當前位置:首頁 » 密碼管理 » 登錄加密演算法

登錄加密演算法

發布時間: 2022-06-03 16:46:09

❶ 求MD5演算法,及其登錄時如何用它加密java程序

MD5的全稱是Message-Digest Algorithm 5(信息-摘要演算法),在90年代初由MIT Laboratory for Computer Science和RSA Data Security Inc的Ronald L. Rivest開發出來,經MD2、MD3和MD4發展而來。它的作用是讓大容量信息在用數字簽名軟體簽署私人密匙前被"壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的大整數)。不管是MD2、MD4還是MD5,它們都需要獲得一個隨機長度的信息並產生一個128位的信息摘要。雖然這些演算法的結構或多或少有些相似,但MD2的設計與MD4和MD5完全不同,那是因為MD2是為8位機器做過設計優化的,而MD4和MD5卻是面向32位的電腦。這三個演算法的描述和C語言源代碼在Internet RFCs 1321中有詳細的描述(http://www.ietf.org/rfc/rfc1321.txt),這是一份最權威的文檔,由Ronald L. Rivest在1992年8月向IEFT提交。

Rivest在1989年開發出MD2演算法。在這個演算法中,首先對信息進行數據補位,使信息的位元組長度是16的倍數。然後,以一個16位的檢驗和追加到信息末尾。並且根據這個新產生的信息計算出散列值。後來,Rogier和Chauvaud發現如果忽略了檢驗和將產生MD2沖突。MD2演算法的加密後結果是唯一的--既沒有重復。

為了加強演算法的安全性,Rivest在1990年又開發出MD4演算法。MD4演算法同樣需要填補信息以確保信息的位元組長度加上448後能被512整除(信息位元組長度mod 512 = 448)。然後,一個以64位二進製表示的信息的最初長度被添加進來。信息被處理成512位Damg?rd/Merkle迭代結構的區塊,而且每個區塊要通過三個不同步驟的處理。Den Boer和Bosselaers以及其他人很快的發現了攻擊MD4版本中第一步和第三步的漏洞。Dobbertin向大家演示了如何利用一部普通的個人電腦在幾分鍾內找到MD4完整版本中的沖突(這個沖突實際上是一種漏洞,它將導致對不同的內容進行加密卻可能得到相同的加密後結果)。毫無疑問,MD4就此被淘汰掉了。

盡管MD4演算法在安全上有個這么大的漏洞,但它對在其後才被開發出來的好幾種信息安全加密演算法的出現卻有著不可忽視的引導作用。除了MD5以外,其中比較有名的還有SHA-1、RIPE-MD以及HAVAL等。

一年以後,即1991年,Rivest開發出技術上更為趨近成熟的MD5演算法。它在MD4的基礎上增加了"安全-帶子"(Safety-Belts)的概念。雖然MD5比MD4稍微慢一些,但卻更為安全。這個演算法很明顯的由四個和MD4設計有少許不同的步驟組成。在MD5演算法中,信息-摘要的大小和填充的必要條件與MD4完全相同。Den Boer和Bosselaers曾發現MD5演算法中的假沖突(Pseudo-Collisions),但除此之外就沒有其他被發現的加密後結果了。

Van Oorschot和Wiener曾經考慮過一個在散列中暴力搜尋沖突的函數(Brute-Force Hash Function),而且他們猜測一個被設計專門用來搜索MD5沖突的機器(這台機器在1994年的製造成本大約是一百萬美元)可以平均每24天就找到一個沖突。但單從1991年到2001年這10年間,竟沒有出現替代MD5演算法的MD6或被叫做其他什麼名字的新演算法這一點,我們就可以看出這個瑕疵並沒有太多的影響MD5的安全性。上面所有這些都不足以成為MD5的在實際應用中的問題。並且,由於MD5演算法的使用不需要支付任何版權費用的,所以在一般的情況下(非絕密應用領域。但即便是應用在絕密領域內,MD5也不失為一種非常優秀的中間技術),MD5怎麼都應該算得上是非常安全的了。

演算法的應用

MD5的典型應用是對一段信息(Message)產生信息摘要(Message-Digest),以防止被篡改。比如,在UNIX下有很多軟體在下載的時候都有一個文件名相同,文件擴展名為.md5的文件,在這個文件中通常只有一行文本,大致結構如:

MD5 (tanajiya.tar.gz) =

這就是tanajiya.tar.gz文件的數字簽名。MD5將整個文件當作一個大文本信息,通過其不可逆的字元串變換演算法,產生了這個唯一的MD5信息摘要。如果在以後傳播這個文件的過程中,無論文件的內容發生了任何形式的改變(包括人為修改或者下載過程中線路不穩定引起的傳輸錯誤等),只要你對這個文件重新計算MD5時就會發現信息摘要不相同,由此可以確定你得到的只是一個不正確的文件。如果再有一個第三方的認證機構,用MD5還可以防止文件作者的"抵賴",這就是所謂的數字簽名應用。

MD5還廣泛用於加密和解密技術上。比如在UNIX系統中用戶的密碼就是以MD5(或其它類似的演算法)經加密後存儲在文件系統中。當用戶登錄的時候,系統把用戶輸入的密碼計算成MD5值,然後再去和保存在文件系統中的MD5值進行比較,進而確定輸入的密碼是否正確。通過這樣的步驟,系統在並不知道用戶密碼的明碼的情況下就可以確定用戶登錄系統的合法性。這不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。

正是因為這個原因,現在被黑客使用最多的一種破譯密碼的方法就是一種被稱為"跑字典"的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用MD5程序計算出這些字典項的MD5值,然後再用目標的MD5值在這個字典中檢索。我們假設密碼的最大長度為8位位元組(8 Bytes),同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是P(62,1)+P(62,2)….+P(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要TB級的磁碟陣列,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼MD5值的情況下才可以。這種加密技術被廣泛的應用於UNIX系統中,這也是為什麼UNIX系統比一般操作系統更為堅固一個重要原因。

演算法描述

對MD5演算法簡要的敘述可以為:MD5以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。

在MD5演算法中,首先需要對信息進行填充,使其位元組長度對512求余的結果等於448。因此,信息的位元組長度(Bits Length)將被擴展至N*512+448,即N*64+56個位元組(Bytes),N為一個正整數。填充的方法如下,在信息的後面填充一個1和無數個0,直到滿足上面的條件時才停止用0對信息的填充。然後,在在這個結果後面附加一個以64位二進製表示的填充前信息長度。經過這兩步的處理,現在的信息位元組長度=N*512+448+64=(N+1)*512,即長度恰好是512的整數倍。這樣做的原因是為滿足後面處理中對信息長度的要求。

MD5中有四個32位被稱作鏈接變數(Chaining Variable)的整數參數,他們分別為:A=0x01234567,B=0x89abcdef,C=0xfedcba98,D=0x76543210。

當設置好這四個鏈接變數後,就開始進入演算法的四輪循環運算。循環的次數是信息中512位信息分組的數目。

將上面四個鏈接變數復制到另外四個變數中:A到a,B到b,C到c,D到d。

主循環有四輪(MD4隻有三輪),每輪循環都很相似。第一輪進行16次操作。每次操作對a、b、c和d中的其中三個作一次非線性函數運算,然後將所得結果加上第四個變數,文本的一個子分組和一個常數。再將所得結果向右環移一個不定的數,並加上a、b、c或d中之一。最後用該結果取代a、b、c或d中之一。
以一下是每次操作中用到的四個非線性函數(每輪一個)。

F(X,Y,Z) =(X&Y)|((~X)&Z)
G(X,Y,Z) =(X&Z)|(Y&(~Z))
H(X,Y,Z) =X^Y^Z
I(X,Y,Z)=Y^(X|(~Z))
(&是與,|是或,~是非,^是異或)

這四個函數的說明:如果X、Y和Z的對應位是獨立和均勻的,那麼結果的每一位也應是獨立和均勻的。
F是一個逐位運算的函數。即,如果X,那麼Y,否則Z。函數H是逐位奇偶操作符。

假設Mj表示消息的第j個子分組(從0到15),<<
FF(a,b,c,d,Mj,s,ti)表示a=b+((a+(F(b,c,d)+Mj+ti)<< GG(a,b,c,d,Mj,s,ti)表示a=b+((a+(G(b,c,d)+Mj+ti)<< HH(a,b,c,d,Mj,s,ti)表示a=b+((a+(H(b,c,d)+Mj+ti)<< II(a,b,c,d,Mj,s,ti)表示a=b+((a+(I(b,c,d)+Mj+ti)<<
這四輪(64步)是:

第一輪

FF(a,b,c,d,M0,7,0xd76aa478)
FF(d,a,b,c,M1,12,0xe8c7b756)
FF(c,d,a,b,M2,17,0x242070db)
FF(b,c,d,a,M3,22,0xc1bdceee)
FF(a,b,c,d,M4,7,0xf57c0faf)
FF(d,a,b,c,M5,12,0x4787c62a)
FF(c,d,a,b,M6,17,0xa8304613)
FF(b,c,d,a,M7,22,0xfd469501)
FF(a,b,c,d,M8,7,0x698098d8)
FF(d,a,b,c,M9,12,0x8b44f7af)
FF(c,d,a,b,M10,17,0xffff5bb1)
FF(b,c,d,a,M11,22,0x895cd7be)
FF(a,b,c,d,M12,7,0x6b901122)
FF(d,a,b,c,M13,12,0xfd987193)
FF(c,d,a,b,M14,17,0xa679438e)
FF(b,c,d,a,M15,22,0x49b40821)

第二輪

GG(a,b,c,d,M1,5,0xf61e2562)
GG(d,a,b,c,M6,9,0xc040b340)
GG(c,d,a,b,M11,14,0x265e5a51)
GG(b,c,d,a,M0,20,0xe9b6c7aa)
GG(a,b,c,d,M5,5,0xd62f105d)
GG(d,a,b,c,M10,9,0x02441453)
GG(c,d,a,b,M15,14,0xd8a1e681)
GG(b,c,d,a,M4,20,0xe7d3fbc8)
GG(a,b,c,d,M9,5,0x21e1cde6)
GG(d,a,b,c,M14,9,0xc33707d6)
GG(c,d,a,b,M3,14,0xf4d50d87)
GG(b,c,d,a,M8,20,0x455a14ed)
GG(a,b,c,d,M13,5,0xa9e3e905)
GG(d,a,b,c,M2,9,0xfcefa3f8)
GG(c,d,a,b,M7,14,0x676f02d9)
GG(b,c,d,a,M12,20,0x8d2a4c8a)

第三輪

HH(a,b,c,d,M5,4,0xfffa3942)
HH(d,a,b,c,M8,11,0x8771f681)
HH(c,d,a,b,M11,16,0x6d9d6122)
HH(b,c,d,a,M14,23,0xfde5380c)
HH(a,b,c,d,M1,4,0xa4beea44)
HH(d,a,b,c,M4,11,0x4bdecfa9)
HH(c,d,a,b,M7,16,0xf6bb4b60)
HH(b,c,d,a,M10,23,0xbebfbc70)
HH(a,b,c,d,M13,4,0x289b7ec6)
HH(d,a,b,c,M0,11,0xeaa127fa)
HH(c,d,a,b,M3,16,0xd4ef3085)
HH(b,c,d,a,M6,23,0x04881d05)
HH(a,b,c,d,M9,4,0xd9d4d039)
HH(d,a,b,c,M12,11,0xe6db99e5)
HH(c,d,a,b,M15,16,0x1fa27cf8)
HH(b,c,d,a,M2,23,0xc4ac5665)

第四輪

II(a,b,c,d,M0,6,0xf4292244)
II(d,a,b,c,M7,10,0x432aff97)
II(c,d,a,b,M14,15,0xab9423a7)
II(b,c,d,a,M5,21,0xfc93a039)
II(a,b,c,d,M12,6,0x655b59c3)
II(d,a,b,c,M3,10,0x8f0ccc92)
II(c,d,a,b,M10,15,0xffeff47d)
II(b,c,d,a,M1,21,0x85845dd1)
II(a,b,c,d,M8,6,0x6fa87e4f)
II(d,a,b,c,M15,10,0xfe2ce6e0)
II(c,d,a,b,M6,15,0xa3014314)
II(b,c,d,a,M13,21,0x4e0811a1)
II(a,b,c,d,M4,6,0xf7537e82)
II(d,a,b,c,M11,10,0xbd3af235)
II(c,d,a,b,M2,15,0x2ad7d2bb)
II(b,c,d,a,M9,21,0xeb86d391)

常數ti可以如下選擇:

在第i步中,ti是4294967296*abs(sin(i))的整數部分,i的單位是弧度。(4294967296等於2的32次方)
所有這些完成之後,將A、B、C、D分別加上a、b、c、d。然後用下一分組數據繼續運行演算法,最後的輸出是A、B、C和D的級聯。

當你按照我上面所說的方法實現MD5演算法以後,你可以用以下幾個信息對你做出來的程序作一個簡單的測試,看看程序有沒有錯誤。

MD5 ("") =
MD5 ("a") =
MD5 ("abc") =
MD5 ("message digest") =
MD5 ("abcdefghijklmnopqrstuvwxyz") =
MD5 ("") =

MD5 ("
01234567890") =

如果你用上面的信息分別對你做的MD5演算法實例做測試,最後得出的結論和標准答案完全一樣,那我就要在這里象你道一聲祝賀了。要知道,我的程序在第一次編譯成功的時候是沒有得出和上面相同的結果的。

MD5的安全性

MD5相對MD4所作的改進:

1. 增加了第四輪;

2. 每一步均有唯一的加法常數;

3. 為減弱第二輪中函數G的對稱性從(X&Y)|(X&Z)|(Y&Z)變為(X&Z)|(Y&(~Z));

4. 第一步加上了上一步的結果,這將引起更快的雪崩效應;

5. 改變了第二輪和第三輪中訪問消息子分組的次序,使其更不相似;

6. 近似優化了每一輪中的循環左移位移量以實現更快的雪崩效應。各輪的位移量互不相同。

MD5源程序

在rfc1321種已經有了用C語言實現MD5演算法的源程序,如果你需要在Java或者像PHP、C#這樣的類C語言上實現的話,只要對那段C代碼作一些簡單的改動,應該能夠很容易的實現。

❷ QQ密碼是採用什麼加密演算法

由於QQ的密碼是經過128位加密處理的,且不可逆計算。只能由QQ自己的賬號登錄後才可以識別和打開的。

QQ客戶端向伺服器發送一個請求登錄的數據包。伺服器返回登錄令牌。這個令牌是在伺服器端生成的。和客戶端的IP地址,版本信息等數據相關。以後會用到這個令牌去進行其他操作。

QQ客戶端得到登錄令牌之後,就會向伺服器發送一個包含登錄信息的登錄請求,要求登錄。服務順會首先看看客戶端的號碼,守址和版本是否可以在本伺服器上進行登錄。

(2)登錄加密演算法擴展閱讀:

修改QQ密碼步驟:

1、首先在手機上面登錄到QQ帳號,然後點擊屏幕左上角的頭像。點擊左上角的頭像以後出現側拉菜單,再菜單上面點擊設置。

❸ 幾種常見加密演算法解析及使用

幾種對稱性加密演算法:AES,DES,3DES
DES是一種分組數據加密技術(先將數據分成固定長度的小數據塊,之後進行加密),速度較快,適用於大量數據加密,而3DES是一種基於DES的加密演算法,使用3個不同密匙對同一個分組數據塊進行3次加密,如此以使得密文強度更高。
相較於DES和3DES演算法而言,AES演算法有著更高的速度和資源使用效率,安全級別也較之更高了,被稱為下一代加密標准。
幾種非對稱性加密演算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC較之則有著很多的性能優越,包括處理速度,帶寬要求,存儲空間等等。
幾種線性散列演算法(簽名演算法):MD5,SHA1,HMAC
這幾種演算法只生成一串不可逆的密文,經常用其效驗數據傳輸過程中是否經過修改,因為相同的生成演算法對於同一明文只會生成唯一的密文,若相同演算法生成的密文不同,則證明傳輸數據進行過了修改。通常在數據傳說過程前,使用MD5和SHA1演算法均需要發送和接收數據雙方在數據傳送之前就知道密匙生成演算法,而HMAC與之不同的是需要生成一個密匙,發送方用此密匙對數據進行摘要處理(生成密文),接收方再利用此密匙對接收到的數據進行摘要處理,再判斷生成的密文是否相同。
對於各種加密演算法的選用:
由於對稱加密演算法的密鑰管理是一個復雜的過程,密鑰的管理直接決定著他的安全性,因此當數據量很小時,我們可以考慮採用非對稱加密演算法。
在實際的操作過程中,我們通常採用的方式是:採用非對稱加密演算法管理對稱演算法的密鑰,然後用對稱加密演算法加密數據,這樣我們就集成了兩類加密演算法的優點,既實現了加密速度快的優點,又實現了安全方便管理密鑰的優點。
如果在選定了加密演算法後,那採用多少位的密鑰呢?一般來說,密鑰越長,運行的速度就越慢,應該根據的我們實際需要的安全級別來選擇,一般來說,RSA建議採用1024位的數字,ECC建議採用160位,AES採用128為即可。

❹ 一般網頁中的用戶名和登錄密碼在傳輸過程中是通過什麼加密的

對於打開了某個論壇,輸入了用戶名和密碼,其實如果網站設計者重視安全問題的話一般會對輸入的用戶名和密碼進行加密,加密後的用戶名和密碼用一連串的字元表示,所以即使別人竊取了你的用戶名和密碼和密碼,他們如果不知道怎麼解密,他們只能得到一連串的字元,所以這也是一道防線。
接下來就是網路安全方面的問題:
數據加密(Data Encryption)技術

所謂加密(Encryption)是指將一個信息(或稱明文--plaintext) 經過加密鑰匙(Encrypt ionkey)及加密函數轉換,變成無意義的密文( ciphertext),而接收方則將此密文經過解密函數、解密鑰匙(Decryti on key)還原成明文。加密技術是網路安全技術的基石。

數據加密技術要求只有在指定的用戶或網路下,才能解除密碼而獲得原來的數據,這就需要給數據發送方和接受方以一些特殊的信息用於加解密,這就是所謂的密鑰。其密鑰的值是從大量的隨機數中選取的。按加密演算法分為專用密鑰和公開密鑰兩種。

專用密鑰,又稱為對稱密鑰或單密鑰,加密時使用同一個密鑰,即同一個演算法。如DES和MIT的Kerberos演算法。單密鑰是最簡單方式,通信雙方必須交換彼此密鑰,當需給對方發信息時,用自己的加密密鑰進行加密,而在接收方收到數據後,用對方所給的密鑰進行解密。這種方式在與多方通信時因為需要保存很多密鑰而變得很復雜,而且密鑰本身的安全就是一個問題。

DES是一種數據分組的加密演算法,它將數據分成長度為6 4位的數據塊,其中8位用作奇偶校驗,剩餘的56位作為密碼的長度。第一步將原文進行置換,得到6 4位的雜亂無章的數據組;第二步將其分成均等兩段 ;第三步用加密函數進行變換,並在給定的密鑰參數條件下,進行多次迭代而得到加密密文。

公開密鑰,又稱非對稱密鑰,加密時使用不同的密鑰,即不同的演算法,有一把公用的加密密鑰,有多把解密密鑰,如RSA演算法。

在計算機網路中,加密可分為"通信加密"(即傳輸過程中的數據加密)和"文件加密"(即存儲數據加密)。通信加密又有節點加密、鏈路加密和端--端加密3種。

①節點加密,從時間坐標來講,它在信息被傳入實際通信連接點 (Physical communication link)之前進行;從OSI 7層參考模型的坐標 (邏輯空間)來講,它在第一層、第二層之間進行; 從實施對象來講,是對相鄰兩節點之間傳輸的數據進行加密,不過它僅對報文加密,而不對報頭加密,以便於傳輸路由的選擇。

②鏈路加密(Link Encryption),它在數據鏈路層進行,是對相鄰節點之間的鏈路上所傳輸的數據進行加密,不僅對數據加密還對報頭加密。

③端--端加密(End-to-End Encryption),它在第六層或第七層進行 ,是為用戶之間傳送數據而提供的連續的保護。在始發節點上實施加密,在中介節點以密文形式傳輸,最後到達目的節點時才進行解密,這對防止拷貝網路軟體和軟體泄漏也很有效。

在OSI參考模型中,除會話層不能實施加密外,其他各層都可以實施一定的加密措施。但通常是在最高層上加密,即應用層上的每個應用都被密碼編碼進行修改,因此能對每個應用起到保密的作用,從而保護在應用層上的投資。假如在下面某一層上實施加密,如TCP層上,就只能對這層起到保護作用。

值得注意的是,能否切實有效地發揮加密機制的作用,關鍵的問題在於密鑰的管理,包括密鑰的生存、分發、安裝、保管、使用以及作廢全過程。

(1)數字簽名

公開密鑰的加密機制雖提供了良好的保密性,但難以鑒別發送者, 即任何得到公開密鑰的人都可以生成和發送報文。數字簽名機制提供了一種鑒別方法,以解決偽造、抵賴、冒充和篡改等問題。

數字簽名一般採用不對稱加密技術(如RSA),通過對整個明文進行某種變換,得到一個值,作為核實簽名。接收者使用發送者的公開密鑰對簽名進行解密運算,如其結果為明文,則簽名有效,證明對方的身份是真實的。當然,簽名也可以採用多種方式,例如,將簽名附在明文之後。數字簽名普遍用於銀行、電子貿易等。

數字簽名不同於手寫簽字:數字簽名隨文本的變化而變化,手寫簽字反映某個人個性特徵, 是不變的;數字簽名與文本信息是不可分割的,而手寫簽字是附加在文本之後的,與文本信息是分離的。

(2)Kerberos系統

Kerberos系統是美國麻省理工學院為Athena工程而設計的,為分布式計算環境提供一種對用戶雙方進行驗證的認證方法。

它的安全機制在於首先對發出請求的用戶進行身份驗證,確認其是否是合法的用戶;如是合法的用戶,再審核該用戶是否有權對他所請求的服務或主機進行訪問。從加密演算法上來講,其驗證是建立在對稱加密的基礎上的。

Kerberos系統在分布式計算環境中得到了廣泛的應用(如在Notes 中),這是因為它具有如下的特點:

①安全性高,Kerberos系統對用戶的口令進行加密後作為用戶的私鑰,從而避免了用戶的口令在網路上顯示傳輸,使得竊聽者難以在網路上取得相應的口令信息;

②透明性高,用戶在使用過程中,僅在登錄時要求輸入口令,與平常的操作完全一樣,Ker beros的存在對於合法用戶來說是透明的;

③可擴展性好,Kerberos為每一個服務提供認證,確保應用的安全。

Kerberos系統和看電影的過程有些相似,不同的是只有事先在Ker beros系統中登錄的客戶才可以申請服務,並且Kerberos要求申請到入場券的客戶就是到TGS(入場券分配伺服器)去要求得到最終服務的客戶。
Kerberos的認證協議過程如圖二所示。

Kerberos有其優點,同時也有其缺點,主要如下:

①、Kerberos伺服器與用戶共享的秘密是用戶的口令字,伺服器在回應時不驗證用戶的真實性,假設只有合法用戶擁有口令字。如攻擊者記錄申請回答報文,就易形成代碼本攻擊。

②、Kerberos伺服器與用戶共享的秘密是用戶的口令字,伺服器在回應時不驗證用戶的真實性,假設只有合法用戶擁有口令字。如攻擊者記錄申請回答報文,就易形成代碼本攻擊。

③、AS和TGS是集中式管理,容易形成瓶頸,系統的性能和安全也嚴重依賴於AS和TGS的性能和安全。在AS和TGS前應該有訪問控制,以增強AS和TGS的安全。

④、隨用戶數增加,密鑰管理較復雜。Kerberos擁有每個用戶的口令字的散列值,AS與TGS 負責戶間通信密鑰的分配。當N個用戶想同時通信時,仍需要N*(N-1)/2個密鑰

( 3 )、PGP演算法

PGP(Pretty Good Privacy)是作者hil Zimmermann提出的方案, 從80年代中期開始編寫的。公開密鑰和分組密鑰在同一個系統中,公開密鑰採用RSA加密演算法,實施對密鑰的管理;分組密鑰採用了IDEA演算法,實施對信息的加密。

PGP應用程序的第一個特點是它的速度快,效率高;另一個顯著特點就是它的可移植性出色,它可以在多種操作平台上運行。PGP主要具有加密文件、發送和接收加密的E-mail、數字簽名等。

(4)、PEM演算法

保密增強郵件(Private Enhanced Mail,PEM),是美國RSA實驗室基於RSA和DES演算法而開發的產品,其目的是為了增強個人的隱私功能, 目前在Internet網上得到了廣泛的應用,專為E-mail用戶提供如下兩類安全服務:

對所有報文都提供諸如:驗證、完整性、防抵 賴等安全服務功能; 提供可選的安全服務功能,如保密性等。

PEM對報文的處理經過如下過程:

第一步,作規范化處理:為了使PEM與MTA(報文傳輸代理)兼容,按S MTP協議對報文進行規范化處理;

第二步,MIC(Message Integrity Code)計算;

第三步,把處理過的報文轉化為適於SMTP系統傳輸的格式。

身份驗證技術

身份識別(Identification)是指定用戶向系統出示自己的身份證明過程。身份認證(Authertication)是系統查核用戶的身份證明的過程。人們常把這兩項工作統稱為身份驗證(或身份鑒別),是判明和確認通信雙方真實身份的兩個重要環節。

Web網上採用的安全技術

在Web網上實現網路安全一般有SHTTP/HTTP和SSL兩種方式。

(一)、SHTTP/HTTP

SHTTP/HTTP可以採用多種方式對信息進行封裝。封裝的內容包括加密、簽名和基於MAC 的認證。並且一個消息可以被反復封裝加密。此外,SHTTP還定義了包頭信息來進行密鑰傳輸、認證傳輸和相似的管理功能。SHTTP可以支持多種加密協議,還為程序員提供了靈活的編程環境。

SHTTP並不依賴於特定的密鑰證明系統,它目前支持RSA、帶內和帶外以及Kerberos密鑰交換。

(二)、SSL(安全套層) 安全套接層是一種利用公開密鑰技術的工業標准。SSL廣泛應用於Intranet和Internet 網,其產品包括由Netscape、Microsoft、IBM 、Open Market等公司提供的支持SSL的客戶機和伺服器,以及諸如Apa che-SSL等產品。

SSL提供三種基本的安全服務,它們都使用公開密鑰技術。

①信息私密,通過使用公開密鑰和對稱密鑰技術以達到信息私密。SSL客戶機和SSL伺服器之間的所有業務使用在SSL握手過程中建立的密鑰和演算法進行加密。這樣就防止了某些用戶通過使用IP packet sniffer工具非法竊聽。盡管packet sniffer仍能捕捉到通信的內容, 但卻無法破譯。 ②信息完整性,確保SSL業務全部達到目的。如果Internet成為可行的電子商業平台,應確保伺服器和客戶機之間的信息內容免受破壞。SSL利用機密共享和hash函數組提供信息完整性服務。③相互認證,是客戶機和伺服器相互識別的過程。它們的識別號用公開密鑰編碼,並在SSL握手時交換各自的識別號。為了驗證證明持有者是其合法用戶(而不是冒名用戶),SSL要求證明持有者在握手時對交換數據進行數字式標識。證明持有者對包括證明的所有信息數據進行標識以說明自己是證明的合法擁有者。這樣就防止了其他用戶冒名使用證明。證明本身並不提供認證,只有證明和密鑰一起才起作用。 ④SSL的安全性服務對終端用戶來講做到盡可能透明。一般情況下,用戶只需單擊桌面上的一個按鈕或聯接就可以與SSL的主機相連。與標準的HTTP連接申請不同,一台支持SSL的典型網路主機接受SSL連接的默認埠是443而不是80。

當客戶機連接該埠時,首先初始化握手協議,以建立一個SSL對話時段。握手結束後,將對通信加密,並檢查信息完整性,直到這個對話時段結束為止。每個SSL對話時段只發生一次握手。相比之下,HTTP 的每一次連接都要執行一次握手,導致通信效率降低。一次SSL握手將發生以下事件:

1.客戶機和伺服器交換X.509證明以便雙方相互確認。這個過程中可以交換全部的證明鏈,也可以選擇只交換一些底層的證明。證明的驗證包括:檢驗有效日期和驗證證明的簽名許可權。

2.客戶機隨機地產生一組密鑰,它們用於信息加密和MAC計算。這些密鑰要先通過伺服器的公開密鑰加密再送往伺服器。總共有四個密鑰分別用於伺服器到客戶機以及客戶機到伺服器的通信。

3.信息加密演算法(用於加密)和hash函數(用於確保信息完整性)是綜合在一起使用的。Netscape的SSL實現方案是:客戶機提供自己支持的所有演算法清單,伺服器選擇它認為最有效的密碼。伺服器管理者可以使用或禁止某些特定的密碼。

❺ 用戶登陸過程發生了什麼,post 密碼加密 驗證

密碼的加密,登錄用戶信息驗證。
加密,是以某種特殊的演算法改變原有的信息數據,使得未授權的用戶即使獲得了已加密的信息,但因不知解密的方法,仍然無法了解信息的內容。 在航空學中,指利用航空攝影像片上已知的少數控制點,通過對像片測量和計算的方法在像對或整條航攝帶上增加控制點的作業。

❻ 路由器加密演算法是什麼意思自動,TKIP,AES應該選哪個

路由器加密演算法是如果你用手機連的話,登錄認證需要的密碼都將經過加密後傳到路由器上,避免明文傳輸過程中被竊的一種方法。
aes比tkip新一點,這個項目設置最好選擇自動,用以增加安全性,而不用指定選擇。

❼ QQ空間登陸加密密碼演算法是什麼

QQ空間現在採用的是動態加密,加密結果和驗證碼有密切關系,
也就是說是:密碼+演算法+驗證碼在一起,加密演算法如下:
public static string smethod_0(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
byte[] array = mD.ComputeHash(bytes);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append(b.ToString("x").PadLeft(2, '0'));
}
return stringBuilder.ToString().ToUpper();
}
public static byte[] EncyptMD5Bytes(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
return mD.ComputeHash(bytes);
}
public static string smethod_1(byte[] s)
{
MD5 mD = MD5.Create();
byte[] array = mD.ComputeHash(s);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append(b.ToString("x").PadLeft(2, '0'));
}
return stringBuilder.ToString().ToUpper();
}
public static string EncryptQQWebMd5(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
byte[] array = mD.ComputeHash(bytes);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append("\\x");
stringBuilder.Append(b.ToString("x2"));
}
return stringBuilder.ToString();
}
public static string EncryptOld(string password, string verifyCode)
{
return smethod_0(EncyptMD5_3_16(password) + verifyCode.ToUpper());
}
public static string Encrypt(string qq, string password, string verifyCode)
{
return Encrypt((long)Convert.ToDouble(qq), password, verifyCode);
}
public class ByteBuffer
{
private byte[] byte_0;
public Stream BaseStream;
public ByteBuffer()
{
this.BaseStream = new MemoryStream();
this.byte_0 = new byte[16];
}
public virtual long Seek(int offset, SeekOrigin origin)
{
return this.BaseStream.Seek((long)offset, origin);
}
public bool Peek()
{
return this.BaseStream.Position < this.BaseStream.Length;
}
public byte[] ToByteArray()
{
//long position = this.BaseStream.Position;
//this.BaseStream.Position = 0L;
//byte[] array = new byte[(int)((object)((IntPtr)this.BaseStream.Length))];
//this.BaseStream.Read(array, 0, array.Length);
//this.BaseStream.Position = position;
//return array;
long position = this.BaseStream.Position;
this.BaseStream.Position = 0L;
byte[] buffer = new byte[this.BaseStream.Length];
this.BaseStream.Read(buffer, 0, buffer.Length);
this.BaseStream.Position = position;
return buffer;
}
public void Put(bool value)
{
this.byte_0[0] = value ? ((byte)1) : ((byte)0);
this.BaseStream.Write(this.byte_0, 0, 1);
}
public void Put(byte value)
{
this.BaseStream.WriteByte(value);
}
public void Put(byte[] value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
this.BaseStream.Write(value, 0, value.Length);
}
public void PutInt(int value)
{
this.PutInt((uint)value);
}
public void PutInt(uint value)
{
this.byte_0[0] = (byte)(value >> 24);
this.byte_0[1] = (byte)(value >> 16);
this.byte_0[2] = (byte)(value >> 8);
this.byte_0[3] = (byte)value;
this.BaseStream.Write(this.byte_0, 0, 4);
}
public void PutInt(int index, uint value)
{
int offset = (int)this.BaseStream.Position;
this.Seek(index, SeekOrigin.Begin);
this.PutInt(value);
this.Seek(offset, SeekOrigin.Begin);
}
public byte Get()
{
return (byte)this.BaseStream.ReadByte();
}
}
public static string Encrypt(long qq, string password, string verifyCode)
{
ByteBuffer byteBuffer = new ByteBuffer();
byteBuffer.Put(EncyptMD5Bytes(password));
byteBuffer.PutInt(0);
byteBuffer.PutInt((uint)qq);
EncryptQQWebMd5(password);
byte[] s = byteBuffer.ToByteArray();
string str = smethod_1(s);
return smethod_0(str + verifyCode.ToUpper());
}

上面的加密演算法,調用方法是:string str = Encrypt(QQ號, QQ密碼, 驗證碼);
加密後的密碼會返回到str中,然後使用返回的密碼進行登錄。
註:QQ空間登錄是採用的GET而不是POST。

❽ android中怎麼在登錄界面中加入md5加密演算法

/*
* MD5加密
*/
private String getMD5Str(String str) {
MessageDigest messageDigest = null;

try {
messageDigest = MessageDigest.getInstance("MD5");

messageDigest.reset();

messageDigest.update(str.getBytes("UTF-8"));
} catch (NoSuchAlgorithmException e) {
System.out.println("NoSuchAlgorithmException caught!");
System.exit(-1);
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
}

byte[] byteArray = messageDigest.digest();

StringBuffer md5StrBuff = new StringBuffer();

for (int i = 0; i < byteArray.length; i++) {
if (Integer.toHexString(0xFF & byteArray[i]).length() == 1)
md5StrBuff.append("0").append(Integer.toHexString(0xFF & byteArray[i]));
else
md5StrBuff.append(Integer.toHexString(0xFF & byteArray[i]));
}
//16位加密,從第9位到25位
return md5StrBuff.substring(8, 24).toString().toUpperCase();
}

熱點內容
python寫入資料庫 發布:2025-05-16 23:19:11 瀏覽:698
修復系統時什麼配置好 發布:2025-05-16 22:52:07 瀏覽:803
逆戰腳本掛機 發布:2025-05-16 22:30:01 瀏覽:936
java隨機產生數 發布:2025-05-16 22:25:52 瀏覽:256
java任務管理 發布:2025-05-16 22:17:02 瀏覽:572
安卓如何修改cpu 發布:2025-05-16 21:58:20 瀏覽:366
pythonainb 發布:2025-05-16 21:45:56 瀏覽:857
淘汰伺服器可以做家用電腦嗎 發布:2025-05-16 21:41:31 瀏覽:844
遊程編碼c語言 發布:2025-05-16 21:26:51 瀏覽:587
帝來哪個配置值得購買 發布:2025-05-16 21:12:29 瀏覽:463