逆S盒子加密
❶ 請哪位大神告知下磁碟加密的技術原理如何實現的呢
我們以AES加密舉例
AES簡介
高級加密標准(AES,Advanced Encryption Standard)為最常見的對稱加密演算法(微信小程序加密傳輸就是用這個加密演算法的)。對稱加密演算法也就是加密和解密用相同的密鑰,具體的加密流程如下圖:
❷ AES加密的S盒是固定的么
不是固定的,因為在構造S(逆)盒對時,要先進行初始化(如:將0XAB初始化為0XAB),根據初始化時選擇不同,則S盒不同。
❸ 有沒有aes的教程,加密解密的
,也分別為128比特,192比特和256比特,並分別被稱為AES-128,AES-192,AES-256。
AES和傳統的分組密碼演算法不同的是它不採用Feistel結構(比如DES中採用的),而是採用了三個不同的可逆一致變換層:線性混合層、非線性層、密鑰加層。具體的演算法數學基礎和過程請祥見: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf AES演算法的識別、跟巧及Crackme實例分析
1 AES演算法的判斷識別
AES中有自S盒與逆S盒,可以將此作為判別標志,比如:S盒開頭為:
.....
解密過程使用的盒開頭為:
❹ 簡述DES演算法的S盒與AES演算法的S盒之間的相同點和不同點。
相同:具有良好的非線性,AES的非線性運算是位元組代換,對應於DES中唯一非線性運算S盒。不相同:1,DES演算法一共有8個S盒,AES演算法只有S盒和逆S盒。2.DES演算法的每個S盒都是4×16的矩陣,每一行包括所有16種4位二進制。AES演算法的每個S盒都是16×16的矩陣,每一行包括所有16種二位十六進制。3.DES演算法的S盒運算時輸入是6位二進制數,輸出為4位二進制。AES演算法的S盒運算時輸入為二位十六進制,輸出也為二位16進制數。4.DES演算法S盒計算式,輸入六位二進制數種,第一位與第六位二進制數對應的十進制數代表S盒中的行,中間4位二進制對應的十進制數對應S盒中的列.AES在S盒計算式,輸入2位十六進制數,第一位代表S盒中的行,第二位代表S盒的列。
❺ DES加密演算法中S作用S盒的輸入幾位輸出幾位說明其計算機過程
S盒是DES演算法的核心,用在分組密碼演算法中,是唯一的非線性結構,其S盒的指標的好壞直接決定了密碼演算法的好壞。
每個S盒是將6位輸入轉化為4位輸出。
根據6位輸入來查找對應S盒的表,由第一和最後一位得到行號,由中間的四位得到列號。如:對S盒1,輸入為110011,就是查找第3行、第9列,結果為11,於是輸出就是二進制的1011。
(5)逆S盒子加密擴展閱讀
DES於1976年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),隨後在國際上廣泛流傳開來。
目前DES現在已經不是一種安全的加密方法,主要因為它使用的56位密鑰過短。1999年1月,distributed.net與電子前哨基金會合作,在22小時15分鍾內即公開破解了一個DES密鑰。在2001年,DES作為一個標准已經被高級加密標准(AES)所取代。
DES是一種分組密碼,它使用使用56位秘鑰對64位(8位元組)分組進行加密。同時是一種對稱密碼,即其加密和解密使用相同的秘鑰。每個分組的加密分為16輪迭代,每輪是用不同的自秘鑰,而子秘鑰是根據主密鑰k編排得出。
❻ 在密碼學中,常見的對稱加密演算法有哪些各有什麼特點
常見的對稱加密演算法有:
DES ——密鑰短,使用時間長,硬體計算快於軟體。
IDEA——個人使用不受專利限制,可抵抗差分攻擊,基於三個群。
AES ——可變密鑰長,可變分組長。
以上三個屬於塊式,明文按分組加密。
RC4 ——流式加密,不需填充明文,密鑰長度可變。
❼ AES演算法中怎麼構造s盒
逆位元組代替基於逆S盒實現。
unsigned char InvSubbytes(unsigned char state[4][4])
{ for(i=0;i<4;i++) //基於逆S盒的映射替代
{for(j=0;j<4;j++)
{ state[i][j] = rsbox[state[i][j]];}
}
printf("after InvSubbyte:\n");
for(i=0;i<4;i++)
{for(j=0;j<4;j++) //輸出到屏幕顯示state
printf("\t\t%02x ",state[i][j]);
printf("\n");
}
printf("\n");
return 0;
}
❽ 為什麼能實現s盒代換的逆運算
如果加密後再解密,結果是原來輸入的數據。
ES演算法中解密s盒是加密s盒的逆變換,二者不能旨在代替DES,然而直到現在DES和3DES仍廣泛應用於商用。
密鑰加的逆運算同正向的輪密鑰加運算完全一致,這是因為異或的逆操作是其自身。輪密鑰加非常簡單,但卻能夠影響S數組中的每一位。
❾ 如何使用java對密碼加密 加密方式aes
Java有相關的實現類:具體原理如下
對於任意長度的明文,AES首先對其進行分組,每組的長度為128位。分組之後將分別對每個128位的明文分組進行加密。
對於每個128位長度的明文分組的加密過程如下:
(1)將128位AES明文分組放入狀態矩陣中。
(2)AddRoundKey變換:對狀態矩陣進行AddRoundKey變換,與膨脹後的密鑰進行異或操作(密鑰膨脹將在實驗原理七中詳細討論)。
(3)10輪循環:AES對狀態矩陣進行了10輪類似的子加密過程。前9輪子加密過程中,每一輪子加密過程包括4種不同的變換,而最後一輪只有3種變換,前9輪的子加密步驟如下:
● SubBytes變換:SubBytes變換是一個對狀態矩陣非線性的變換;
● ShiftRows變換:ShiftRows變換對狀態矩陣的行進行循環移位;
● MixColumns變換:MixColumns變換對狀態矩陣的列進行變換;
● AddRoundKey變換:AddRoundKey變換對狀態矩陣和膨脹後的密鑰進行異或操作。
最後一輪的子加密步驟如下:
● SubBytes變換:SubBytes變換是一個對狀態矩陣非線性的變換;
● ShiftRows變換:ShiftRows變換對狀態矩陣的行進行循環移位;
● AddRoundKey變換:AddRoundKey變換對狀態矩陣和膨脹後的密鑰進行異或操作;
(4)經過10輪循環的狀態矩陣中的內容就是加密後的密文。
AES的加密演算法的偽代碼如下。
在AES演算法中,AddRoundKey變換需要使用膨脹後的密鑰,原始的128位密鑰經過膨脹會產生44個字(每個字為32位)的膨脹後的密鑰,這44個字的膨脹後的密鑰供11次AddRoundKey變換使用,一次AddRoundKey使用4個字(128位)的膨脹後的密鑰。
三.AES的分組過程
對於任意長度的明文,AES首先對其進行分組,分組的方法與DES相同,即對長度不足的明文分組後面補充0即可,只是每一組的長度為128位。
AES的密鑰長度有128比特,192比特和256比特三種標准,其他長度的密鑰並沒有列入到AES聯邦標准中,在下面的介紹中,我們將以128位密鑰為例。
四.狀態矩陣
狀態矩陣是一個4行、4列的位元組矩陣,所謂位元組矩陣就是指矩陣中的每個元素都是一個1位元組長度的數據。我們將狀態矩陣記為State,State中的元素記為Sij,表示狀態矩陣中第i行第j列的元素。128比特的明文分組按位元組分成16塊,第一塊記為「塊0」,第二塊記為「塊1」,依此類推,最後一塊記為「塊15」,然後將這16塊明文數據放入到狀態矩陣中,將這16塊明文數據放入到狀態矩陣中的方法如圖2-2-1所示。
塊0
塊4
塊8
塊12
塊1
塊5
塊9
塊13
塊2
塊6
塊10
塊14
塊3
塊7
塊11
塊15
圖2-2-1 將明文塊放入狀態矩陣中
五.AddRoundKey變換
狀態矩陣生成以後,首先要進行AddRoundKey變換,AddRoundKey變換將狀態矩陣與膨脹後的密鑰進行按位異或運算,如下所示。
其中,c表示列數,數組W為膨脹後的密鑰,round為加密輪數,Nb為狀態矩陣的列數。
它的過程如圖2-2-2所示。
圖2-2-2 AES演算法AddRoundKey變換
六.10輪循環
經過AddRoundKey的狀態矩陣要繼續進行10輪類似的子加密過程。前9輪子加密過程中,每一輪要經過4種不同的變換,即SubBytes變換、ShiftRows變換、MixColumns變換和AddRoundKey變換,而最後一輪只有3種變換,即SubBytes變換、ShiftRows變換和AddRoundKey變換。AddRoundKey變換已經討論過,下面分別討論餘下的三種變換。
1.SubBytes變換
SubBytes是一個獨立作用於狀態位元組的非線性變換,它由以下兩個步驟組成:
(1)在GF(28)域,求乘法的逆運算,即對於α∈GF(28)求β∈GF(28),使αβ =βα = 1mod(x8 + x4 + x3 + x + 1)。
(2)在GF(28)域做變換,變換使用矩陣乘法,如下所示:
由於所有的運算都在GF(28)域上進行,所以最後的結果都在GF(28)上。若g∈GF(28)是GF(28)的本原元素,則對於α∈GF(28),α≠0,則存在
β ∈ GF(28),使得:
β = gαmod(x8 + x4 + x3 + x + 1)
由於g255 = 1mod(x8 + x4 + x3 + x + 1)
所以g255-α = β-1mod(x8 + x4 + x3 + x + 1)
根據SubBytes變換演算法,可以得出SubBytes的置換表,如表2-2-1所示,這個表也叫做AES的S盒。該表的使用方法如下:狀態矩陣中每個元素都要經過該表替換,每個元素為8比特,前4比特決定了行號,後4比特決定了列號,例如求SubBytes(0C)查表的0行C列得FE。
表2-2-1 AES的SubBytes置換表
它的變換過程如圖2-2-3所示。
圖2-2-3 SubBytes變換
AES加密過程需要用到一些數學基礎,其中包括GF(2)域上的多項式、GF(28)域上的多項式的計算和矩陣乘法運算等,有興趣的同學請參考相關的數學書籍。
2.ShiftRows變換
ShiftRows變換比較簡單,狀態矩陣的第1行不發生改變,第2行循環左移1位元組,第3行循環左移2位元組,第4行循環左移3位元組。ShiftRows變換的過程如圖2-2-4所示。
圖2-2-4 AES的ShiftRows變換
3.MixColumns變換
在MixColumns變換中,狀態矩陣的列看作是域GF(28)的多項式,模(x4+1)乘以c(x)的結果:
c(x)=(03)x3+(01)x2+(01)x+(02)
這里(03)為十六進製表示,依此類推。c(x)與x4+1互質,故存在逆:
d(x)=(0B)x3+(0D)x2+(0G)x+(0E)使c(x)•d(x) = (D1)mod(x4+1)。
設有:
它的過程如圖2-2-5所示。
圖2-2-5 AES演算法MixColumns變換
七.密鑰膨脹
在AES演算法中,AddRoundKey變換需要使用膨脹後的密鑰,膨脹後的密鑰記為子密鑰,原始的128位密鑰經過膨脹會產生44個字(每個字為32位)的子密鑰,這44個字的子密鑰供11次AddRoundKey變換使用,一次AddRoundKey使用4個字(128位)的膨脹後的密鑰。
密鑰膨脹演算法是以字為基礎的(一個字由4個位元組組成,即32比特)。128比特的原始密鑰經過膨脹後將產生44個字的子密鑰,我們將這44個密鑰保存在一個字數組中,記為W[44]。128比特的原始密鑰分成16份,存放在一個位元組的數組:Key[0],Key[1]……Key[15]中。
在密鑰膨脹演算法中,Rcon是一個10個字的數組,在數組中保存著演算法定義的常數,分別為:
Rcon[0] = 0x01000000
Rcon[1] = 0x02000000
Rcon[2] = 0x04000000
Rcon[3] = 0x08000000
Rcon[4] = 0x10000000
Rcon[5] = 0x20000000
Rcon[6] = 0x40000000
Rcon[7] = 0x80000000
Rcon[8] = 0x1b000000
Rcon[9] = 0x36000000
另外,在密鑰膨脹中包括其他兩個操作RotWord和SubWord,下面對這兩個操作做說明:
RotWord( B0,B1,B2,B3 )對4個位元組B0,B1,B2,B3進行循環移位,即
RotWord( B0,B1,B2,B3 ) = ( B1,B2,B3,B0 )
SubWord( B0,B1,B2,B3 )對4個位元組B0,B1,B2,B3使用AES的S盒,即
SubWord( B0,B1,B2,B3 ) = ( B』0,B』1,B』2,B』3 )
其中,B』i = SubBytes(Bi),i = 0,1,2,3。
密鑰膨脹的演算法如下:
八.解密過程
AES的加密和解密過程並不相同,首先密文按128位分組,分組方法和加密時的分組方法相同,然後進行輪變換。
AES的解密過程可以看成是加密過程的逆過程,它也由10輪循環組成,每一輪循環包括四個變換分別為InvShiftRows變換、InvSubBytes變換、InvMixColumns變換和AddRoundKey變換;
這個過程可以描述為如下代碼片段所示:
九.InvShiftRows變換
InvShiftRows變換是ShiftRows變換的逆過程,十分簡單,指定InvShiftRows的變換如下。
Sr,(c+shift(r,Nb))modNb= Sr,c for 0 < r< 4 and 0 ≤ c < Nb
圖2-2-6演示了這個過程。
圖2-2-6 AES演算法InvShiftRows變換
十.InvSubBytes變換
InvSubBytes變換是SubBytes變換的逆變換,利用AES的S盒的逆作位元組置換,表2-2-2為InvSubBytes變換的置換表。
表2-2-2 InvSubBytes置換表
十一.InvMixColumns變換
InvMixColumns變換與MixColumns變換類似,每列乘以d(x)
d(x) = (OB)x3 + (0D)x2 + (0G)x + (0E)
下列等式成立:
( (03)x3 + (01)x2 + (01)x + (02) )⊙d(x) = (01)
上面的內容可以描述為以下的矩陣乘法:
十二.AddRoundKey變換
AES解密過程的AddRoundKey變換與加密過程中的AddRoundKey變換一樣,都是按位與子密鑰做異或操作。解密過程的密鑰膨脹演算法也與加密的密鑰膨脹演算法相同。最後狀態矩陣中的數據就是明文。