適合時間序列數據的計算腳本
❶ 如何利用python進行數據分析
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
❷ 怎樣用matlab做時間序列平穩性檢驗
用matlab做時間序列平穩性檢驗需要作圖、擬合,具體說明如下所示:
根據動態數據作相關圖,進行相關分析,求自相關函數。相關圖能顯示出變化的趨勢和周期,並能發現跳點和拐點。如果跳點是正確的觀測值,在建模時應考慮進去,如果是反常現象,則應把跳點調整到期望值。
辨識合適的隨機模型,進行曲線擬合,用通用隨機模型去擬合時間序列的觀測數據。對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用通用ARIMA模型及其特殊情況的自回歸模型、滑動平均模型或組合-ARIMA模型等來進行擬合。
(2)適合時間序列數據的計算腳本擴展閱讀:
時間序列模型作用及影響:
1、根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述。用ARMA模型擬合時間序列,預測該時間序列未來值。
2、當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理。
3、提供給用戶一套較完整的時間序列建模分析、進行預測預報的工具,包括平穩無趨勢時間序列分析預測、有趨勢的時間序列預測、具季節性周期的時間序列預測以及差分自回歸滑動平均(ARIMA)建模分析。
❸ 16種常用的數據分析方法-時間序列分析
時間序列(time series)是系統中某一變數的觀測值按時間順序(時間間隔相同)排列成一個數值序列,展示研究對象在一定時期內的變動過程,從中尋找和分析事物的變化特徵、發展趨勢和規律。它是系統中某一變數受其它各種因素影響的總結果。
研究時間序列主要目的可以進行預測,根據已有的時間序列數據預測未來的變化。時間序列預測關鍵:確定已有的時間序列的變化模式,並假定這種模式會延續到未來。
時間序列的基本特點
假設事物發展趨勢會延伸到未來
預測所依據的數據具有不規則性
不考慮事物發展之間的因果關系
時間序列數據用於描述現象隨時間發展變化的特徵。
時間序列考慮因素
時間序列分析就其發展歷史階段和所使用的統計分析方法看分為傳統的時間序列分析和現代時間序列分析,根據觀察時間的不同,時間序列中的時間可以是可以是年份、季度、月份或其他任何時間形式。
時間序列分析時的主要考慮的因素是:
l長期趨勢(Long-term trend)
時間序列可能相當穩定或隨時間呈現某種趨勢。
時間序列趨勢一般為線性的(linear),二次方程式的 (quadratic)或指數函數(exponential function)。
l季節性變動(Seasonal variation)
按時間變動,呈現重復性行為的序列。
季節性變動通常和日期或氣候有關。
季節性變動通常和年周期有關。
l周期性變動(Cyclical variation)
相對於季節性變動,時間序列可能經歷「周期性變動」。
周期性變動通常是因為經濟變動。
l隨機影響(Random effects)
除此之外,還有偶然性因素對時間序列產生影響,致使時間序列呈現出某種隨機波動。時間序列除去趨勢、周期性和季節性後的偶然性波動,稱為隨機性(random),也稱不規則波動(irregular variations)。
時間序列的主要成分
時間序列的成分可分為4種:
l趨勢(T)、
l季節性或季節變動(S)、
l周期性或循環波動(C)、
l隨機性或不規則波動(I)。
傳統時間序列分析的一項主要內容就是把這些成分從時間序列中分離出來,並將它們之間的關系用一定的數學關系式予以表達,而後分別進行分析。
時間序列建模基本步驟
1)用觀測、調查、統計、抽樣等方法取得被觀測系統時間序列動態數據。
2)根據動態數據作相關圖,進行相關分析,求自相關函數。
相關圖能顯示出變化的趨勢和周期,並能發現跳點和拐點。
跳點是指與其他數據不一致的觀測值。如果跳點是正確的觀測值,在建模時應考慮進去,如果是反常現象,則應把跳點調整到期望值。
拐點則是指時間序列從上升趨勢突然變為下降趨勢的點。如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列,例如採用門限回歸模型。
3)辨識合適的隨機模型,進行曲線擬合,即用通用隨機模型去擬合時間序列的觀測數據。
對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。
對於平穩時間序列,可用通用ARMA模型(自回歸滑動平均模型)及其特殊情況的自回歸模型、滑動平均模型或組合-ARMA模型等來進行擬合。
當觀測值多於50個時一般都採用ARMA模型。對於非平穩時間序列則要先將觀測到的時間序列進行差分運算,化為平穩時間序列,再用適當模型去擬合這個差分序列。
spss時間序列分析過程
第一步:定義日期標示量:
打開數據文件,單擊"數據",選擇"定義日期和時間",彈出"定義日期"對話框,
數據中的起始時間就是數據文件裡面的單元格第一個時間,我的第一個是1997年8月,每行表示的是月度銷售量,因此,需要從"定義日期"對話框的左側"個案是"框中選擇"年,月",在左側輸入『1997』,月框中輸入『8』,表示第一個個案的起始月是1997年8月,
最後點擊確認,這樣spss數據文件裡面就會生成3個新的變數
如下圖:
第二步:了解時間序列的變化趨勢
了解時間序列的變化趨勢做一個序列表就可以了,單擊"分析",裡面選擇"時間序列預測,選擇"序列圖"對話框,然後把'平均值'移到"變數"框裡面,『DATE_』移到"時間軸標簽"框中,單擊"確定"。結果如圖
根據序列圖的分析知道,序列的波動隨著季節的波動越來越大,所以我們選擇乘法模型;
第三步:分析
單擊「分析」,選擇時間序列預測,然後選擇「季節性分解」,彈出「季節性分解」對話框,確認無誤之後點擊確定,如圖:
多了四個變數:
lERR表示誤差分析;
lSAS表示季節因素校正後序列;
lSAF表示季節因子;
lSTC表示長期趨勢和循環變動序列。
我們可以把新出現的四個變數、平均值和DATE_做序列圖。先把ERR、SAS、STC和平均值和DATE_做個序列圖,效果如下:
再單獨做個SAT和DATE_的時間序列圖
第四步:預測
1、 單擊「分析」,選擇「時間序列預測」,然後選擇「創建傳統模型」,之後就會彈出「時間序列建模」對話框。
2、 將「平均值」移至「因變數」框中,然後確定中間的「方法」,在下拉列表中選擇「專家建模器」項,單擊右側的「條件」按鈕,彈出「時間序列建模器:專家建模器條件」對話框。
3、 在「時間序列建模器:專家建模器條件」對話框的「模型」選項卡中,在「模型類型」框中選擇「所有模型」項,並勾選「專家建模器考慮季節性模型」復選框,設置完,點「繼續」按鈕
4、 在「時間序列建模器」對話框中,切換至「保存」選項卡中,勾選「預測值」復選框,單擊「導出模型條件」框中「XML文件」後面的「瀏覽」按鈕,然後設置導出的模型文件和保存路徑,然後單擊「確定」按鈕就可以了。
做完上面的步驟之後,在原始數據上面就又會多一列預測值出現。如圖:
之前保存了預測的模型,我們現在就利用那個模型進行預測數據。
1、 單擊「分析」,選擇「時間序列預測」,然後選擇「應用傳統模型」,彈出「應用模型序列」對話框。具體的操作如下圖:
最後一步切換至「保存」界面,勾選「預測值」之後單擊確定就可以了。
從預測值直接看看不出來,可以把預測的數據和原始數據放到一起看下,也是直接做序列圖就可以。
這樣就完成了一次時間序列的模型,具體的預測數據可以看原始數據上面的出現的新的一列數據。
- End -
❹ 如何用excel做時間序列分析法
如下實例用季節性預測求2005年各季度用電量,把數據輸入到excel中
輸入原始數據,計算三點平滑值,消除季節變動和不規則變動,保留長期趨勢。
計算方法:2136=(435+2217+3756)/3
1122.33=(2217+3756+394)/3........以此類推。
計算季節性指標:季節性指標=用電量÷三點滑動值。
計算季節性指標校正值:
校正系數=4÷季節性指標之和=4÷5.525=0.72
校正後季節性指標=季節性指標*校正系數
求預測模型:求出S1和s2同時也利用公式算出at和bt,α取0.2。
計算公式可參照下列表格也可自行網路。
求預測模型為:
求預測值。以2004年第4季度為基期,套用公式計算預測2005年各季度的旅遊人數
第一季度:y=(6433.89+486.61*1)*0.42=2906.61
第二季度:y=(6433.89+3486.61*2)*0.99=13273.04
第三季度:y=(6433.89+3486.61*3)*2.15=36321.50
第四季度:y=(6433.89+3486.61*4)*0.44 =8967.35
由此可以計算出2005年全年度的遊客人數預測值為:
y=四個季度相加=61468.49 (10的四次方千瓦)
❺ 對時間序列數據作出指數平滑預測後,如何用excel計算數據的均方誤差(MSE)
=SUMXMY2(C2:C13,B2:B13)/COUNT(C2:C13)
=SUMXMY2(不包括預測年的全部預測值,全部觀測值)/COUNT(預測值的個數)
舉例見圖片:)圖片里F5的數字應該是0.3,我當時用了控制項所以。。。
不懂再問我哦~今天我有空
❻ 時間序列怎麼計算
時間序列計算方法:時間序列法是一種定量預測方法,亦稱簡單外延方法,在統計學中作為一種常用的預測手段被廣泛應用。時間序列的統計特徵,一般都能夠想到最大值(max),最小值(min),均值(mean),中位數(median),方差(variance),標准差(standard variance)等指標
❼ (三)時間序列分析的基本方法
1.模型的選擇和建模基本步驟
(1)建模基本步驟
1)用觀測、調查、取樣,取得時間序列動態數據。
2)作相關圖,研究變化的趨勢和周期,並能發現跳點和拐點。拐點則是指時間序列從上升趨勢突然變為下降趨勢的點,如果存在拐點,則在建模時必須用不同的模型去分段擬合該時間序列。
3)辨識合適的隨機模型,進行曲線擬合。
(2)模型的選擇
當利用過去觀測值的加權平均來預測未來的觀測值時,賦予離得越近的觀測值以更多的權,而「老」觀測值的權數按指數速度遞減,稱為指數平滑(exponential smoothing),它能用於純粹時間序列的情況。
對於短的或簡單的時間序列,可用趨勢模型和季節模型加上誤差來進行擬合。對於平穩時間序列,可用自回歸(AR)模型、移動平均(MA)模型或其組合的自回歸移動平均(ARMA)模型等來擬合。
一個純粹的AR模型意味著變數的一個觀測值由其以前的p個觀測值的線性組合加上隨機誤差項而成,就像自己對自己回歸一樣,所以稱為自回歸模型。
MA模型意味著變數的一個觀測值由目前的和先前的n個隨機誤差的線性的組合。
當觀測值多於50個時一般採用ARMA模型。
對於非平穩時間序列,則要先將序列進行差分(Difference,即每一觀測值減去其前一觀測值或周期值)運算,化為平穩時間序列後再用適當模型去擬合。這種經差分法整合後的ARMA模型稱為整合自回歸移動平均模型(Autoregressive Integrated Moving Average),簡稱ARIMA模型(張文彤,2002;薛薇,2005;G.E.P.Box et al.,1994)。
ARIMA模型要求時間序列滿足平穩性和可逆性的條件,即序列均值不隨著時間增加或減少,序列的方差不隨時間變化。但由於我們所關注的地層元素含量變化為有趨勢和周期成分的時間序列,都不是平穩的,這就需要對其進行差分來消除這些使序列不平穩的成分。所以我們選擇更強有力的ARIMA模型。
2.平穩性和周期性研究
有些數學模型要檢驗周期性變化是否為平穩性過程,即其統計特性不隨時間而變化,我們可根據序列圖、自相關函數圖、偏自相關函數圖和譜密度圖等對序列的平穩性和周期性進行識別。當序列圖上表現有明顯分段特徵時可採用分段計演算法,若分段求得的每段頻譜圖基本一致或相似,則認為過程是平穩的,否則是非平穩的。
自相關函數ACF(Autocorrelations function)是描述序列當前觀測值與序列前面的觀測值之間簡單和常規的相關系數;而偏自相關函數PACF(Partial autocorrelations function)是在控制序列其他的影響後,測度序列當前值與某一先前值之間的相關程度。
平穩過程的自相關系數和偏自相關系數只是時間間隔的函數,與時間起點無關,都會以某種方式衰減趨近於0。
當ACF維持許多期的正相關,且ACF的值通常是很緩慢地遞減到0,則序列為非平穩型。
序列的自相關-偏自相關函數具有對稱性,即反映了周期性變化特徵。
3.譜分析
確定性周期函數X(t)(設周期為T)在一定條件下通過傅里葉(Fourier)級數展開可表示成一些不同頻率的正弦和餘弦函數之和(陳磊等,2001),這里假設為有限項,即:
洞庭湖區第四紀環境地球化學
其中,頻率fk=k/T,k=1,2,…,N。
上式表明:如果拋開相位的差別,這類函數的周期變化完全取決於各餘弦函數分量的頻率和振幅。換句話說,我們可以用下面的函數來表示X(t)的波動特徵:
洞庭湖區第四紀環境地球化學
函數p(f)和函數X(t)表達了同樣的周期波動,兩者實際上是等價的,只不過是從頻域和時域兩個不同角度來描述而已。稱p(f)為X(t)的功率譜密度函數,簡稱譜密度。它不僅反映了X(t)中各固有分量的周期情況,還同時顯示出這些周期分量在整體X(t)中各自的重要性。具體說,在X(t)中各周期分量的對應頻率處,譜密度函數圖應出現較明顯的凸起,分量的振幅越大,峰值越高,對X(t)的整體影響也越大。
事實上,無論問題本身是否具有周期性或不確定性(如連續型隨機過程或時間序列)都可以採用類似的方法在頻域上加以描述,只是表示的形式和意義比上面要復雜得多。時間序列的譜分析方法就是要通過估計時間序列的譜密度函數,找出序列中的各主要周期分量,通過對各分量的分析達到對時間序列主要周期波動特徵的把握。
根據譜分析理論,對一個平穩時間序列{Xt},如果其自協方差函數R(k)滿足
如何從實際問題所給定的時間序列 {Xt,t=1,2,…,n} 中估計出其譜密度或標准譜密度函數是譜分析要解決的主要問題。本書採用圖基-漢寧(Tukey-Hanning)窗譜估計法。
❽ 用excel怎麼計算過去90天的時間序列數值求和可以每天自動更新計算
如果樓主的【時間序列數值】其實指的是【日期序列數值】的話:
=TODAY()*90-SUM(ROW($1:$90))
也就是
=TODAY()*90-4090
❾ 時間序列分析適用的數據有哪些
時間序列適合圖形表示:數軸,時間軸。
把預測對象、預測目標和對預測的影響因素都看成為具有時序的,為時間的函數,而時間序列法就是研究預測對象自身變化過程及發展趨勢。根據預測對象與影響因素之間的因果關系及其影響程度來推算未來。與目標的相關因素很多,只能選擇那些因果關系較強的為預測影響的因素。
構成要素:
長期趨勢,季節變動,循環變動,不規則變動。
1、長期趨勢(T)現象在較長時期內受某種根本性因素作用而形成的總的變動趨勢。
2、季節變動(S)現象在一年內隨著季節的變化而發生的有規律的周期性變動。
3、循環變動(C)現象以若干年為周期所呈現出的波浪起伏形態的有規律的變動。
❿ python中兩列金融時間序列數據,怎麼對時間相同的數據做運算
數據先導入,通常用csv。 然後是時間格式轉換用time.strptime 轉換完的時間可以直接取到hour,miniute,等屬性,你直接按hour做當天平均值,再做月份的平均值。(其實可以一直計算,不用分開算)