當前位置:首頁 » 編程軟體 » 交叉編譯fpic

交叉編譯fpic

發布時間: 2022-11-26 14:59:38

1. arm-linux交叉編譯器的路徑設置問題,怎麼辦

尚觀Linux入門基礎課程 http://you.video.sina.com.cn/a/1544927-1320045357.html

Linux學習方法二-----尚觀入學前免費Linux課程 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11620270
Linux學習方法之三---...學前免費Linux基礎課程 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11621587
Linux最佳入門教程六-RHEL5安裝 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11633451
linux最佳入門系列-bash編程基礎 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#12155782
尚觀講座之c語言指針 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#14072212
Linux下J2EE伺服器配置與集群-尚觀講座。http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#14675886
Linux安全機制,尚觀Linux培訓 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11619396
尚觀linux安全DDOS攻擊防範(一)http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#7145242
Linux最佳入門教程三 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11632447
Linux最佳入門教程四 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11631234
Linux最佳入門教程五 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11631388
Linux最佳入門教程五-RHEL4安裝(一) http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11632917
Linux最佳入門教程五-RHEL4安裝(二) http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=1544927&uid=1320045357&t=1#11631876
Linux嵌入式開發視頻之C語言基礎http://you.video.sina.com.cn/a/2144683-1320045357.html

1.類型運算符表達式http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16566482
3.函數與程序結構2 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16566780
5.結構體聯合體位欄位3 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16561239
5.結構體聯合體位欄位2 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16561197
5.結構體聯合體位欄位1 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16561159
4.數組與指針3 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16566908
4.數組與指針2 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16566864
2.控制流2 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16560817
3.函數與程序結構1 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16566668
4.數組與指針1 http://you.video.sina.com.cn/pg/topicdetail/topicPlay.php?tid=2144683&uid=1320045357&t=1#16561009

2. 如何為嵌入式開發建立交叉編譯環境

下面我們將以建立針對arm的交叉編譯開發環境為例來解說整個過程,其他的體系結構與這個相類似,只要作一些對應的改動。我的開發環境是,宿主機 i386-redhat-7.2,目標機 arm。
這個過程如下
1. 下載源文件、補丁和建立編譯的目錄
2. 建立內核頭文件
3. 建立二進制工具(binutils)
4. 建立初始編譯器(bootstrap gcc)
5. 建立c庫(glibc)
6. 建立全套編譯器(full gcc)
下載源文件、補丁和建立編譯的目錄
1. 選定軟體版本號
選擇軟體版本號時,先看看glibc源代碼中的INSTALL文件。那裡列舉了該版本的glibc編譯時所需的binutils 和gcc的版本號。例如在 glibc-2.2.3/INSTALL 文件中推薦 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我選的各個軟體的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你選的glibc的版本號低於2.2,你還要下載一個叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 內核你可以從www.kernel.org 或它的鏡像下載。
Binutils、gcc和glibc你可以從FSF的ftp站點ftp://ftp.gun.org/gnu/ 或它的鏡像去下載。 在編譯glibc時,要用到 Linux 內核中的 include 目錄的內核頭文件。如果你發現有變數沒有定義而導致編譯失敗,你就改變你的內核版本號。例如我開始用linux-2.4.25+vrs2,編譯glibc-2.2.3 時報 BUS_ISA 沒定義,後來發現在 2.4.23 開始它的名字被改為 CTL_BUS_ISA。如果你沒有完全的把握保證你改的內核改完全了,就不要動內核,而是把你的 Linux 內核的版本號降低或升高,來適應 glibc。
Gcc 的版本號,推薦用 gcc-2.95 以上的。太老的版本編譯可能會出問題。Gcc-2.95.3 是一個比較穩定的版本,也是內核開發人員推薦用的一個 gcc 版本。
如果你發現無法編譯過去,有可能是你選用的軟體中有的加入了一些新的特性而其他所選軟體不支持的原因,就相應降低該軟體的版本號。例如我開始用 gcc-3.3.2,發現編譯不過,報 as、ld 等版本太老,我就把 gcc 降為 2.95.3。 太新的版本大多沒經過大量的測試,建議不要選用。
回頁首
2. 建立工作目錄
首先,我們建立幾個用來工作的目錄:
在你的用戶目錄,我用的是用戶liang,因此用戶目錄為 /home/liang,先建立一個項目目錄embedded。
$pwd
/home/liang
$mkdir embedded
再在這個項目目錄 embedded 下建立三個目錄 build-tools、kernel 和 tools。
build-tools-用來存放你下載的 binutils、gcc 和 glibc 的源代碼和用來編譯這些源代碼的目錄。
kernel-用來存放你的內核源代碼和內核補丁。
tools-用來存放編譯好的交叉編譯工具和庫文件。
$cd embedded
$mkdir build-tools kernel tools
執行完後目錄結構如下:
$ls embedded
build-tools kernel tools
3. 輸出和環境變數
我們輸出如下的環境變數方便我們編譯。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH
如果你不慣用環境變數的,你可以直接用絕對或相對路徑。我如果不用環境變數,一般都用絕對路徑,相對路徑有時會失敗。環境變數也可以定義在.bashrc文件中,這樣當你logout或換了控制台時,就不用老是export這些變數了。
體系結構和你的TAEGET變數的對應如下表

你可以在通過glibc下的config.sub腳本來知道,你的TARGET變數是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu
在我的環境中,config.sub 在 glibc-2.2.3/scripts 目錄下。
網上還有一些 HOWTO 可以參考,ARM 體系結構的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 體系結構的《Linux for PowerPC Embedded Systems HOWTO》等。對TARGET的選取可能有幫助。
4. 建立編譯目錄
為了把源碼和編譯時生成的文件分開,一般的編譯工作不在的源碼目錄中,要另建一個目錄來專門用於編譯。用以下的命令來建立編譯你下載的binutils、gcc和glibc的源代碼的目錄。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch
build-binutils-編譯binutils的目錄
build-boot-gcc-編譯gcc 啟動部分的目錄
build-glibc-編譯glibc的目錄
build-gcc-編譯gcc 全部的目錄
gcc-patch-放gcc的補丁的目錄
gcc-2.95.3 的補丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以從 http://www.linuxfromscratch.org/ 下載到這些補丁。
再將你下載的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代碼放入 build-tools 目錄中
看一下你的 build-tools 目錄,有以下內容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz
回頁首
建立內核頭文件
把你從 www.kernel.org 下載的內核源代碼放入 $PRJROOT /kernel 目錄
進入你的 kernel 目錄:
$cd $PRJROOT /kernel
解開內核源代碼
$tar -xzvf linux-2.4.21.tar.gz

$tar -xjvf linux-2.4.21.tar.bz2
小於 2.4.19 的內核版本解開會生成一個 linux 目錄,沒帶版本號,就將其改名。
$mv linux linux-2.4.x
給 Linux 內核打上你的補丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2
編譯內核生成頭文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 來代替 menuconfig,但這樣用可能會沒有設置某些配置文件選項和沒有生成下面編譯所需的頭文件。推薦大家用 make menuconfig,這也是內核開發人員用的最多的配置方法。配置完退出並保存,檢查一下的內核目錄中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,這是編譯 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也說明了你生成了正確的頭文件。
還要建立幾個正確的鏈接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc
接下來為你的交叉編譯環境建立你的內核頭文件的鏈接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm
也可以把 Linux 內核頭文件拷貝過來用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include
回頁首
建立二進制工具(binutils)
binutils是一些二進制工具的集合,其中包含了我們常用到的as和ld。
首先,我們解壓我們下載的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2
然後進入build-binutils目錄配置和編譯binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX
--target 選項是指出我們生成的是 arm-linux 的工具,--prefix 是指出我們可執行文件安裝的位置。
會出現很多 check,最後產生 Makefile 文件。
有了 Makefile 後,我們來編譯並安裝 binutils,命令很簡單。
$make
$make install
看一下我們 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size
我們來解釋一下上面生成的可執行文件都是用來干什麼的
add2line - 將你要找的地址轉成文件和行號,它要使用 debug 信息。
Ar-產生、修改和解開一個存檔文件
As-gnu 的匯編器
C++filt-C++ 和 java 中有一種重載函數,所用的重載函數最後會被編譯轉化成匯編的標號,c++filt 就是實現這種反向的轉化,根據標號得到函數名。
Gasp-gnu 匯編器預編譯器。
Ld-gnu 的連接器
Nm-列出目標文件的符號和對應的地址
Obj-將某種格式的目標文件轉化成另外格式的目標文件
Objmp-顯示目標文件的信息
Ranlib-為一個存檔文件產生一個索引,並將這個索引存入存檔文件中
Readelf-顯示 elf 格式的目標文件的信息
Size-顯示目標文件各個節的大小和目標文件的大小
Strings-列印出目標文件中可以列印的字元串,有個默認的長度,為4
Strip-剝掉目標文件的所有的符號信息
回頁首
建立初始編譯器(bootstrap gcc)
首先進入 build-tools 目錄,將下載 gcc 源代碼解壓
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz
然後進入 gcc-2.95.3 目錄給 gcc 打上補丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in
在我們編譯並安裝 gcc 前,我們先要改一個文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
這一行改為
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果沒定義 -Dinhibit,編譯時將會報如下的錯誤
../../gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
../../gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
如果沒有定義 -D__gthr_posix_h,編譯時會報如下的錯誤
In file included from gthr-default.h:1,
from ../../gcc-2.95.3/gcc/gthr.h:98,
from ../../gcc-2.95.3/gcc/libgcc2.c:3034:
../../gcc-2.95.3/gcc/gthr-posix.h:37: pthread.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
還有一種與-Dinhibit同等效果的方法,那就是在你配置configure時多加一個參數-with-newlib,這個選項不會迫使我們必須使用newlib。我們編譯了bootstrap-gcc後,仍然可以選擇任何c庫。
接著就是配置boostrap gcc, 後面要用bootstrap gcc 來編譯 glibc 庫。
$cd ..; cd build-boot-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX \
>--without-headers --enable-languages=c --disable-threads
這條命令中的 -target、--prefix 和配置 binutils 的含義是相同的,--without-headers 就是指不需要頭文件,因為是交叉編譯工具,不需要本機上的頭文件。-enable-languages=c是指我們的 boot-gcc 只支持 c 語言。--disable-threads 是去掉 thread 功能,這個功能需要 glibc 的支持。
接著我們編譯並安裝 boot-gcc
$make all-gcc
$make install-gcc
我們來看看 $PREFIX/bin 裡面多了哪些東西
$ls $PREFIX/bin
你會發現多了 arm-linux-gcc 、arm-linux-unprotoize、cpp 和 gcov 幾個文件。
Gcc-gnu 的 C 語言編譯器
Unprotoize-將 ANSI C 的源碼轉化為 K&R C 的形式,去掉函數原型中的參數類型。
Cpp-gnu的 C 的預編譯器
Gcov-gcc 的輔助測試工具,可以用它來分析和優程序。
使用 gcc3.2 以及 gcc3.2 以上版本時,配置 boot-gcc 不能使用 --without-headers 選項,而需要使用 glibc 的頭文件。
回頁首
建立 c 庫(glibc)
首先解壓 glibc-2.2.3.tar.gz 和 glibc-linuxthreads-2.2.3.tar.gz 源代碼
$cd $PRJROOT/build-tools
$tar -xvzf glibc-2.2.3.tar.gz
$tar -xzvf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
然後進入 build-glibc 目錄配置 glibc
$cd build-glibc
$CC=arm-linux-gcc ../glibc-2.2.3/configure --host=$TARGET --prefix="/usr"
--enable-add-ons --with-headers=$TARGET_PREFIX/include
CC=arm-linux-gcc 是把 CC 變數設成你剛編譯完的boostrap gcc,用它來編譯你的glibc。--enable-add-ons是告訴glibc用 linuxthreads 包,在上面我們已經將它放入了 glibc 源碼目錄中,這個選項等價於 -enable-add-ons=linuxthreads。--with-headers 告訴 glibc 我們的linux 內核頭文件的目錄位置。
配置完後就可以編譯和安裝 glibc
$make
$make install_root=$TARGET_PREFIX prefix="" install
然後你還要修改 libc.so 文件

GROUP ( /lib/libc.so.6 /lib/libc_nonshared.a)
改為
GROUP ( libc.so.6 libc_nonshared.a)
這樣連接程序 ld 就會在 libc.so 所在的目錄查找它需要的庫,因為你的機子的/lib目錄可能已經裝了一個相同名字的庫,一個為編譯可以在你的宿主機上運行的程序的庫,而不是用於交叉編譯的。
回頁首
建立全套編譯器(full gcc)
在建立boot-gcc 的時候,我們只支持了C。到這里,我們就要建立全套編譯器,來支持C和C++。
$cd $PRJROOT/build-tools/build-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX --enable-languages=c,c++
--enable-languages=c,c++ 告訴 full gcc 支持 c 和 c++ 語言。
然後編譯和安裝你的 full gcc
$make all
$make install
我們再來看看 $PREFIX/bin 裡面多了哪些東西
$ls $PREFIX/bin
你會發現多了 arm-linux-g++ 、arm-linux-protoize 和 arm-linux-c++ 幾個文件。
G++-gnu的 c++ 編譯器。
Protoize-與Unprotoize相反,將K&R C的源碼轉化為ANSI C的形式,函數原型中加入參數類型。
C++-gnu 的 c++ 編譯器。
到這里你的交叉編譯工具就算做完了,簡單驗證一下你的交叉編譯工具。
用它來編譯一個很簡單的程序 helloworld.c
#include <stdio.h>
int main(void)
{
printf("hello world\n");
return 0;
}
$arm-linux-gcc helloworld.c -o helloworld
$file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1,
dynamically linked (uses shared libs), not stripped
上面的輸出說明你編譯了一個能在 arm 體系結構下運行的 helloworld,證明你的編譯工具做成功了。
轉載僅供參考,版權屬於原作者

3. clion中C項目交叉編譯說明

1、  在項目的CMakeLists.txt的開始處加上如下圖所示配置(配置中的目錄為你需要編譯器的目錄),平時開發調試的時候,設置SET( CROSS_COMPILE 0 ) 即不啟用交叉編譯。

2、 交叉編譯:首先SET( CROSS_COMPILE  1),然後把項目通過scp傳輸到linux虛擬機或者伺服器上

3、執行 cmake /path/your/project (項目根目錄),這一步會生成交叉環境配置的Makefile

4、 在項目根目錄,執行 make ,這一步會生成和項目名同名的可執行文件demo中為hello

5、Scp可執行文件到開發版,運行可執行文件。

SET( CROSS_COMPILE 1 )

IF ( CROSS_COMPILE )

    SET(

CMAKE_SYSTEM_NAME linux )

    SET(

TOOLCHAIN_DIR " /home/sz/project/arm-linux-gnueabihf ")

# specify the cross compiler

    SET( CMAKE_C_COMPILER   ${ TOOLCHAIN_DIR } /bin/arm-linux-gnueabihf-gcc )

    SET(

CMAKE_CXX_COMPILER ${ TOOLCHAIN_DIR } /bin/arm-linux-gnueabihf-g++ )

    SET(

GNU_FLAGS " -mfpu=vfp -fPIC ")

    SET(

CMAKE_CXX_FLAGS " ${ GNU_FLAGS } ")

    SET(

CMAKE_C_FLAGS " ${ GNU_FLAGS }  ")

# where is the target environment

    SET( CMAKE_FIND_ROOT_PATH  ${ TOOLCHAIN_DIR }

            ${ TOOLCHAIN_DIR } /arm-linux-gnueabihf/include

            ${ TOOLCHAIN_DIR } /arm-linux-gnueabihf/lib )

# search for programs in the build host directories (notnecessary)

    SET( CMAKE_FIND_ROOT_PATH_MODE_PROGRAM

NEVER)

# for libraries and headers in the target directories

    SET( CMAKE_FIND_ROOT_PATH_MODE_LIBRARY

ONLY)

    SET(

CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY )

ENDIF ( CROSS_COMPILE )

4. 如何建立Linux下的ARM交叉編譯環境

這個過程如下
1. 下載源文件、補丁和建立編譯的目錄
2. 建立內核頭文件
3. 建立二進制工具(binutils)
4. 建立初始編譯器(bootstrap gcc)
5. 建立c庫(glibc)
6. 建立全套編譯器(full gcc)
下載源文件、補丁和建立編譯的目錄
1. 選定軟體版本號
選擇軟體版本號時,先看看glibc源代碼中的INSTALL文件。那裡列舉了該版本的glibc編譯時所需的binutils 和gcc的版本號。例如在 glibc-2.2.3/INSTALL 文件中推薦 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我選的各個軟體的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你選的glibc的版本號低於2.2,你還要下載一個叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 內核你可以從www.kernel.org 或它的鏡像下載。
Binutils、gcc和glibc你可以從FSF的FTP站點ftp://ftp.gun.org/gnu/ 或它的鏡像去下載。在編譯glibc時,要用到 Linux 內核中的 include 目錄的內核頭文件。如果你發現有變數沒有定義而導致編譯失敗,你就改變你的內核版本號。例如我開始用linux-2.4.25+vrs2,編譯glibc-2.2.3 時報 BUS_ISA 沒定義,後來發現在 2.4.23 開始它的名字被改為 CTL_BUS_ISA。如果你沒有完全的把握保證你改的內核改完全了,就不要動內核,而是把你的 Linux 內核的版本號降低或升高,來適應 glibc。
Gcc 的版本號,推薦用 gcc-2.95 以上的。太老的版本編譯可能會出問題。Gcc-2.95.3 是一個比較穩定的版本,也是內核開發人員推薦用的一個 gcc 版本。
如果你發現無法編譯過去,有可能是你選用的軟體中有的加入了一些新的特性而其他所選軟體不支持的原因,就相應降低該軟體的版本號。例如我開始用 gcc-3.3.2,發現編譯不過,報 as、ld 等版本太老,我就把 gcc 降為 2.95.3。太新的版本大多沒經過大量的測試,建議不要選用。

2. 建立工作目錄
首先,我們建立幾個用來工作的目錄:
在你的用戶目錄,我用的是用戶liang,因此用戶目錄為 /home/liang,先建立一個項目目錄embedded。
$pwd
/home/liang
$mkdir embedded

再在這個項目目錄 embedded 下建立三個目錄 build-tools、kernel 和 tools。
build-tools-用來存放你下載的 binutils、gcc 和 glibc 的源代碼和用來編譯這些源代碼的目錄。
kernel-用來存放你的內核源代碼和內核補丁。
tools-用來存放編譯好的交叉編譯工具和庫文件。
$cd embedded
$mkdir build-tools kernel tools

執行完後目錄結構如下:
$ls embedded
build-tools kernel tools

3. 輸出和環境變數
我們輸出如下的環境變數方便我們編譯。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH

如果你不慣用環境變數的,你可以直接用絕對或相對路徑。我如果不用環境變數,一般都用絕對路徑,相對路徑有時會失敗。環境變數也可以定義在.bashrc文件中,這樣當你logout或換了控制台時,就不用老是export這些變數了。
體系結構和你的TAEGET變數的對應如下表

你可以在通過glibc下的config.sub腳本來知道,你的TARGET變數是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu

在我的環境中,config.sub 在 glibc-2.2.3/scripts 目錄下。
網上還有一些 HOWTO 可以參考,ARM 體系結構的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 體系結構的《Linux for PowerPC Embedded Systems HOWTO》等。對TARGET的選取可能有幫助。
4. 建立編譯目錄
為了把源碼和編譯時生成的文件分開,一般的編譯工作不在的源碼目錄中,要另建一個目錄來專門用於編譯。用以下的命令來建立編譯你下載的binutils、gcc和glibc的源代碼的目錄。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch

build-binutils-編譯binutils的目錄
build-boot-gcc-編譯gcc 啟動部分的目錄
build-glibc-編譯glibc的目錄
build-gcc-編譯gcc 全部的目錄
gcc-patch-放gcc的補丁的目錄
gcc-2.95.3 的補丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以從 http://www.linuxfromscratch.org/ 下載到這些補丁。
再將你下載的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代碼放入 build-tools 目錄中
看一下你的 build-tools 目錄,有以下內容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz

建立內核頭文件
把你從 www.kernel.org 下載的內核源代碼放入 $PRJROOT /kernel 目錄
進入你的 kernel 目錄:
$cd $PRJROOT /kernel

解開內核源代碼
$tar -xzvf linux-2.4.21.tar.gz


$tar -xjvf linux-2.4.21.tar.bz2

小於 2.4.19 的內核版本解開會生成一個 linux 目錄,沒帶版本號,就將其改名。
$mv linux linux-2.4.x

給 Linux 內核打上你的補丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2

編譯內核生成頭文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 來代替 menuconfig,但這樣用可能會沒有設置某些配置文件選項和沒有生成下面編譯所需的頭文件。推薦大家用 make menuconfig,這也是內核開發人員用的最多的配置方法。配置完退出並保存,檢查一下的內核目錄中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,這是編譯 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也說明了你生成了正確的頭文件。
還要建立幾個正確的鏈接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc

接下來為你的交叉編譯環境建立你的內核頭文件的鏈接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm

也可以把 Linux 內核頭文件拷貝過來用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include

建立二進制工具(binutils)
binutils是一些二進制工具的集合,其中包含了我們常用到的as和ld。
首先,我們解壓我們下載的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2

然後進入build-binutils目錄配置和編譯binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX

--target 選項是指出我們生成的是 arm-linux 的工具,--prefix 是指出我們可執行文件安裝的位置。
會出現很多 check,最後產生 Makefile 文件。
有了 Makefile 後,我們來編譯並安裝 binutils,命令很簡單。
$make
$make install

看一下我們 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size

我們來解釋一下上面生成的可執行文件都是用來干什麼的
add2line - 將你要找的地址轉成文件和行號,它要使用 debug 信息。
Ar-產生、修改和解開一個存檔文件
As-gnu 的匯編器
C++filt-C++ 和 java 中有一種重載函數,所用的重載函數最後會被編譯轉化成匯編的標號,c++filt 就是實現這種反向的轉化,根據標號得到函數名。
Gasp-gnu 匯編器預編譯器。
Ld-gnu 的連接器
Nm-列出目標文件的符號和對應的地址
Obj-將某種格式的目標文件轉化成另外格式的目標文件
Objmp-顯示目標文件的信息
Ranlib-為一個存檔文件產生一個索引,並將這個索引存入存檔文件中
Readelf-顯示 elf 格式的目標文件的信息
Size-顯示目標文件各個節的大小和目標文件的大小
Strings-列印出目標文件中可以列印的字元串,有個默認的長度,為4
Strip-剝掉目標文件的所有的符號信息

建立初始編譯器(bootstrap gcc)
首先進入 build-tools 目錄,將下載 gcc 源代碼解壓
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz

然後進入 gcc-2.95.3 目錄給 gcc 打上補丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in

在我們編譯並安裝 gcc 前,我們先要改一個文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
這一行改為
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果沒定義 -Dinhibit,編譯時將會報如下的錯誤
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
http://www.cnblogs.com/gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2

5. 如何制定android交叉編譯工具鏈

經常搞嵌入式開發的朋友對於交叉編譯環境應該並不陌生,說白了,就是一組運行在x86 PC機的編譯工具,可以讓你在PC機上編譯出目標平台(例如ARM)可識別的二進制文件。Android平台也提供了這樣的交叉編譯工具鏈,就放在Android的NDK開發包的toolchains目錄下,因此,我們的Makefile文件中,只需給出相應的編譯工具即可。
廢話就先說到這,直接上例子,我們目標是把下面這個math.c文件編譯成一個靜態庫文件:
#include <stdio.h>
int add( int a , int b ) {
return a+b;
}
你需要編寫一個Makefile文件,這里假設你的Android ndk被安裝在 /opt/android/ndk 目錄下,當然,你可以根據自己的實際情況修改Makefile中相關路徑的定義,Makefile文件示例如下:
# Makefile Written by ticktick
# Show how to cross-compile c/c++ code for android platform
.PHONY: clean
NDKROOT=/opt/android/ndk
PLATFORM=$(NDKROOT)/platforms/android-14/arch-arm
CROSS_COMPILE=$(NDKROOT)/toolchains/arm-linux-androideabi-4.6/prebuilt/linux-x86/bin/arm-linux-androideabi-
CC=$(CROSS_COMPILE)gcc
AR=$(CROSS_COMPILE)ar
LD=$(CROSS_COMPILE)ld
CFLAGS = -I$(PWD) -I$(PLATFORM)/usr/include -Wall -O2 -fPIC -DANDROID -DHAVE_PTHREAD -mfpu=neon -mfloat-abi=softfp
LDFLAGS =
TARGET = libmath.a
SRCS = $(wildcard *.c)
OBJS = $(SRCS:.c=.o)
all: $(OBJS)
$(AR) -rc $(TARGET) $(OBJS)
clean:
rm -f *.o *.a *.so
這里不講Makefile文件的基本原理,只說明一下針對Android環境的Makefile文件編寫的注意事項。
(1) CROSS_COMPILE
必須正確給出Android NDK編譯工具鏈的路徑,當在目錄中執行make命令的時候,編譯系統會根據 CROSS_COMPILE 前綴尋找對應的編譯命令。
(2) -I$(PLATFORM)/usr/include
由於Android平台沒有使用傳統的c語言庫libc,而是自己編寫了一套更加高效更適合嵌入式平台的c語言庫,所以系統頭文件目錄不能再使用默認的路徑,必須直到Android平台的頭文件目錄
(3) -Wall -O2 -fPIC -DANDROID -DHAVE_PTHREAD -mfpu=neon -mfloat-abi=softfp
這些參數的意義網上基本上都有介紹,我就不一一解釋了,並不都是必須添加的,但比較常用。
編譯方法:
寫好makefile文件,並且保存之後,就可以直接在當前目錄下執行make命令,編譯完成後,當前目錄下會生成 libmath.a ,即可直接拿到Android的jni工程中和使用了。

6. 如何設置NDK的編譯選項

1. 概述
首先回顧一下 Android NDK 開發中,Android.mk 和 Application.mk 各自的職責。
Android.mk,負責配置如下內容:
(1) 模塊名(LOCAL_MODULE)
(2) 需要編譯的源文件(LOCAL_SRC_FILES)
(3) 依賴的第三方庫(LOCAL_STATIC_LIBRARIES,LOCAL_SHARED_LIBRARIES)
(4) 編譯/鏈接選項(LOCAL_LDLIBS、LOCAL_CFLAGS)
Application.mk,負責配置如下內容:
(1) 目標平台的ABI類型(默認值:armeabi)(APP_ABI)
(2) Toolchains(默認值:GCC 4.8)
(3) C++標准庫類型(默認值:system)(APP_STL)
(4) release/debug模式(默認值:release)
由此我們可以看到,本文所涉及的編譯選項在Android.mk和Application.mk中均有出現,下面我們將一個個詳細介紹。
2. APP_ABI
ABI全稱是:Application binary interface,即:應用程序二進制介面,它定義了一套規則,允許編譯好的二進制目標代碼在所有兼容該ABI的操作系統和硬體平台中無需改動就能運行。(具體的定義請參考 網路 或者 維基網路 )
由上述定義可以判斷,ABI定義了規則,而具體的實現則是由編譯器、CPU、操作系統共同來完成的。不同的CPU晶元(如:ARM、Intel x86、MIPS)支持不同的ABI架構,常見的ABI類型包括:armeabi,armeabi-v7a,x86,x86_64,mips,mips64,arm64-v8a等。
這就是為什麼我們編譯出來的可以運行於Windows的二進製程序不能運行於Mac OS/Linux/Android平台了,因為CPU晶元和操作系統均不相同,支持的ABI類型也不一樣,因此無法識別對方的二進製程序。
而我們所說的「交叉編譯」的核心原理也跟這些密切相關,交叉編譯,就是使用交叉編譯工具,在一個平台上編譯生成另一個平台上的二進制可執行程序,為什麼可以做到?因為交叉編譯工具實現了另一個平台所定義的ABI規則。我們在Windows/Linux平台使用Android NDK交叉編譯工具來編譯出Android平台的庫也是這個道理。
這里給出最新 Android NDK 所支持的ABI類型及區別:

那麼,如何指定ABI類型呢?在 Application.mk 文件中添加一行即可:
APP_ABI := armeabi-v7a //只編譯armeabi-v7a版本

APP_ABI := armeabi armeabi-v7a //同時編譯armeabi,armeabi-v7a版本

APP_ABI := all //編譯所有版本
3. LOCAL_LDLIBS
Android NDK 除了提供了Bionic libc庫,還提供了一些其他的庫,可以在 Android.mk 文件中通過如下方式添加依賴:
LOCAL_LDLIBS := -lfoo
其中,如下幾個庫在 Android NDK 編譯時就默認鏈接了,不需要額外添加在 LOCAL_LDLIBS 中:
(1) Bionic libc庫
(2) pthread庫(-lpthread)
(3) math(-lmath)
(4) C++ support library (-lstdc++)
下面我列了一個表,給出了可以添加到「LOCAL_LDLIBS」中的不同版本的Android NDK所支持的庫:

下面是我總結的一些常用的CFLAGS編譯選項:
(1)通用的編譯選項
-O2 編譯優化選項,一般選擇O2,兼顧了優化程度與目標大小
-Wall 打開所有編譯過程中的Warning
-fPIC 編譯位置無關的代碼,一般用於編譯動態庫
-shared 編譯動態庫
-fopenmp 打開多核並行計算,
-Idir 配置頭文件搜索路徑,如果有多個-I選項,則路徑的搜索先後順序是從左到右的,即在前面的路徑會被選搜索
-nostdinc 該選項指示不要標准路徑下的搜索頭文件,而只搜索-I選項指定的路徑和當前路徑。
--sysroot=dir 用dir作為頭文件和庫文件的邏輯根目錄,例如,正常情況下,如果編譯器在/usr/include搜索頭文件,在/usr/lib下搜索庫文件,它將用dir/usr/include和dir/usr/lib替代原來的相應路徑。
-llibrary 查找名為library的庫進行鏈接
-Ldir 增加-l選項指定的庫文件的搜索路徑,即編譯器會到dir路徑下搜索-l指定的庫文件。
-nostdlib 該選項指示鏈接的時候不要使用標准路徑下的庫文件
(2) ARM平台相關的編譯選項
-marm -mthumb 二選一,指定編譯thumb指令集還是arm指令集
-march=name 指定特定的ARM架構,常用的包括:-march=armv6, -march=armv7-a
-mfpu=name 給出目標平台的浮點運算處理器類型,常用的包括:-mfpu=neon,-mfpu=vfpv3-d16
-mfloat-abi=name 給出目標平台的浮點預算ABI,支持的參數包括:「soft」, 「softfp」 and 「hard」

7. 如何建立android的C/C++交叉編譯環境

因此,構建android上C/C++的交叉編譯環境也就成為了一個很大的需求。特別是對於已經取得root許可權的機器,如果能直接運行按需編譯的二進制文件,那麼將可以做很多有意義和有趣的事情。 很不幸,Google沒有直接給出如何建立這個交叉編譯環境,但是我們可以藉助Google提供的強大的NDK (Native Development Tools)來達到這一目的。NDK的本來目標是編譯得到.so動態鏈接庫文件,然後通過JNI提供給上層的Java調用,從而實現C/C++程序的簡易遷移。而編譯.so和編譯成二進制可執行文件的過程是完全一樣的,這就給了我們可以發揮的空間。 有兩種方式獲取交叉編譯所需的工具鏈:git下prebuilt這個project或者直接去下載NDK,我這里arm-eabi的版本是最新的4.4.0。1 git clone git://android.git.kernel.org/platform/prebuilt.git 然後創建一個helloworld.c文件。1 2 3 4 5 6 //// root@delleon:~/android/myapp# cat helloworld.c#include int main(){printf("HelloWorld!n");return0;} 接下來創建Makefile文件。注意修改其中的NDK_DIR和SDKTOOL為自己的目錄,修改APP為自己的待編譯程序主文件名。另外注意自己的arm-eabi的版本,若有變化則也需要修改。1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 #### root@delleon:~/android/myapp# cat Makefile APP=helloworld NDK_DIR := ~/android/android-ndk-r4 NDK_HOST := linux-x86 SDKTOOL := ~/android/android-sdk-linux_86/tools TOOLCHAIN_PREFIX :=$(NDK_DIR)/build/prebuilt/$(NDK_HOST)/arm-eabi-4.4.0/bin/arm-eabi- CC :=$(TOOLCHAIN_PREFIX)gcc CPP :=$(TOOLCHAIN_PREFIX)g++ LD :=$(CC) COMMON_FLAGS :=-mandroid -ffunction-sections -fdata-sections -Os -g --sysroot=$(NDK_DIR)/build/platforms/android-5/arch-arm -fPIC -fvisibility=hidden -D__NEW__ CFLAGS :=$(COMMON_FLAGS) CFLAGS +=-D__ARM_ARCH_5__ -D__ARM_ARCH_5T__ -D__ARM_ARCH_5E__ -D__ARM_ARCH_5TE__ -DANDROID -DSK_RELEASE -DNDEBUG CFLAGS +=-UDEBUG -march=armv5te -mtune=xscale -msoft-float -mthumb-interwork -fpic -ffunction-sections -funwind-tables -fstack-protector -fmessage-length=0-Bdynamic CPPFLAGS :=$(COMMON_FLAGS)-fno-rtti -fno-exceptions -fvisibility-inlines-hidden LDFLAGS +=--sysroot=$(NDK_DIR)/build/platforms/android-5/arch-arm LDFLAGS +=-Bdynamic -Wl,-dynamic-linker,/system/bin/linker -Wl,--gc-sections -Wl,-z,noreloc LDFLAGS +=-L$(NDK_DIR)/build/prebuilt/$(NDK_HOST)/arm-eabi-4.4.0/lib/gcc/arm-eabi/4.4.0 LDFLAGS +=-L$(NDK_DIR)/build/prebuilt/$(NDK_HOST)/arm-eabi-4.4.0/lib/gcc LDFLAGS +=-L$(NDK_DIR)/build/prebuilt/$(NDK_HOST)/arm-eabi-4.4.0/arm-eabi/lib LDFLAGS +=-nostdlib -lc -llog -lgcc --no-undefined -z $(NDK_DIR)/build/platforms/android-5/arch-arm/usr/lib/crtbegin_dynamic.o $(NDK_DIR)/build/platforms/android-5/arch-arm/usr/lib/crtend_android.o OBJS +=$(APP).o all:$(APP) $(APP):$(OBJS)$(LD)$(LDFLAGS)-o $@$^ %.o:%.c $(CC)-c $(CFLAGS)$

8. 如何使用自己的makefile編譯android ndk項目

android ndk提供了一套自己的makefile管理方式,要將源碼項目移植到android平台,需要按照android的makefile規則編寫makefile,還要按android的規則部署源碼目錄,對一個有自己的makefile管理方法的大型項目來說,只是做一下makefile遷移工作就是一件很麻煩的事。
其實android ndk上的編譯說到底也就是交叉編譯,只要配置好交叉編譯工具鏈,使用原有的makefile也是可以編譯出在android運行的c、c++程序的。
以android-ndk-r4-crystax的ndk版本為例:
編譯器路徑 android-ndk-r4-crystax/build/prebuilt/linux-x86/arm-eabi-4.4.0/bin
名稱前綴 arm-eabi-
頭文件目錄 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/include
庫文件目錄 android-ndk-r4-crystax/build/platforms/android-3/arch-arm/usr/lib
你可以試一下上面的配置,如果編譯鏈接都沒有問題,可以adb push到android設備上運行看看,什麼結果?
有點崩潰,根本運行不起來,你也許想試試看android自帶的ndk例子,確實是能夠運行的,問題在哪兒呢?
只是正確配置了編譯器、頭文件、庫文件還不夠,還需要配置編譯、鏈接的參數,android例子中編譯鏈接的參數是什麼呢?你也許想深究一下android的makefile,可是不久你會發現那是更崩潰的事情,裡面用了很多的make腳本函數。其實android的makefile是可以把執行的詳細命令輸出來的,只要make的時候加上V=1即可。可以看到確實帶了很多參數
編譯參數:
-fpic
-mthumb-interwork
-ffunction-sections
-funwind-tables
-fstack-protector
-fno-short-enums
-Wno-psabi
-march=armv5te
-mtune=xscale
-msoft-float
-mthumb
-fomit-frame-pointer
-fno-strict-aliasing
-finline-limit=64
-Wa,--noexecstack
-D__ARM_ARCH_5__
-D__ARM_ARCH_5T__
-D__ARM_ARCH_5E__
-D__ARM_ARCH_5TE__
-DANDROID
鏈接參數:

-nostdlib
-Bdynamic
-Wl,-dynamic-linker,/system/bin/linker
-Wl,--gc-sections
-Wl,-z,noreloc
-Wl,--no-undefined
-Wl,-z,noexecstack
-L$(PLATFORM_LIBRARY_DIRECTORYS)
crtbegin_static.o
crtend_android.o
這其中鏈接參數中的-Wl,-dynamic-linker,/system/bin/linker、crtbegin_static.o、crtend_android.o是最關鍵的,android使用了自己的進程載入器,並且自定義了c運行時的啟動結束。難怪先前編譯的進程啟動不了。

9. 交叉編譯busybox顯示libc.so.6丟失!

拷貝C 庫
交叉應用程序的開發需要用到交叉編譯的鏈接庫,我們在移植應用程序到我們的目標板的時
候,需要把交叉編譯的鏈接庫也一起移植到目標板上,這里我們用到的交叉工具鏈的路徑是
/usr/local/arm/...../,鏈接庫的目錄是/usr/local/arm/...../arm-linux/lib,將其中部分庫文件及符號鏈接拷貝到root_nfs(你創建的busybox的根目錄)文件夾下的lib文件夾中。
部分庫文件及符號鏈接有:ld-2.3.2.so,ld-linux.so.2,libc-2.3.2.so,libc.so.6

熱點內容
編程畫櫻花 發布:2024-03-29 02:11:24 瀏覽:471
騰訊雲伺服器1mb老掉線 發布:2024-03-29 01:56:11 瀏覽:213
執行sql語句的存儲過程 發布:2024-03-29 01:52:37 瀏覽:695
婚紗攝影腳本 發布:2024-03-29 01:47:40 瀏覽:899
我的世界伺服器咋開外掛 發布:2024-03-29 01:07:45 瀏覽:455
sql寫報表 發布:2024-03-29 01:03:23 瀏覽:305
家用伺服器怎麼選 發布:2024-03-29 00:49:18 瀏覽:401
Ap6510dn如何配置 發布:2024-03-29 00:38:47 瀏覽:333
安卓和蘋果哪個更佔用內存 發布:2024-03-29 00:37:02 瀏覽:424
編譯錯誤算bug嗎 發布:2024-03-29 00:23:03 瀏覽:34