數學加密原理
前幾天看到一句話,「我們中的很多人把一生中最燦爛的笑容大部分都獻給了手機和電腦屏幕」。心中一驚,這說明了什麼?手機和電腦已經成為了我們生活中的一部分,所以才會有最懂你的不是你,也不是你男朋友,而是大數據。
如此重要的個人數據,怎樣才能保證其在互聯網上的安全傳輸呢?當然要靠各種加密演算法。說起加密演算法,大家都知道有哈希、對稱加密和非對稱加密了。哈希是一個散列函數,具有不可逆操作;對稱加密即加密和解密使用同一個密鑰,而非對稱加密加密和解密自然就是兩個密鑰了。稍微深入一些的,還要說出非對稱加密演算法有DES、3DES、RC4等,非對稱加密演算法自然就是RSA了。那麼當我們聊起RSA時,我們又在聊些什麼呢?今天筆者和大家一起探討一下,有不足的地方,還望各位朋友多多提意見,共同進步。
RSA簡介:1976年由麻省理工學院三位數學家共同提出的,為了紀念這一里程碑式的成就,就用他們三個人的名字首字母作為演算法的命名。即 羅納德·李維斯特 (Ron Rivest)、 阿迪·薩莫爾 (Adi Shamir)和 倫納德·阿德曼 (Leonard Adleman)。
公鑰:用於加密,驗簽。
私鑰:解密,加簽。
通常知道了公鑰和私鑰的用途以後,即可滿足基本的聊天需求了。但是我們今天的主要任務是來探究一下RSA加解密的原理。
說起加密演算法的原理部分,肯定與數學知識脫不了關系。
我們先來回憶幾個數學知識:
φn = φ(A*B)=φ(A)*φ(B)=(A-1)*(B-1)。
這個公式主要是用來計算給定一個任意的正整數n,在小於等於n的正整數中,有多少個與n構成互質的關系。
其中n=A*B,A與B互為質數,但A與B本身並不要求為質數,可以繼續展開,直至都為質數。
在最終分解完成後,即 φ(N) = φ(p1)*φ(p2)*φ(p3)... 之後,p1,p2,p3都是質數。又用到了歐拉函數的另一個特點,即當p是質數的時候,φp = p - 1。所以有了上面給出的歐拉定理公式。
舉例看一下:
計算15的歐拉函數,因為15比較小,我們可以直接看一下,小於15的正整數有 1、2、3、4、5、6、7、8、9、10、11、12、13、14。和15互質的數有1、2、4、7、8、11、13、14一共四個。
對照我們剛才的歐拉定理: 。
其他感興趣的,大家可以自己驗證。
之所以要在這里介紹歐拉函數,我們在計算公鑰和私鑰時候,會用到。
如果兩個正整數m 和 n 互質,那麼m 的 φn 次方減1,可以被n整除。
其中 .
其中當n為質數時,那麼 上面看到的公式就變成了
mod n 1.
這個公式也就是著名的 費馬小定理 了。
如果兩個正整數e和x互為質數,那麼一定存在一個整數d,不止一個,使得 e*d - 1 可以被x整除,即 e * d mode x 1。則稱 d 是 e 相對於 x的模反元素。
了解了上面所講的歐拉函數、歐拉定理和模反元素後,就要來一些化學反應了,請看圖:
上面這幅圖的公式變化有沒有沒看明白的,沒看明白的咱們評論區見哈。
最終我們得到了最重要的第5個公式的變形,即紅色箭頭後面的:
mod n m。
其中有幾個關系,需要搞明白,m 與 n 互為質數,φn = x,d 是e相對於x的模反元素。
有沒有看到一些加解密的雛形。
從 m 到 m。 這中間涵蓋了從加密到解密的整個過程,但是缺少了我們想要的密文整個過程。
OK,下面引入本文的第四個數學公式:
我們來看一下整個交換流程:
1、客戶端有一個數字13,服務端有一個數字15;
2、客戶端通過計算 3的13次方 對 17 取余,得到數字12; 將12發送給服務端;同時服務端通過計算3的15次方,對17取余,得到數字6,將6發送給客戶端。至此,整個交換過程完成。
3、服務端收到數字12以後,繼續計算,12的15次方 對 17取余,得到 數字10。
4、客戶端收到數字 6以後,繼續計算,6的13次方 對 17 取余,得到數字 10。
有沒有發現雙方,最終得到了相同的內容10。但是這個數字10從來沒有在網路過程中出現過。
好,講到這里,可能有些人已經恍然大悟,這就是加密過程了,但是也有人會產生疑問,為什麼要取數字3 和 17 呢,這里還牽涉到另一個數學知識,原根的問題。即3是17的原根。看圖
有沒有發現規律,3的1~16次方,對17取余,得到的整數是從1~16。這時我們稱3為17的原根。也就是說上面的計算過程中有一組原根的關系。這是最早的迪菲赫爾曼秘鑰交換演算法。
解決了為什麼取3和17的問題後,下面繼續來看最終的RSA是如何產生的:
還記得我們上面提到的歐拉定理嗎,其中 m 與 n 互為質數,n為質數,d 是 e 相對於 φn的模反元素。
當迪菲赫爾曼密鑰交換演算法碰上歐拉定理會產生什麼呢?
我們得到下面的推論:
好,到這里我們是不是已經看到了整個的加密和解密過程了。
其中 m 是明文;c 是密文; n 和 e 為公鑰;d 和 n 為私鑰 。
其中幾組數字的關系一定要明確:
1、d是e 相對於 φn 的模反元素,φn = n-1,即 e * d mod n = 1.
2、m 小於 n,上面在講迪菲赫爾曼密鑰交換演算法時,提到原根的問題,在RSA加密演算法中,對m和n並沒有原根條件的約束。只要滿足m與n互為質數,n為質數,且m < n就可以了。
OK,上面就是RSA加密演算法的原理了,經過上面幾個數學公式的狂轟亂炸,是不是有點迷亂了,給大家一些時間理一下,後面會和大家一起來驗證RSA演算法以及RSA為什麼安全。
B. 希爾密碼原理
希爾密碼(Hill Cipher)是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果MOD26。
中文名
希爾密碼
外文名
Hill Cipher
原理
基本矩陣論
類別
替換密碼
提出者
Lester S. Hill
快速
導航
產生原因
原理
安全性分析
例子
簡介
希爾密碼是運用基本矩陣論原理的替換密碼,由Lester S. Hill在1929年發明。
每個字母當作26進制數字:A=0, B=1, C=2... 一串字母當成n維向量,跟一個n×n的矩陣相乘,再將得出的結果模26。
注意用作加密的矩陣(即密匙)在必須是可逆的,否則就不可能解碼。只有矩陣的行列式和26互質,才是可逆的。
產生原因
隨著科技的日新月異和人們對信用卡、計算機的依賴性的加強,密碼學顯得愈來愈重要。密碼學是一門關於加密和解密、密文和明文的學科。若將原本的符號代換成另一種符號,即可稱之為廣義的密碼。狹義的密碼主要是為了保密,是一種防止竊文者得知內容而設的另一種符號文字,也是一般人所熟知的密碼。
使用信用卡、網路賬號及密碼、電子信箱、電子簽名等都需要密碼。為了方便記憶,許多人用生日、電話號碼、門牌號碼記做密碼,但是這樣安全性較差。
為了使密碼更加復雜,更難解密,產生了許多不同形式的密碼。密碼的函數特性是明文對密碼為一對一或一對多的關系,即明文是密碼的函數。傳統密碼中有一種叫移位法,移位法基本型態是加法加密系統C=P+s(mod m)。一般來說,我們以1表示A,2表示B,……,25表示Y,26表示Z,以此類推。由於s=0時相當於未加密,而0≤s≤m-1(s≥m都可用0≤s≤m-1取代),因此,整個系統只有m-1種變化。換言之,只要試過m-1次,機密的信息就會泄漏出去。
由此看來,日常生活中的密碼和傳統的密碼的可靠性較差,我們有必要尋求一種容易將字母的自然頻度隱蔽或均勻化,從而有利於統計分析的安全可靠的加密方法。希爾密碼能基本滿足這一要求。
原理
希爾加密演算法的基本思想是,將d個明文字母通過線性變換將它們轉換為d個密文字母。解密只要作一次逆變換就可以了,密鑰就是變換矩陣本身。[1]
希爾密碼是多字母代換密碼的一種。多字母代換密碼可以利用矩陣變換方便地描述,有時又稱為矩陣變換密碼。令明文字母表為Z,若採用L個字母為單位進行代換,則多碼代換是映射f:Z→Z。若映射是線性的,則f是線性變換,可以用Z上的L×L矩陣K表示。若是滿秩的,則變換為一一映射,且存在有逆變換K。將L個字母的數字表示為Z上的L維矢量m,相應的密文矢量c,且mK=c,以K作為解密矩陣,可由c恢復出相應的明文c·K=m。
在軍事通訊中,常將字元(信息)與數字對應(為方便起見,我們將字元和數字按原有的順序對應,事實上這種對應規則是極易被破解的):
abcde…x y z
12345…242526
如信息「NOSLEEPPING」對應著一組編碼14,15,19,12,5,5,16,16,9,14,7。但如果按這種方式直接傳輸出去,則很容易被敵方破譯。於是必須採取加密措施,即用一個約定的加密矩陣K乘以原信號B,傳輸信號為C=KB(加密),收到信號的一方再將信號還原(破譯)為B=KC。
C. 什麼是數字加密啊急求答案!!!
數字加密是研究利用數學演算法將明文轉變為不可能理解的密文和反過來將密文轉變為可理解形式的明文的方法、手段和理論的一門科學。利用數字加密,你可以將敏感信息加密並通過一種並不安全的途徑傳遞,如網際網路。這樣,只有指定的收件人才能解讀原始信息。
數字加密是一種數據安全的科學,而密碼分析就是分析和破譯密碼的科學,也稱為密碼攻擊。密碼分析通常需要數學工具的應用,模式分析,決策,耐心和運氣。
要完成數字加密需要一種加密演算法和一個密鑰。加密演算法其實就是一種數學函數,用來完成加密和解密運算。而密鑰則由數字,字母組成,用它來實現對密文的加密或對密文的解密。相同的明文用不同的密鑰加密得到不同的密文。數字加密的安全性取決於加密演算法的強度和密鑰的保密性。
D. 常見密碼演算法原理
PBKDF2(Password-Based Key Derivation Function)是一個用來導出密鑰的函數,用來生成加密的密碼,增加破解的難度,類似bcrypt/scrypt等,可以用來進行密碼或者口令的加密存儲。主要是鹽值+pwd,經過多輪HMAC演算法的計算,產生的密文。
PBKDF2函數的定義
DK = PBKDF2(PRF, Password, Salt, c, dkLen)
• PRF是一個偽隨機函數,例如HASH_HMAC函數,它會輸出長度為hLen的結果。
• Password是用來生成密鑰的原文密碼。
• Salt是一個加密用的鹽值。
• c是進行重復計算的次數。
• dkLen是期望得到的密鑰的長度。
• DK是最後產生的密鑰。
https://segmentfault.com/a/1190000004261009
下面我們以Alice和Bob為例敘述Diffie-Hellman密鑰交換的原理。
1,Diffie-Hellman交換過程中涉及到的所有參與者定義一個組,在這個組中定義一個大質數p,底數g。
2,Diffie-Hellman密鑰交換是一個兩部分的過程,Alice和Bob都需要一個私有的數字a,b。
下面是DH交換的過程圖:
本圖片來自wiki
下面我們進行一個實例
1.愛麗絲與鮑伯協定使用p=23以及g=5.
2.愛麗絲選擇一個秘密整數a=6, 計算A = g^a mod p並發送給鮑伯。
A = 5^6 mod 23 = 8.
3.鮑伯選擇一個秘密整數b=15, 計算B = g^b mod p並發送給愛麗絲。
B = 5^15 mod 23 = 19.
4.愛麗絲計算s = B a mod p
19^6 mod 23 = 2.
5.鮑伯計算s = A b mod p
8^15 mod 23 = 2.
ECDH:
ECC演算法和DH結合使用,用於密鑰磋商,這個密鑰交換演算法稱為ECDH。交換雙方可以在不共享任何秘密的情況下協商出一個密鑰。ECC是建立在基於橢圓曲線的離散對數問題上的密碼體制,給定橢圓曲線上的一個點P,一個整數k,求解Q=kP很容易;給定一個點P、Q,知道Q=kP,求整數k確是一個難題。ECDH即建立在此數學難題之上。密鑰磋商過程:
假設密鑰交換雙方為Alice、Bob,其有共享曲線參數(橢圓曲線E、階N、基點G)。
來自 http://www.cnblogs.com/fishou/p/4206451.html
https://zh.wikipedia.org/wiki/SHA%E5%AE%B6%E6%97%8F
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
-----END RSA PRIVATE KEY-----
while a RSA public key contains only the following data:
-----BEGIN RSA PUBLIC KEY-----
RSAPublicKey ::= SEQUENCE {
molus INTEGER, -- n
publicExponent INTEGER -- e
}
-----END RSA PUBLIC KEY-----
and this explains why the private key block is larger.
Note that a more standard format for non-RSA public keys is
-----BEGIN PUBLIC KEY-----
PublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
PublicKey BIT STRING
}
AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL
}
-----END PUBLIC KEY-----
More info here.
BTW, since you just posted a screenshot of the private key I strongly hope it was just for tests :)
密鑰的長度
C:\herong>java RsaKeyGenerator 128
p: 17902136406704537069
q: 17902136406704537077
m:
Molus:
Key size: 128
Public key:
Private key:
C:\herong>java RsaKeyGenerator 256
p:
q:
m: ...
Molus: ...
Key size: 256
Public key: ...
Private key: ...
https://security.stackexchange.com/questions/90169/rsa-public-key-and-private-key-lengths
https://stackoverflow.com/questions/2921508/trying-to-understand-java-rsa-key-size >
http://www.herongyang.com/Cryptography/RSA-BigInteger-Keys-Generated-by-RsaKeyGenerator-java.html
update() adds data to the Cipher』s internal buffer, then returns all currently completely encoded blocks. If there are any encoded blocks left over, they remain in the Cipher』s buffer until the next call, or a call to doFinal(). This means that if you call update() with a four byte array to encrypt, and the buffer size is eight bytes, you will not receive encoded data on the return (you』ll get a null instead). If your next call to update() passes five bytes of data in, you will get an 8 byte (the block size) array back, containing the four bytes passed in on the previous call, the first four bytes from the current call – the remaining byte from the current call is left in the Cipher』s buffer.
doFinal() on the other hand is much simpler: it encrypts the passed data, pads it out to the necessary length, and then returns it. The Cipher is essentially stateless.
來自 https://segmentfault.com/a/1190000006931511
DH演算法的中間人攻擊
在最初的描述中,迪菲-赫爾曼密鑰交換本身並沒有提供通訊雙方的身份驗證服務,因此它很容易受到中間人攻擊。 一個中間人在信道的中央進行兩次迪菲-赫爾曼密鑰交換,一次和Alice另一次和Bob,就能夠成功的向Alice假裝自己是Bob,反之亦然。而攻擊者可以解密(讀取和存儲)任何一個人的信息並重新加密信息,然後傳遞給另一個人。因此通常都需要一個能夠驗證通訊雙方身份的機制來防止這類攻擊。
優缺點:
1、 僅當需要時才生成密鑰,減小了將密鑰存儲很長一段時間而致使遭受攻擊的機會。
2、 除對全局參數的約定外,密鑰交換不需要事先存在的基礎結構。
然而,該技術也存在許多不足:
1、 沒有提供雙方身份的任何信息。
2、 它是計算密集性的,因此容易遭受阻塞性攻擊,即對手請求大量的密鑰。受攻擊者花費了相對多的計算資源來求解無用的冪系數而不是在做真正的工作。
3、 沒辦法防止重演攻擊。
4、 容易遭受中間人的攻擊。第三方C在和A通信時扮演B;和B通信時扮演A。A和B都與C協商了一個密鑰,然後C就可以監聽和傳遞通信量。中間人的攻擊按如下進行:
(1) B在給A的報文中發送他的公開密鑰。
(2) C截獲並解析該報文。C將B的公開密鑰保存下來並給A發送報文,該報文具有B的用戶ID但使用C的公開密鑰YC,仍按照好像是來自B的樣子被發送出去。A收到C的報文後,將YC和B的用戶ID存儲在一塊。類似地,C使用YC向B發送好像來自A的報文。
(3) B基於私有密鑰XB和YC計算秘密密鑰K1。A基於私有密鑰XA和YC計算秘密密鑰K2。C使用私有密鑰XC和YB計算K1,並使用XC和YA計算K2。
(4) 從現在開始,C就可以轉發A發給B的報文或轉發B發給A的報文,在途中根據需要修改它們的密文。使得A和B都不知道他們在和C共享通信。
E. 橢圓曲線加密演算法
橢圓曲線加密演算法,即:Elliptic Curve Cryptography,簡稱ECC,是基於橢圓曲線數學理論實現的一種非對稱加密演算法。相比RSA,ECC優勢是可以使用更短的密鑰,來實現與RSA相當或更高的安全。據研究,160位ECC加密安全性相當於1024位RSA加密,210位ECC加密安全性相當於2048位RSA加密。
橢圓曲線在密碼學中的使用,是1985年由Neal Koblitz和Victor Miller分別獨立提出的。
一般情況下,橢圓曲線可用下列方程式來表示,其中a,b,c,d為系數。
例如,當a=1,b=0,c=-2,d=4時,所得到的橢圓曲線為:
該橢圓曲線E的圖像如圖X-1所示,可以看出根本就不是橢圓形。
過曲線上的兩點A、B畫一條直線,找到直線與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A+B,即為加法。如下圖所示:A + B = C
上述方法無法解釋A + A,即兩點重合的情況。因此在這種情況下,將橢圓曲線在A點的切線,與橢圓曲線的交點,交點關於x軸對稱位置的點,定義為A + A,即2A,即為二倍運算。
將A關於x軸對稱位置的點定義為-A,即橢圓曲線的正負取反運算。如下圖所示:
如果將A與-A相加,過A與-A的直線平行於y軸,可以認為直線與橢圓曲線相交於無窮遠點。
綜上,定義了A+B、2A運算,因此給定橢圓曲線的某一點G,可以求出2G、3G(即G + 2G)、4G......。即:當給定G點時,已知x,求xG點並不困難。反之,已知xG點,求x則非常困難。此即為橢圓曲線加密演算法背後的數學原理。
橢圓曲線要形成一條光滑的曲線,要求x,y取值均為實數,即實數域上的橢圓曲線。但橢圓曲線加密演算法,並非使用實數域,而是使用有限域。按數論定義,有限域GF(p)指給定某個質數p,由0、1、2......p-1共p個元素組成的整數集合中定義的加減乘除運算。
假設橢圓曲線為y² = x³ + x + 1,其在有限域GF(23)上時,寫作:y² ≡ x³ + x + 1 (mod 23)
此時,橢圓曲線不再是一條光滑曲線,而是一些不連續的點,如下圖所示。以點(1,7)為例,7² ≡ 1³ + 1 + 1 ≡ 3 (mod 23)。如此還有如下點:
(0,1) (0,22)(1,7) (1,16)(3,10) (3,13)(4,0)(5,4) (5,19)(6,4) (6,19)(7,11) (7,12)(9,7) (9,16)(11,3) (11,20)等等。
另外,如果P(x,y)為橢圓曲線上的點,則-P即(x,-y)也為橢圓曲線上的點。如點P(0,1),-P=(0,-1)=(0,22)也為橢圓曲線上的點。
相關公式如下:有限域GF(p)上的橢圓曲線y² = x³ + ax + b,若P(Xp, Yp), Q(Xq, Yq),且P≠-Q,則R(Xr,Yr) = P+Q 由如下規則確定:
Xr = (λ² - Xp - Xq) mod pYr = (λ(Xp - Xr) - Yp) mod p其中λ = (Yq - Yp)/(Xq - Xp) mod p(若P≠Q), λ = (3Xp² + a)/2Yp mod p(若P=Q)
因此,有限域GF(23)上的橢圓曲線y² ≡ x³ + x + 1 (mod 23),假設以(0,1)為G點,計算2G、3G、4G...xG等等,方法如下:
計算2G:λ = (3x0² + 1)/2x1 mod 23 = (1/2) mod 23 = 12Xr = (12² - 0 - 0) mod 23 = 6Yr = (12(0 - 6) - 1) mod 23 = 19即2G為點(6,19)
計算3G:3G = G + 2G,即(0,1) + (6,19)λ = (19 - 1)/(6 - 0) mod 23 = 3Xr = (3² - 0 - 6) mod 23 = 3Yr = (3(0 - 3) - 1) mod 23 = 13即3G為點(3, 13)
建立基於橢圓曲線的加密機制,需要找到類似RSA質因子分解或其他求離散對數這樣的難題。而橢圓曲線上的已知G和xG求x,是非常困難的,此即為橢圓曲線上的的離散對數問題。此處x即為私鑰,xG即為公鑰。
橢圓曲線加密演算法原理如下:
設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。
公鑰加密:選擇隨機數r,將消息M生成密文C,該密文是一個點對,即:C = {rG, M+rK},其中K為公鑰
私鑰解密:M + rK - k(rG) = M + r(kG) - k(rG) = M其中k、K分別為私鑰、公鑰。
橢圓曲線簽名演算法,即ECDSA。設私鑰、公鑰分別為k、K,即K = kG,其中G為G點。
私鑰簽名:1、選擇隨機數r,計算點rG(x, y)。2、根據隨機數r、消息M的哈希h、私鑰k,計算s = (h + kx)/r。3、將消息M、和簽名{rG, s}發給接收方。
公鑰驗證簽名:1、接收方收到消息M、以及簽名{rG=(x,y), s}。2、根據消息求哈希h。3、使用發送方公鑰K計算:hG/s + xK/s,並與rG比較,如相等即驗簽成功。
原理如下:hG/s + xK/s = hG/s + x(kG)/s = (h+xk)G/s= r(h+xk)G / (h+kx) = rG
假設要簽名的消息是一個字元串:「Hello World!」。DSA簽名的第一個步驟是對待簽名的消息生成一個消息摘要。不同的簽名演算法使用不同的消息摘要演算法。而ECDSA256使用SHA256生成256比特的摘要。
摘要生成結束後,應用簽名演算法對摘要進行簽名:
產生一個隨機數k
利用隨機數k,計算出兩個大數r和s。將r和s拼在一起就構成了對消息摘要的簽名。
這里需要注意的是,因為隨機數k的存在,對於同一條消息,使用同一個演算法,產生的簽名是不一樣的。從函數的角度來理解,簽名函數對同樣的輸入會產生不同的輸出。因為函數內部會將隨機值混入簽名的過程。
關於驗證過程,這里不討論它的演算法細節。從宏觀上看,消息的接收方從簽名中分離出r和s,然後利用公開的密鑰信息和s計算出r。如果計算出的r和接收到的r值相同,則表示驗證成功。否則,表示驗證失敗。
F. 誰能通俗易懂地講講MD5加密原理
MD5演算法的原理可簡要的敘述為:MD5碼以512位分組來處理輸入的信息,且每一分組又被劃分為16個32位子分組,經過了一系列的處理後,演算法的輸出由四個32位分組組成,將這四個32位分組級聯後將生成一個128位散列值。
在MD5演算法中,首先需要對信息進行填充,這個數據按位(bit)補充,要求最終的位數對512求模的結果為448。也就是說數據補位後,其位數長度只差64位(bit)就是512的整數倍。
即便是這個數據的位數對512求模的結果正好是448也必須進行補位。
補位的實現過程:首先在數據後補一個1 bit; 接著在後面補上一堆0 bit, 直到整個數據的位數對512求模的結果正好為448。總之,至少補1位,而最多可能補512位。
(6)數學加密原理擴展閱讀
當需要保存某些密碼信息以用於身份確認時,如果直接將密碼信息以明碼方式保存在資料庫中,不使用任何保密措施,系統管理員就很容易能得到原來的密碼信息,這些信息一旦泄露, 密碼也很容易被破譯。為了增加安全性,有必要對資料庫中需要保密的信息進行加密,這樣,即使有人得到了整個資料庫,如果沒有解密演算法,也不能得到原來的密碼信息。
MD5演算法可以很好地解決這個問題,因為它可以將任意長度的輸入串經過計算得到固定長度的輸出,而且只有在明文相同的情況下,才能等到相同的密文,並且這個演算法是不可逆的,即便得到了加密以後的密文,也不可能通過解密演算法反算出明文。
這樣就可以把用戶的密碼以MD5值(或類似的其它演算法)的方式保存起來,用戶注冊的時候,系統是把用戶輸入的密碼計算成 MD5 值,然後再去和系統中保存的 MD5 值進行比較,如果密文相同,就可以認定密碼是正確的,否則密碼錯誤。
通過這樣的步驟,系統在並不知道用戶密碼明碼的情況下就可以確定用戶登錄系統的合法性。這樣不但可以避免用戶的密碼被具有系統管理員許可權的用戶知道,而且還在一定程度上增加了密碼被破解的難度。
MD5 演算法還可以作為一種電子簽名的方法來使用,使用 MD5演算法就可以為任何文件(不管其大小、格式、數量)產生一個獨一無二的「數字指紋」,藉助這個「數字指紋」,通過檢查文件前後 MD5 值是否發生了改變,就可以知道源文件是否被改動。
G. 簡述RSA演算法中密鑰的產生,數據加密和解密的過程,並簡單說明RSA演算法安全性的原理。
RSA演算法的數學原理
RSA演算法的數學原理:
先來找出三個數, p, q, r,
其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數。
p, q, r 這三個數便是 private key。接著, 找出m, 使得 rm == 1 mod (p-1)(q-1)..... 這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了..... 再來, 計算 n = pq....... m, n 這兩個數便是 public key。
編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n.... 如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t), 則每一位數均小於 n, 然後分段編碼...... 接下來, 計算 b == a^m mod n, (0 <= b < n), b 就是編碼後的資料...... 解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq), 於是乎, 解碼完畢...... 等會會證明 c 和 a 其實是相等的 :) 如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b...... 他如果要解碼的話, 必須想辦法得到 r...... 所以, 他必須先對 n 作質因數分解......... 要防止他分解, 最有效的方法是找兩個非常的大質數 p, q, 使第三者作因數分解時發生困難......... <定理> 若 p, q 是相異質數, rm == 1 mod (p-1)(q-1), a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq, 則 c == a mod pq 證明的過程, 會用到費馬小定理, 敘述如下: m 是任一質數, n 是任一整數, 則 n^m == n mod m (換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m) 運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的........ <證明> 因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數 因為在 molo 中是 preserve 乘法的 (x == y mod z and u == v mod z => xu == yv mod z), 所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq 1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時, 則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q 所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1 即 a^(k(p-1)(q-1)) == 1 mod pq => c == a^(k(p-1)(q-1)+1) == a mod pq 2. 如果 a 是 p 的倍數, 但不是 q 的倍數時, 則 a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q => c == a^(k(p-1)(q-1)+1) == a mod q => q | c - a 因 p | a => c == a^(k(p-1)(q-1)+1) == 0 mod p => p | c - a 所以, pq | c - a => c == a mod pq 3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上 4. 如果 a 同時是 p 和 q 的倍數時, 則 pq | a => c == a^(k(p-1)(q-1)+1) == 0 mod pq => pq | c - a => c == a mod pq Q.E.D. 這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq).... 但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n, 所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能.....