當前位置:首頁 » 編程語言 » pythondaemon線程

pythondaemon線程

發布時間: 2022-04-29 07:57:03

python開發之如何在線程間進行事件通知

1.等待事件一端調用wait,等待事件 event.wait(),如果要wait持續生效 得event.clear()
2.通知事件一端調用set,通知事件 event.set()
3.daemon線程是指所有的線程如果結束了,daemon線程也會結束!

② python3 如何在線程間進行事件通知

線程間的事件通知,可以使用標准庫中的Threading.Event,如果是兩個線程一般會用到2組eVent來相互通知
1.等待事件一端調用wait,等待事件 event.wait(),如果要wait持續生效 得event.clear()
2.通知事件一端調用set,通知事件 event.set()
3.daemon線程是指所有的線程如果結束了,daemon線程也會結束

③ 關於python多線程的一些問題。

  1. 創建的子線程默認是非守護的。

  2. 非守護:當主線程結束時,子線程繼續運行,二者互不影響。

  3. 子線程是守護線程:當主線程結束時,子線程也結束(不管子線程工作有沒有完成)。

  4. join作用是線程同步,是讓主線程等待子線程結束才結束(主線程完成工作了也不結束,阻塞等待,等子線程完成其工作才一起結束)。

相信此時你已經懂你的兩個問題了。

  1. 沒加join的時候主線程結束了,所以命令提示符>>>就出來了,可是子線程還沒結束,過了3/5秒後列印了字元串。加了join後主線程等兩個子線程都結束才一起結束,所以最後才出來>>>。

  2. 理解確實有點偏差。守護是指子線程守護著主線程,你死我也死,謂之守護。

④ python多線程問題

以下方式都可以解決這個問題:

  1. 啟動的時候可以在命令末尾加上 &,表示在後台執行。

  2. 可以使用 supervisord, upstart, systemd等管理工具來啟動你的程序。

  3. 把你的程序daemon化,可以使用 python-daemon 等庫來實現。

⑤ Python面試題,線程與進程的區別,Python中如何創建多線程

進程和線程

這兩個概念屬於操作系統,我們經常聽說,但是可能很少有人會細究它們的含義。對於工程師而言,兩者的定義和區別還是很有必要了解清楚的。

首先說進程,進程可以看成是 CPU執行的具體的任務 。在操作系統當中,由於CPU的運行速度非常快,要比計算機當中的其他設備要快得多。比如內存、磁碟等等,所以如果CPU一次只執行一個任務,那麼會導致CPU大量時間在等待這些設備,這樣操作效率很低。為了提升計算機的運行效率,把機器的技能盡可能壓榨出來,CPU是輪詢工作的。也就是說 它一次只執行一個任務,執行一小段碎片時間之後立即切換 ,去執行其他任務。

所以在早期的單核機器的時候,看起來電腦也是並發工作的。我們可以一邊聽歌一邊上網,也不會覺得卡頓。但實際上,這是CPU輪詢的結果。在這個例子當中,聽歌的軟體和上網的軟體對於CPU而言都是 獨立的進程 。我們可以把進程簡單地理解成運行的應用,比如在安卓手機裡面,一個app啟動的時候就會對應系統中的一個進程。當然這種說法不完全准確, 一個應用也是可以啟動多個進程的

進程是對應CPU而言的,線程則更多針對的是程序。即使是CPU在執行當前進程的時候,程序運行的任務其實也是有分工的。舉個例子,比如聽歌軟體當中,我們需要顯示歌詞的字幕,需要播放聲音,需要監聽用戶的行為,比如是否發生了切歌、調節音量等等。所以,我們需要 進一步拆分CPU的工作 ,讓它在執行當前進程的時候,繼續通過輪詢的方式來同時做多件事情。

進程中的任務就是線程,所以從這點上來說, 進程和線程是包含關系 。一個進程當中可以包含多個線程,對於CPU而言,不能直接執行線程,一個線程一定屬於一個進程。所以我們知道,CPU進程切換切換的是執行的應用程序或者是軟體,而進程內部的線程切換,切換的是軟體當中具體的執行任務。

關於進程和線程有一個經典的模型可以說明它們之間的關系,假設CPU是一家工廠,工廠當中有多個車間。不同的車間對應不同的生產任務,有的車間生產汽車輪胎,有的車間生產汽車骨架。但是工廠的電力是有限的,同時只能滿足一個廠房的使用。

為了讓大家的進度協調,所以工廠需要輪流提供各個車間的供電。 這里的車間對應的就是進程

一個車間雖然只生產一種產品,但是其中的工序卻不止一個。一個車間可能會有好幾條流水線,具體的生產任務其實是流水線完成的,每一條流水線對應一個具體執行的任務。但是同樣的, 車間同一時刻也只能執行一條流水線 ,所以我們需要車間在這些流水線之間切換供電,讓各個流水線生產進度統一。

這里車間里的 流水線自然對應的就是線程的概念 ,這個模型很好地詮釋了CPU、進程和線程之間的關系。實際的原理也的確如此,不過CPU中的情況要比現實中的車間復雜得多。因為對於進程和CPU來說,它們面臨的局面都是實時變化的。車間當中的流水線是x個,下一刻可能就成了y個。

了解完了線程和進程的概念之後,對於理解電腦的配置也有幫助。比如我們買電腦,經常會碰到一個術語,就是這個電腦的CPU是某某核某某線程的。比如我當年買的第一台筆記本是4核8線程的,這其實是在說這台電腦的CPU有 4個計算核心 ,但是使用了超線程技術,使得可以把一個物理核心模擬成兩個邏輯核心。相當於我們可以用4個核心同時執行8個線程,相當於8個核心同時執行,但其實有4個核心是模擬出來的虛擬核心。

有一個問題是 為什麼是4核8線程而不是4核8進程呢 ?因為CPU並不會直接執行進程,而是執行的是進程當中的某一個線程。就好像車間並不能直接生產零件,只有流水線才能生產零件。車間負責的更多是資源的調配,所以教科書里有一句非常經典的話來詮釋: 進程是資源分配的最小單元,線程是CPU調度的最小單元

啟動線程

Python當中為我們提供了完善的threading庫,通過它,我們可以非常方便地創建線程來執行多線程。

首先,我們引入threading中的Thread,這是一個線程的類,我們可以通過創建一個線程的實例來執行多線程。

from threading import Thread t = Thread(target=func, name='therad', args=(x, y)) t.start()

簡單解釋一下它的用法,我們傳入了三個參數,分別是 target,name和args ,從名字上我們就可以猜測出它們的含義。首先是target,它傳入的是一個方法,也就是我們希望多線程執行的方法。name是我們為這個新創建的線程起的名字,這個參數可以省略,如果省略的話,系統會為它起一個系統名。當我們執行Python的時候啟動的線程名叫MainThread,通過線程的名字我們可以做區分。args是會傳遞給target這個函數的參數。

我們來舉個經典的例子:

import time, threading # 新線程執行的代碼: def loop(n): print('thread %s is running...' % threading.current_thread().name) for i in range(n): print('thread %s >>> %s' % (threading.current_thread().name, i)) time.sleep(5) print('thread %s ended.' % threading.current_thread().name) print('thread %s is running...' % threading.current_thread().name) t = threading.Thread(target=loop, name='LoopThread', args=(10, )) t.start() print('thread %s ended.' % threading.current_thread().name)

我們創建了一個非常簡單的loop函數,用來執行一個循環來列印數字,我們每次列印一個數字之後這個線程會睡眠5秒鍾,所以我們看到的結果應該是每過5秒鍾屏幕上多出一行數字。

我們在Jupyter里執行一下:

表面上看這個結果沒毛病,但是其實有一個問題,什麼問題呢? 輸出的順序不太對 ,為什麼我們在列印了第一個數字0之後,主線程就結束了呢?另外一個問題是,既然主線程已經結束了, 為什麼Python進程沒有結束 , 還在向外列印結果呢?

因為線程之間是獨立的,對於主線程而言,它在執行了t.start()之後,並 不會停留,而是會一直往下執行一直到結束 。如果我們不希望主線程在這個時候結束,而是阻塞等待子線程運行結束之後再繼續運行,我們可以在代碼當中加上t.join()這一行來實現這點。

t.start() t.join() print('thread %s ended.' % threading.current_thread().name)

join操作可以讓主線程在join處掛起等待,直到子線程執行結束之後,再繼續往下執行。我們加上了join之後的運行結果是這樣的:

這個就是我們預期的樣子了,等待子線程執行結束之後再繼續。

我們再來看第二個問題,為什麼主線程結束的時候,子線程還在繼續運行,Python進程沒有退出呢?這是因為默認情況下我們創建的都是用戶級線程,對於進程而言, 會等待所有用戶級線程執行結束之後才退出 。這里就有了一個問題,那假如我們創建了一個線程嘗試從一個介面當中獲取數據,由於介面一直沒有返回,當前進程豈不是會永遠等待下去?

這顯然是不合理的,所以為了解決這個問題,我們可以把創建出來的線程設置成 守護線程

守護線程

守護線程即daemon線程,它的英文直譯其實是後台駐留程序,所以我們也可以理解成 後台線程 ,這樣更方便理解。daemon線程和用戶線程級別不同,進程不會主動等待daemon線程的執行, 當所有用戶級線程執行結束之後即會退出。進程退出時會kill掉所有守護線程

我們傳入daemon=True參數來將創建出來的線程設置成後台線程:

t = threading.Thread(target=loop, name='LoopThread', args=(10, ), daemon=True)

這樣我們再執行看到的結果就是這樣了:

這里有一點需要注意,如果你 在jupyter當中運行是看不到這樣的結果的 。因為jupyter自身是一個進程,對於jupyter當中的cell而言,它一直是有用戶級線程存活的,所以進程不會退出。所以想要看到這樣的效果,只能通過命令行執行Python文件。

如果我們想要等待這個子線程結束,就必須通過join方法。另外,為了預防子線程鎖死一直無法退出的情況, 我們還可以 在joih當中設置timeout ,即最長等待時間,當等待時間到達之後,將不再等待。

比如我在join當中設置的timeout等於5時,屏幕上就只會輸出5個數字。

另外,如果沒有設置成後台線程的話,設置timeout雖然也有用,但是 進程仍然會等待所有子線程結束 。所以屏幕上的輸出結果會是這樣的:

雖然主線程繼續往下執行並且結束了,但是子線程仍然一直運行,直到子線程也運行結束。

關於join設置timeout這里有一個坑,如果我們只有一個線程要等待還好,如果有多個線程,我們用一個循環將它們設置等待的話。那麼 主線程一共會等待N * timeout的時間 ,這里的N是線程的數量。因為每個線程計算是否超時的開始時間是上一個線程超時結束的時間,它會等待所有線程都超時,才會一起終止它們。

比如我這樣創建3個線程:

ths = [] for i in range(3): t = threading.Thread(target=loop, name='LoopThread' + str(i), args=(10, ), daemon=True) ths.append(t) for t in ths: t.start() for t in ths: t.join(2)

最後屏幕上輸出的結果是這樣的:

所有線程都存活了6秒。

總結

在今天的文章當中,我們一起簡單了解了 操作系統當中線程和進程的概念 ,以及Python當中如何創建一個線程,以及關於創建線程之後的相關使用。

多線程在許多語言當中都是至關重要的,許多場景下必定會使用到多線程。比如 web後端,比如爬蟲,再比如游戲開發 以及其他所有需要涉及開發ui界面的領域。因為凡是涉及到ui,必然會需要一個線程單獨渲染頁面,另外的線程負責准備數據和執行邏輯。因此,多線程是專業程序員繞不開的一個話題,也是一定要掌握的內容之一。

⑥ python編程中線程結束的問題

def _exitCheckfunc():
print "ok"
try:
while 1:
alive=False
if thread_.isAlive():
alive=True
if not alive:
break
time.sleep(1)
#為了使得統計時間能夠運行,要捕捉 KeyboardInterrupt :ctrl-c
except KeyboardInterrupt, e:
traceback.print_exc()
print "consume time :",time.time()-start

threading._shutdown=_exitCheckfunc

自己在主線程中寫一個死循環來接受ctrl+c的信號。

或者用進程監控 :

http://code.activestate.com/recipes/496735-workaround-for-missed-sigint-in-multithreaded-prog/

⑦ python的多線程使用setDaemon有什麼意義

使用setDaemon()和守護線程這方面知識有關, 比如在啟動線程前設置thread.setDaemon(True),就是設置該線程為守護線程,
表示該線程是不重要的,進程退出時不需要等待這個線程執行完成。
這樣做的意義在於:避免子線程無限死循環,導致退不出程序,也就是避免樓上說的孤兒進程。

thread.setDaemon()設置為True, 則設為true的話 則主線程執行完畢後會將子線程回收掉,
設置為false,主進程執行結束時不會回收子線程

⑧ python daemon thread 什麼概念

daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread default to daemon = False.
The entire Python program exits when no alive non-daemon threads are left.
當daemon被設置為True時,如果主線程退出,那麼子線程也將跟著退出,
反之,子線程將繼續運行,直到正常退出。

⑨ 如何將一個python以daemon的方式運行

你可以使用python-daemon這個庫,用法很簡單。

地址:https://pypi.python.org/pypi/python-daemon/2.0.5

importdaemon

fromspamimportdo_main_program

withdaemon.DaemonContext():
do_main_program()

如果解決了您的問題請採納!
如果未解決請繼續追問

⑩ python 多線程和多進程的區別 mutiprocessing theading

在socketserver服務端代碼中有這么一句:

server = socketserver.ThreadingTCPServer((ip,port), MyServer)

ThreadingTCPServer這個類是一個支持多線程和TCP協議的socketserver,它的繼承關系是這樣的:

class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

右邊的TCPServer實際上是主要的功能父類,而左邊的ThreadingMixIn則是實現了多線程的類,ThreadingTCPServer自己本身則沒有任何代碼。

MixIn在Python的類命名中很常見,稱作「混入」,戲稱「亂入」,通常為了某種重要功能被子類繼承。

我們看看一下ThreadingMixIn的源代碼:

class ThreadingMixIn:

daemon_threads = False

def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)

def process_request(self, request, client_address):

t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()

在ThreadingMixIn類中,其實就定義了一個屬性,兩個方法。其中的process_request()方法實際調用的正是Python內置的多線程模塊threading。這個模塊是Python中所有多線程的基礎,socketserver本質上也是利用了這個模塊。

socketserver通過threading模塊,實現了多線程任務處理能力,可以同時為多個客戶提供服務。

那麼,什麼是線程,什麼是進程?

進程是程序(軟體,應用)的一個執行實例,每個運行中的程序,可以同時創建多個進程,但至少要有一個。每個進程都提供執行程序所需的所有資源,都有一個虛擬的地址空間、可執行的代碼、操作系統的介面、安全的上下文(記錄啟動該進程的用戶和許可權等等)、唯一的進程ID、環境變數、優先順序類、最小和最大的工作空間(內存空間)。進程可以包含線程,並且每個進程必須有至少一個線程。每個進程啟動時都會最先產生一個線程,即主線程,然後主線程會再創建其他的子線程。

線程,有時被稱為輕量級進程(Lightweight Process,LWP),是程序執行流的最小單元。一個標準的線程由線程ID,當前指令指針(PC),寄存器集合和堆棧組成。另外,線程是進程中的一個實體,是被系統獨立調度和分派的基本單位,線程自己不獨立擁有系統資源,但它可與同屬一個進程的其它線程共享該進程所擁有的全部資源。每一個應用程序都至少有一個進程和一個線程。在單個程序中同時運行多個線程完成不同的被劃分成一塊一塊的工作,稱為多線程。

舉個例子,某公司要生產一種產品,於是在生產基地建設了很多廠房,每個廠房內又有多條流水生產線。所有廠房配合將整個產品生產出來,單個廠房內的流水線負責生產所屬廠房的產品部件,每個廠房都擁有自己的材料庫,廠房內的生產線共享這些材料。公司要實現生產必須擁有至少一個廠房一條生產線。換成計算機的概念,那麼這家公司就是應用程序,廠房就是應用程序的進程,生產線就是某個進程的一個線程。

線程的特點:

線程是一個execution context(執行上下文),即一個cpu執行時所需要的一串指令。假設你正在讀一本書,沒有讀完,你想休息一下,但是你想在回來時繼續先前的進度。有一個方法就是記下頁數、行數與字數這三個數值,這些數值就是execution context。如果你的室友在你休息的時候,使用相同的方法讀這本書。你和她只需要這三個數字記下來就可以在交替的時間共同閱讀這本書了。

線程的工作方式與此類似。CPU會給你一個在同一時間能夠做多個運算的幻覺,實際上它在每個運算上只花了極少的時間,本質上CPU同一時刻只能幹一件事,所謂的多線程和並發處理只是假象。CPU能這樣做是因為它有每個任務的execution context,就像你能夠和你朋友共享同一本書一樣。

進程與線程區別:

  • 同一個進程中的線程共享同一內存空間,但進程之間的內存空間是獨立的。

  • 同一個進程中的所有線程的數據是共享的,但進程之間的數據是獨立的。

  • 對主線程的修改可能會影響其他線程的行為,但是父進程的修改(除了刪除以外)不會影響其他子進程。

  • 線程是一個上下文的執行指令,而進程則是與運算相關的一簇資源。

  • 同一個進程的線程之間可以直接通信,但是進程之間的交流需要藉助中間代理來實現。

  • 創建新的線程很容易,但是創建新的進程需要對父進程做一次復制。

  • 一個線程可以操作同一進程的其他線程,但是進程只能操作其子進程。

  • 線程啟動速度快,進程啟動速度慢(但是兩者運行速度沒有可比性)。

  • 由於現代cpu已經進入多核時代,並且主頻也相對以往大幅提升,多線程和多進程編程已經成為主流。Python全面支持多線程和多進程編程,同時還支持協程。

熱點內容
搭建虛擬電腦的伺服器 發布:2025-05-15 10:29:31 瀏覽:269
湖人雙核配置哪個最好 發布:2025-05-15 10:09:48 瀏覽:979
手機熱點密碼怎麼查看 發布:2025-05-15 09:54:47 瀏覽:108
生意發力雲存儲 發布:2025-05-15 09:54:45 瀏覽:616
編寫一個shell腳本添加用戶 發布:2025-05-15 09:54:43 瀏覽:505
資料庫查看錶命令 發布:2025-05-15 09:52:27 瀏覽:914
p30是不是自帶方舟編譯器 發布:2025-05-15 09:51:48 瀏覽:599
追擊世界房間密碼是多少 發布:2025-05-15 09:51:46 瀏覽:995
cjavabyte 發布:2025-05-15 09:51:36 瀏覽:463
visa存儲卡 發布:2025-05-15 09:35:07 瀏覽:619