。 另外,fork進程後,我會得到一個pid,我會把pid和timeout的信息,存放到kill_hash裡面。 然後會不間斷的查看,在指定的timeout內,這pid還在不在,如果還是存在,沒有退出的話,說明他的任務不太正常,我們就可以在main(),裡面幹掉這些任務。
所謂的優先順序就是個 High + middle +Low 的三合一鏈條而已,我每次都會堅持從高到低取任務,如果你的High級別的任務不斷的話,那麼我會一直幹不了低級別的任務了。 代碼的體現是在redis sorted set這邊,設立三個有序集合,我的worker隊列會從high開始做……
那麼如果想幹掉一個任務是如何操作的,首先我需要在 kill_hash 裡面標記任務應該趕緊幹掉,在就是在task_hash裡面把那個task_id幹掉,好讓他不會被持續的加入待執行的隊列裡面。
⑻ 做網路爬蟲,python 的多線程,非同步和 node.js 的非同步哪個好
項目初期,我僅僅實現了一個demo,最簡單的多線程+requests庫+beautiful soup
後來為了性能,重構為非同步
IO,在tornado和gevent之間選擇了一下,最後選擇了gevent,倒不是因為技術原因,而是因為gevent更好寫:)
而且還monkey patch了線程等庫。此次重構還用自己寫的正則匹配,替代了beautiful soup
再後來,爬蟲抓取的目標增加了訪問頻率限制,不得不為爬蟲增加了一個動態選擇代理的功能,此次的重構耗時較多,也是此次重構為之後埋下了坑,動態選擇的過程、代理的不穩定也成了耗時的原因。
為了進一步提速,但又需要繞過訪問限制,而自己的伺服器資源又不多(其實就一台爬蟲伺服器)。進行了又一次重構,此次重構可以說是業務上的進步,技術上的「倒退」,我發現如果進一步理解用戶需求的話,其實用戶需要的80%都是熱點數據,而熱點數據並不多。
於是改成了最簡單的構架,多進程+requests庫,用不到200行代碼寫了爬蟲,把復雜的動態選擇代理功能去了,僅僅用一個進程一個ip的原始策略抓取熱點數據。多運行幾個爬蟲,問題就都解決了,而且穩定性,可維護性極大提升。
作為總結的廢話是,如果樓主是打算做實際的項目,上線、盈利甚至以後會交給別人維護項目、代碼,可以多分析一下用戶需求,和自己的資源能力。寫個爬蟲做項目簡單,解決自己埋下的坑很難。
⑼ python多線程的問題如何處理
在python里線程出問題,可能會導致主進程崩潰。 雖然python里的線程是操作系統的真實線程。
那麼怎麼解決呢?通過我們用進程方式。子進程崩潰後,會完全的釋放所有的內存和錯誤狀態。所以進程更安全。 另外通過進程,python可以很好的繞過GIL,這個全局鎖問題。
但是進程也是有局限的。不要建立超過CPU總核數的進程,否則效率也不高。
簡單的總結一下。
當我們想實現多任務處理時,首先要想到使用multiprocessing, 但是如果覺著進程太笨重,那麼就要考慮使用線程。 如果多任務處理中需要處理的太多了,可以考慮多進程,每個進程再採用多線程。如果還處理不要,就要使用輪詢模式,比如使用poll event, twisted等方式。如果是GUI方式,則要通過事件機制,或者是消息機制處理,GUI使用單線程。
所以在python里線程不要盲目用, 也不要濫用。 但是線程不安全是事實。如果僅僅是做幾個後台任務,則可以考慮使用守護線程做。如果需要做一些危險操作,可能會崩潰的,就用子進程去做。 如果需要高度穩定性,同時並發數又不高的服務。則強烈建議用多進程的multiprocessing模塊實現。
在linux或者是unix里,進程的使用代價沒有windows高。還是可以接受的。
⑽ python 多線程 怎麼改成非同步
python使用multiprocessing模塊實現帶回調函數的非同步調用方法。分享給大家供大家參考。具體分析如下:
multipressing模塊是python 2.6版本加入的,通過這個模塊可以輕松實現非同步調用
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
pool = Pool(processes=1)
# Start a worker processes.
result = pool.apply_async(f, [10], callback)
# Evaluate "f(10)" asynchronously calling callback when finished.
希望本文所述對大家的Python程序設計有所幫助。