當前位置:首頁 » 雲伺服器 » 伺服器如何看bus匯流排

伺服器如何看bus匯流排

發布時間: 2022-07-04 16:13:00

① 計算機匯流排按其任務可以分為哪四種呢

按照功能劃分,大體上可以分為地址匯流排和數據匯流排。有的系統中,數據匯流排和地址匯流排是復用的,即匯流排在某些時刻出現的信號表示數據而另一些時刻表示地址;而有的系統是分開的。51系列單片機的地址匯流排和數據匯流排是復用的,而一般PC中的匯流排則是分開的。

按照傳輸數據的方式劃分,可以分為串列匯流排和並行匯流排。串列匯流排中,二進制數據逐位通過一根數據線發送到目的器件;並行匯流排的數據線通常超過2根。常見的串列匯流排有SPI、I2C、USB及RS232等。

按照時鍾信號是否獨立,可以分為同步匯流排和非同步匯流排。同步匯流排的時鍾信號獨立於數據,而非同步匯流排的時鍾信號是從數據中提取出來的。SPI、I2C是同步串列匯流排,RS232採用非同步串列匯流排。

② 求助計算機匯流排

計算機方面 FSB=Front Side BUS前段匯流排 FSB只指CPU與北橋晶元之間的數據傳輸匯流排,又稱前端匯流排。 對於P4來說,FSB頻率=CPU外頻*4。 這個參數指的就是前端匯流排的頻率,它是處理器與主板交換數據的通道,既然是通道,那就是越大越好,現在主流中最高的FSB是800M,向下有533M、400M和333M等幾種,它們價格是遞減的。(現在也有1066/1333 FSB的主板不過由於面向骨灰級發燒級的玩家和超頻者,價格比較高昂) FSB(或是FrontSideBus,前端匯流排)是超頻最容易和最常見的方法之一。FSB是CPU與系統其它部分連接的速度。它還影響內存時鍾,那是內存運行的速度。一般而言,對FSB和內存時鍾兩者來說越高等於越好。然而,在某些情況下這不成立。例如,讓內存時鍾比FSB運行得快根本不會有真正的幫助。同樣,在AthlonXP系統上,讓FSB運行在更高速度下而強制內存與FSB不同步(使用稍後將討論的內存分頻器)對性能的阻礙將比運行在較低FSB及同步內存下要嚴重得多。 FSB在Athlon和P4系統上涉及到不同的方法。在Athlon這邊,它是DDR匯流排,意味著如果實際時鍾是200MHz的話,那就是運行在400MHz下。在P4上,它是「四芯的」,所以如果實際時鍾是相同的200MHz的話,就代表800MHz。這是Intel的市場策略,因為對一般用戶來說,越高等於越好。Intel的「四芯」FSB實際上具有一個現實的優勢,那就是以較小的性能損失為代價允許P4晶元與內存不同步運行。每個時鍾越高的周期速度使得它越有機會讓內存周期與CPU周期重合,那等同於越好的性能 Front Side Bus,簡寫為FSB,前端匯流排 ! FSB決定CPU的運行速度,FSB可以通過超頻來提高! FSB高電腦的運行速度也會有所提高的! FSB的由來:「前端匯流排」這個名稱是由AMD在推出K7 CPU時提出的概念,但是一直以來都被大家誤認為這個名詞不過是外頻的另一個名稱。我們所說的外頻指的是CPU與主板連接的速度,這個概念是建立在數字脈沖信號震盪速度基礎之上的,而前端匯流排的速度指的是數據傳輸的速度,由於數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz、1066MHz、1333MHz幾種,前端匯流排頻率越大,代表著CPU與內存之間的數據傳輸量越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU。較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。 前端匯流排的英文名字是Front Side Bus,通常用FSB表示,是將CPU連接到北橋晶元的匯流排。選購主板和CPU時,要注意兩者搭配問題,一般來說,如果CPU不超頻,那麼前端匯流排是由CPU決定的,如果主板不支持CPU所需要的前端匯流排,系統就無法工作。也就是說,需要主板和CPU都支持某個前端匯流排,系統才能工作,只不過一個CPU默認的前端匯流排是唯一的,因此看一個系統的前端匯流排主要看CPU就可以。 北橋晶元負責聯系內存、顯卡等數據吞吐量最大的部件,並和南橋晶元連接。CPU就是通過前端匯流排(FSB)連接到北橋晶元,進而通過北橋晶元和內存、顯卡交換數據。前端匯流排是CPU和外界交換數據的最主要通道,因此前端匯流排的數據傳輸能力對計算機整體性能作用很大,如果沒足夠快的前端匯流排,再強的CPU也不能明顯提高計算機整體速度。數據傳輸最大帶寬取決於所有同時傳輸的數據的寬度和傳輸頻率,即數據帶寬=(匯流排頻率×數據位寬)÷8。目前PC機上所能達到的前端匯流排頻率有266MHz、333MHz、400MHz、533MHz、800MHz幾種,前端匯流排頻率越大,代表著CPU與北橋晶元之間的數據傳輸能力越大,更能充分發揮出CPU的功能。現在的CPU技術發展很快,運算速度提高很快,而足夠大的前端匯流排可以保障有足夠的數據供給給CPU,較低的前端匯流排將無法供給足夠的數據給CPU,這樣就限制了CPU性能得發揮,成為系統瓶頸。顯然同等條件下,前端匯流排越快,系統性能越好。 外頻與前端匯流排(FSB)頻率的區別:前端匯流排的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈沖信號在每秒鍾震盪一千萬次;而100MHz前端匯流排指的是每秒鍾CPU可接受的數據傳輸量是100MHz×64bit=6400Mbit/s=800MByte/s(1Byte=8bit)。 常見晶元組對應的前端匯流排頻率: Intel平台系列 Intel晶元組: 845、845D、845GL所支持的前端匯流排頻率是400MHz,845E、845G、845GE、845PE、845GV以及865P、910GL所支持的前端匯流排頻率是533MHz,而865PE、865G、865GV、848P、875P、915P、915G、915GV、915PL、915GL、925X、945PL、945GZ所支持的前端匯流排頻率是800MHz,定位於歡躍(VIIV)平台的945GT所支持的前端匯流排頻率是533MHz和667MHz,高端的925XE、945P、945G、955X、975X所支持的前端匯流排頻率是1066MHz。946PL和946GZ所支持的前端匯流排頻率是800MHz,而P965、G965、Q965和Q963所支持的前端匯流排頻率則都是1066MHz。 VIA晶元組: P4X266、P4X266A、P4M266所支持的前端匯流排頻率是400MHz,P4X266E、P4X333、P4X400、P4X533所支持的前端匯流排頻率是533MHz,PT800、PT880、PM800、PM880、P4M800、P4M800 Pro、PT880 Pro所支持的前端匯流排頻率是800MHz,PT880 Ultra、PT894、PT894 Pro、PT890所支持的前端匯流排頻率也高達1066MHz。P4M890所支持的前端匯流排頻率是800MHz,而P4M900所支持的前端匯流排頻率則是1066MHz。 SIS晶元組: SIS645、SIS645DX、SIS650所支持的前端匯流排頻率是400MHz,SIS651、SIS655、SIS648、SIS661GX所支持的前端匯流排頻率是533MHz,SIS648FX、SIS661FX、SIS655FX、SIS655TX、SIS649、SIS656、SIS662所支持的前端匯流排頻率是800MHz,SIS649FX和SIS656FX所支持的前端匯流排頻率則高達1066MHz。 ATI晶元組: Radeon 9100 IGP、Radeon 9100 Pro IGP、RX330、Radeon Xpress 200 IE(RC410)、Radeon Xpress 200 IE(RXC410)所支持的前端匯流排頻率是800MHz,Radeon Xpress 200 IE(RS400)、Radeon Xpress 200 CrossFire IE(RD400)、CrossFire Xpress 1600 IE所支持的前端匯流排頻率則高達1066MHz。 ULI晶元組: M1683和M1685所支持的前端匯流排頻率是800MHz。 NVIDIA晶元組: nForce4 SLI IE、nForce4 SLI X16 IE、nForce4 SLI XE、nForce4 Ultra IE所支持的前端匯流排頻率全部都高達1066MHz。nForce 590 SLI IE、nForce 570 SLI IE和nForce 570 Ultra IE所支持的前端匯流排頻率全部都是1066MHz。 AMD平台系列 VIA晶元組: KT266、KT266A、KM266所支持的前端匯流排頻率是266MHz,KT333、KT400、KT400A、KM400、KN400所支持的前端匯流排頻率是333MHz,KT600和KT880所支持的前端匯流排頻率是400MHz。 SIS晶元組: SIS735、SIS745、SIS746、SIS740所支持的前端匯流排頻率是266MHz,SIS741GX和SIS746FX所支持的前端匯流排頻率是333MHz,SIS741和SIS748所支持的前端匯流排頻率是400MHz。 Uli晶元組: M1647所支持的前端匯流排頻率是266MHz。 nVidia晶元組: nForce2 IGP、nForce2 400和nForce2 Ultra 400所支持的前端匯流排頻率是400MHz。 此外,由於AMD64系列CPU內部整合了內存控制器,其HyperTransport頻率只與CPU介面類型有關,而與主板晶元組無關,所以其HyperTransport頻率的區分是相當簡單的:Socket 754介面的所有CPU的HyperTransport頻率都是800MHz;Socket 939介面的Sempron的HyperTransport頻率是800MHz,除Sempron之外的所有Socket 939介面CPU的HyperTransport頻率都是1000MHz;舊版的Socket 940介面CPU的HyperTransport頻率也是800MHz,而新版的Socket 940介面CPU的HyperTransport頻率也已經提高到了1000MHz;Socket S1介面的所有CPU的HyperTransport頻率都是800MHz;Socket AM2介面的Sempron的HyperTransport頻率是800MHz,除Sempron之外的所有Socket AM2介面CPU的HyperTransport頻率都是1000MHz;即將發布的Socket F介面Opteron的HyperTransport頻率則都是1000MHz。 常見CPU對應的前端匯流排頻率: 【Intel CPU】 Willamette核心CPU: 所有Willamette核心CPU的FSB都是400MHz FSB。 Northwood核心CPU: 相對於Willamette核心CPU,Northwood核心CPU的前端匯流排頻率則非常復雜,400MHz、533MHz和800MHz都有。其中,Celeron全部都是400MHz FSB;Pentium 4方面,1.6GHz-2.8GHz都有400MHz FSB的產品,例如1.8A、2.0A等等,Pentium 4型號後面帶有"B"字樣的則是533MHz FSB,帶有"C"字樣的則是800MHz FSB。 Prescott核心CPU: Prescott核心的Celeron D,無論是Socket 478介面還是Socket 775介面,全部都是533MHz FSB。 Socket 478介面的Pentium 4方面,2.4A和2.8A是533MHz FSB,其餘的Socket 478 Pentium 4都是800MHz FSB,在產品型號後面帶有"E"字樣。 Socket 775介面的Pentium 4 5XX系列方面,編號尾數為"5"的是533MHz FSB,例如Pentium 4 505/515;編號尾數為"0"的是800MHz FSB,例如Pentium 4 520/530/540等等。即將推出的Pentium 4 6XX系列CPU則都是800MHz FSB。 Pentium 4至尊版(即Pentium 4 EE,又稱Pentium 4 XE): 所有Socket 478介面的Pentium 4 EE都是800MHz FSB。Socket 775介面的Pentium 4 EE,Gallatin/Prescott核心的3.4GHz是800MHz FSB,3.46GHz則是1066MHz FSB,這是目前PC上最高的前端匯流排頻率。 Pentium EE: Smithfield核心的Pentium EE 840是800MHz FSB,而Presler核心的Pentium EE 955和965都是1066MHz FSB。 Xeon和Xeon MP: 所有Socket 603介面的Xeon和Xeon MP都是400MHz FSB;Socket 604介面的Xeon中,支持Intel 64位計算技術EM64T的Xeon是800MHz FSB,而不支持EM64T的Xeon則是533MHz FSB;Socket 771介面的Xeon中,Xeon 5000系列是667MHz或1066MHz FSB,而Xeon 7100系列則是1066MHz或1333MHz FSB;Socket 604介面的Xeon MP除了Xeon MP 7000系列是667MHz或800MHz FSB之外則全部都是667MHz FSB。 Cedar Mill核心CPU: Cedar Mill核心的Celeron D目前都是533MHz FSB,而Cedar Mill核心的Pentium 4則都是800MHz FSB。 Yonah核心CPU: 目前Core Duo和Core Solo的T系列和L系列除了Core Duo T2x50和Core Solo T1x50是533MHz FSB之外都是667MHz FSB,而U系列則都是533MHz FSB;Celeron M 4xx系列則全部都是533MHz FSB。 Pentium D: 目前除了Smithfield核心的Pentium D 8X5系列是533MHz FSB之外,其它的Smithfield核心的Pentium D 8X0系列和Presler核心的Pentium D 9X0都是800MHz FSB。而Pentium D 9X5系列是1066MHz的FSB。 Core 2 Duo(酷睿2雙核處理器): 目前應用於桌面平台的Core 2 Duo E6x00系列都是1066MHz FSB,而即將推出的Core 2 Duo E4x00系列則是800MHz FSB;目前應用於移動平台的Core 2 Duo T5x00系列和T7x00系列則都是667MHz FSB,在推出第四代迅馳平台Santa rosa時則會提升到800MHz FSB。 Core 2 Extreme(酷睿2雙核處理器至尊版): 目前Core 2 Extreme X6x00是1066MHz FSB,未來的Core 2 Extreme則將提升到1333MHz FSB。 Itanium 2: Itanium 2 9000系列是400MHz或533MHz FSB,除此之外的所有Itanium 2全部都是400MHz FSB。 【AMD CPU】 Socket A平台: Socket A介面的Sempron是333MHz FSB,AppleBred核心的Duron則是266MHz FSB;Athlon XP方面,Palomino核心為266MHz FSB,Thoroughbred核心為266MHz和333MHz FSB,Barton核心為333MHz和400MHz FSB,而Thorton核心則為333MHz FSB。 AMD64平台: Socket 754介面的所有CPU的HyperTransport頻率都是800MHz;Socket 939介面的Sempron的HyperTransport頻率是800MHz,除Sempron之外的所有Socket 939介面CPU的HyperTransport頻率都是1000MHz;舊版的Socket 940介面CPU的HyperTransport頻率也是800MHz,而新版的Socket 940介面CPU的HyperTransport頻率也已經提高到了1000MHz;Socket S1介面的所有CPU的HyperTransport頻率都是800MHz;Socket AM2介面的Sempron的HyperTransport頻率是800MHz,除Sempron之外的所有Socket AM2介面CPU的HyperTransport頻率都是1000MHz;即將發布的Socket F介面Opteron的HyperTransport頻率則都是1000MHz。 QPI 一、FSB正離我們遠去 眾所周之,前端匯流排(Front Side Bus,簡稱FSB)是將CPU中央處理器連接到北橋晶元的系統匯流排,它是CPU和外界交換數據的主要通道。前端匯流排的數據傳輸能力對計算機整體性能影響很大,如果沒有足夠帶寬的前端匯流排,即使配備再強勁的CPU,用戶也不會感覺到計算機整體速度的明顯提升。 目前intel處理器主流的前端匯流排頻率有800MHz、1066MHz、1333MHz幾種,而就在2007年11月,intel再度將處理器的前端匯流排頻率提升至1600MHz(默認外頻400MHz),這比2003年最高的800MHzFSB匯流排頻率整整提升了一倍。這樣高的前端匯流排頻率,其帶寬多大呢?前端匯流排為1333MHz時,處理器與北橋之間的帶寬為10.67GB/s,而提升到1600MHz能達到12.8GB/s,增加了20%。 雖然intel處理器的前端匯流排頻率看起來已經很高,但與同時不斷提升的內存頻率、高性能顯卡(特別是雙或多顯卡系統)相比,CPU與晶元組存在的前端匯流排瓶頸仍未根本改變。例如1333MHz的FSB所提供的內存帶寬是1333MHz×64bit/8=10667MB/s=10.67GB/s,與雙通道的DDR2-667內存剛好匹配,但如果使用雙通道的DDR2-800、DDR2-1066的內存,這時FSB的帶寬就小於內存的帶寬。更不用說和未來的三通道和更高頻率的DDR3內存搭配了(Nehalem平台三通道DDR3-1333內存的帶寬可達32GB/s)。 與AMD的HyperTransport(HT)匯流排技術相比,FSB的帶寬瓶頸也很明顯。HT作為AMD CPU上廣為應用的一種端到端的匯流排技術,它可在內存控制器、磁碟控制器以及PCI-E匯流排控制器之間提供更高的數據傳輸帶寬。HT1.0在雙向32bit模式的匯流排帶寬為12.8GB/s,其帶寬便可匹敵目前最新的FSB帶寬。2004年AMD推出的HT2.0規格,最大帶寬又由1.0的12.8GB/s提升到了22.4GB/s。而最新的HT3.0又將工作頻率從HT2.0最高的1.4GHz提高到了2.6GHz,提升幅度幾乎又達到了一倍。這樣,HT3.0在2.6GHz高頻率32bit高位寬運行模式下,即可提供高達41.6GB/s的匯流排帶寬(即使在16bit的位寬下也能提供20.8GB/s 帶寬),相比FSB優勢明顯,應付未來兩年內內存、顯卡和處理器的升級需要也沒有問題。 面對這種帶寬上的劣勢,雖然intel通過對市場的准確把握,以及其他優勢技術上的彌補(如指令集優勢、如CPU效率上intel的酷睿2雙核共享二級緩存互聯架構要明顯優於AMD HT互聯下的的雙核架構等等),讓AMD的帶寬優勢並沒有因此轉化為勝勢,但intel要想改變這種處理器和北橋設備之間帶寬捉襟見肘的情況,縱使在現可在技術上將FSB頻率進一步提高到2133MHz,也難以應付未來DDR3內存及多顯卡系統所帶來的帶寬需求。Intel推出新的匯流排技術勢在必行。 二、當世界失去FSB我們還有QPI Intel自身也清醒的認識到,要想在通過單純提高處理器的外頻和FSB,也難以像以前那樣帶來更好的性能提升。採用全新的Nehalem架構的intel下一代CPU讓我們看到了英特爾變革的決心。目前已經正式發布,基於該架構的代號為Boomfield第一款處理器,我們可以看見很多很多技術的細節——該處理器擁有全新的規格和性能,採用全新的LGA 1366介面,45nm製程,集成三通道DDR3內存控制器(支持DDR3 800/1066/1333/1600內存規格),使用新匯流排QPI與處理器進行連接,支持SMT(Simultaneous Muti-hreading,單顆處理器就可以支持8線程並行技術)多線程技術,支持SSE4.2指令集(增加了7條新的SSE4指令),是intel第一款原生四核處理器…… 當然,在其擁有的眾多技術中,最引人注目的應該還是QPI(原先宣傳的CSI匯流排)匯流排技術,他是全新的Nahalem架構之所以能在架構、功能和性能上取得大突破的關鍵性技術。 三、QPI能給我們帶來什麼 QPI(Quick Path Interconnect)——"快速通道互聯",取代前端匯流排(FSB)的一種點到點連接技術,20位寬的QPI連接其帶寬可達驚人的每秒25.6GB,遠非FSB可比。QPI最初能夠發放異彩的是支持多個處理器的伺服器平台,QPI可以用於多處理器之間的互聯。 1. QPI是通信更加方便 QPI是在處理器中集成內存控制器的體系架構,主要用於處理器之間和系統組件之間的互聯通信(諸如I/O)。他拋棄了沿用多年的的FSB,CPU可直接通過內存控制器訪問內存資源,而不是以前繁雜的「前端匯流排——北橋——內存控制器」模式。並且,與AMD在主流的多核處理器上採用的4HT3(4根傳輸線路,兩根用於數據發送,兩個用於數據接收)連接方式不同,英特爾採用了4+1 QPI互聯方式(4針對處理器,1針對I/O設計),這樣多處理器的每個處理器都能直接與物理內存相連,每個處理器之間也能彼此互聯來充分利用不同的內存,可以讓多處理器的等待時間變短(訪問延遲可以下降50%以上),只用一個內存插槽就能實現與四路AMD皓龍處理器(AMD在伺服器領域的處理器,與intel至強同等產品定位)同等帶寬。 2. QPI、處理器間峰值帶寬可達96GB/s 在intel高端的安騰處理器系統中,QPI高速互聯方式使得CPU與CPU之間的峰值帶寬可達96GB/s,峰值內存帶寬可達34GB/s。這主要在於QPI採用了與PCI-E類似的點對點設計,包括一對線路,分別負責數據發送和接收,每一條通路可傳送20bit數據。這就意味著即便是最早的QPI標准,其傳輸速度也能達到6.4GB/s——總計帶寬可達到25.6GB/s(為FSB 1600MHz的12.8GHz的兩倍)。這樣的帶寬已可媲美AMD目前的匯流排解決方案,能滿足未來CPU與CPU、CPU與晶元的數據傳輸要求。 3. 多核間互傳資料不用經過晶元組 QPI匯流排可實現多核處理器內部的直接互聯,而無須像以前那樣還要再經過FSB進行連接。例如,針對伺服器的Nehalem架構的處理器擁有至少4組QPI傳輸,可至少組成包括4顆處理器的4路高端伺服器系統(也就是16顆運算內核至少32線程並行運作)。而且在多處理器作業下,每顆處理器可以互相傳送資料,並不需要經過晶元組,從而大幅提升整體系統性能。隨著未來Nehalem架構的處理器集成內存控制器、PCI-E 2.0圖形介面乃至圖形核心的出現,QPI架構的優勢見進一步發揮出來。 4. QPI互聯架構本身具有升級性 QPI採用串聯方式作為訊號的傳送,採用了LVDS(低電壓差分信號技術,主要用於高速數字信號互聯,使信號能以幾百Mbps以上的速率傳輸)信號技術,可保證在高頻率下仍能保持穩定性。QPI擁有更低的延遲及更好的架構,將包括集成的存儲器控制器以及系統組件間的通信鏈路。 5. QPI匯流排架構具備可靠性和性能 可靠性、實用性和適用性特點為QPI的高可用性提供了保證。比如鏈接級循環冗餘碼驗證(CRC)。出現時鍾密碼故障時,時鍾能自動改路發送到數據信道。QPI還具備熱插拔。深度改良的微架構、集成內存控制器設計以及QPI直接技術,令Nehalem擁有更出色的執行效率,在單線程同頻率下,Nehalem擁有更為出色的執行效率,在單線程同頻率條件下,Nehalem的運算能力在相同功耗下比現行的Penryn架構的效能可能提高30%。 參考文獻: http://ke..com/view/22256.htm http://ke..com/view/1377507.htm

③ 求具有m-bus匯流排的電表型號!以及支持這種電表的無線抄表方案!

系統整體解決方案
一、系統總體架構

硬體主要包括
電表
CDMA數傳
UIM卡
伺服器:用於數據存儲、提取、分析等,是數據中心。
監控中心:,裝有數據採集軟體的計算機
二、系統工作過程
1、CDMA數傳上電後自動與設定的IP地址Y的伺服器埠3000建立TCP/IP連接;
2、建立TCP/IP連接之後,數據採集軟體通過Socket介面向CDMA數傳的IP地址發送Modbus命令報文;
3、CDMA模塊將命令報文的數據由串列口輸出到控制器,控制器處理命令報文,通過串口回傳數據到CDMA數傳;
4、CDMA數傳將回傳數據發送到伺服器的3000埠。
三、關於IPX和IPY
註:IPX是安裝在CDMA數傳當中的UIM卡的IP地址;IPY是通過ADSL、光纖或者專線等有線方式的IP地址。可有以下幾種選擇

第一種:
UIM卡為普通上網卡,獲取的IP地址IPX為公網上的非固定IP地址;
監控中心通過ADSL、光纖等方式獲取的IP地址IPY為公網上的非固定IP地址,通過在數據伺服器安裝花生殼等域名注冊軟體,申請域名來指向伺服器, CDMA數傳進行域名解析,從而與伺服器之間的TCP連接。
優點:監控中心網路建設成本低。
缺點:伺服器IP不固定,在IP更新周期時導致數據通信無法建立,將數據放到互聯網上,安全性低。

第二種:
UIM卡為普通上網卡,獲取的IP地址IPX為公網上的非固定IP地址;
監控中心通過專線方式獲取的IP地址IPY為公網上的固定IP地址。
優點:伺服器IP固定,通信連接穩定,數據傳輸穩定。
缺點:監控中心網路建設成本偏高,將數據放到互聯網上,安全性低。

第三種
UIM卡為專用上網卡,獲取的IP地址IPX為固定IP地址,注意不是公網IP
監控中心通過專線方式獲取的IP地址IPY為非公網上的固定IP地址,但是IPX和IPY是區域網內的兩個IP,這樣CDMA數傳可以向上連接伺服器,伺服器又可以向下連接CDMA數傳。
優點:伺服器IP固定,UIM卡IP固定,兩端都可以作為伺服器,通信連接穩定,不通過互聯網,提高安全性。
缺點:每張UIM卡為固定IP地址,成本高。
GPRS數傳傳輸模式解析

④ 如何構建canbus應用層協議

可用RS232轉CAN請看武漢鴻偉光電ECAN100RS232/485/422/CanBus匯流排接入伺服器ECAN100協議轉換器是一款高速度、高性能、電源信號雙隔離、內建CAN協議解釋微處理器的產品。它可將RS-232/RS-485/RS-422配置的系統進行轉換以便可以在CAN(控制器區域網絡)匯流排系統下工作。這樣就可以使用標準的PC硬體構建一個實時的通訊系統,同時也可以利用CAN的優異特性實現RS-232/RS-485/RS-422信號的超遠程傳輸。E232CAN232/CanBus隔離轉換器E232CAN實現RS-232與CanBus匯流排電平隔離轉換,支持遠程通信(可達7Km)和多機通信(110接點),半雙工使用,外加DC5V電源。

⑤ 什麼是ESB(企業服務匯流排)

ESB是一種IT架構方法。ESB旨在通過「匯流排式」基礎設施將各種應用集成在一起。ESB通常位於框架和套件之間,作為執行應用集成的另一種方式。ESB是一個中間件工具,它在構成應用程序的不同連接組件之間分配任務。 它為完成一些任務奠定了基本的基礎架構,例如:

  • 實現路由選擇

  • 翻譯

  • 提供一個移動任務的總體方法

  • 提供應用程序連接到」匯流排」的能力。

  • 訂閱基於結構和業務政策規則發送的消息。

  • 其他集成能力

ESB的建立是為了簡化從服務和應用程序到大型機等不同格式想要相互集成時可能出現的混亂。然而,問題是ESB究竟是如何工作的?

1.企業服務匯流排是一組交換機,在應用程序和/或組件之間的特定路線上直接發送消息。

2.每個企業都有特定的業務策略,決定ESB將採取哪條路徑來處理這些消息。

無論是客戶端還是業務流程,任何連接到ESB的系統都不會直接相互通信,因為它們通過ESB本身進行通信。本質上,ESB向潛在的客戶機暴露了相同的服務介面,而連接的服務則向ESB暴露。

ESB的一個主要好處是圍繞著ESB是一個單一的訪問點。通過ESB連接客戶和服務,公司只需要在一個單一的位置,即ESB中尋找服務。即使一個業務流程更換了伺服器,只需要重新配置ESB,公司仍然可以通過ESB訪問服務。

ESB還可以作為事務管理器工作,這意味著它可以協調多個服務參與的分布式事務。當許多不同的業務流程和服務需要在一個事務中一起工作時,通常需要一個配置來協調事務。然而,通過ESB,這就不再需要了,公司可以訪問ESB來順利地處理交易。

ESB還可以作為一個安全管理器,集中處理認證和授權等流程。無論應用程序中的一個業務流程是否具有認證或授權,ESB都可以調整它的設置,在它暴露給使用它的客戶端的服務界面中要求這樣做。

ESB 的另一種工作方式是作為服務代理,為沒有暴露在標准化服務介面上的應用程序充當網關。舉個例子,如果一個應用程序暴露了一個Java RMI服務,但網路的其他部分運行在.NET上,因此它不能直接調用RMI服務。通過利用ESB,公司可以很容易地在Java中實現一個可以調用RMI服務的服務代理。然後,服務代理通過ESB向.NET應用暴露出Web服務介面,如SOAP和WSDL。

linux伺服器如何查看GPU信息

Linux查看顯卡信息:

[python]view plain

  • lspci|grep-ivga

  • 使用nvidia GPU可以:

    [python]view plain

  • lspci|grep-invidia



  • 表頭釋義:

  • Fan:顯示風扇轉速,數值在0到100%之間,是計算機的期望轉速,如果計算機不是通過風扇冷卻或者風扇壞了,顯示出來就是N/A;

  • Temp:顯卡內部的溫度,單位是攝氏度;

  • Perf:表徵性能狀態,從P0到P12,P0表示最大性能,P12表示狀態最小性能;

  • Pwr:能耗表示;

  • Bus-Id:涉及GPU匯流排的相關信息;

  • Disp.A:是Display Active的意思,表示GPU的顯示是否初始化;

  • Memory Usage:顯存的使用率;

  • Volatile GPU-Util:浮動的GPU利用率;

  • Compute M:計算模式;

  • 下邊的Processes顯示每塊GPU上每個進程所使用的顯存情況。

    如果要周期性的輸出顯卡的使用情況,可以用watch指令實現:

    [python]view plain

  • watch-n10nvidia-smi

  • 命令行參數-n後邊跟的是執行命令的周期,以s為單位。

⑦ 伺服器的基本知識

伺服器作為網路的節點,存儲、處理網路上80%的數據、信息,因此也被稱為網路的靈魂。做一個形象的比喻:伺服器就像是郵局的交換機,而微機、筆記本、PDA、手機等固定或移動的網路終端,就如散落在家庭、各種辦公場所、公共場所等處的電話機。我們與外界日常的生活、工作中的電話交流、溝通,必須經過交換機,才能到達目標電話;同樣如此,網路終端設備如家庭、企業中的微機上網,獲取資訊,與外界溝通、娛樂等,也必須經過伺服器,因此也可以說是伺服器在「組織」和「領導」這些設備。
它是網路上一種為客戶端計算機提供各種服務的高可用性計算機,它在網路操作系統的控制下,將與其相連的硬碟、磁帶、列印機、Modem及各種專用通訊設備提供給網路上的客戶站點共享,也能為網路用戶提供集中計算、信息發表及數據管理等服務。它的高性能主要體現在高速度的運算能力、長時間的可靠運行、強大的外部數據吞吐能力等方面。
伺服器的構成與微機基本相似,有處理器、硬碟、內存、系統匯流排等,它們是針對具體的網路應用特別制定的,因而伺服器與微機在處理能力、穩定性、可靠性、安全性、可擴展性、可管理性等方面存在差異很大。尤其是隨著信息技術的進步,網路的作用越來越明顯,對自己信息系統的數據處理能力、安全性等的要求也越來越高,如果您在進行電子商務的過程中被黑客竊走密碼、損失關鍵商業數據;如果您在自動取款機上不能正常的存取,您應該考慮在這些設備系統的幕後指揮者————伺服器,而不是埋怨工作人員的素質和其他客觀條件的限制。 [編輯本段]伺服器分類 一:按照體系架構來區分
目前,按照體系架構來區分,伺服器主要分為兩類:
非x86伺服器:包括大型機、小型機和UNIX伺服器,它們是使用RISC(精簡指令集)或EPIC處理器,並且主要採用UNIX和其它專用操作系統的伺服器,精簡指令集處理器主要有IBM公司的POWER和PowerPC處理器,SUN與富士通公司合作研發的SPARC處理器、EPIC處理器主要是HP與Intel合作研發的安騰處理器等。這種伺服器價格昂貴,體系封閉,但是穩定性好,性能強,主要用在金融、電信等大型企業的核心系統中。
x86伺服器:又稱CISC(復雜指令集)架構伺服器,即通常所講的PC伺服器,它是基於PC機體系結構,使用Intel或其它兼容x86指令集的處理器晶元和Windows操作系統的伺服器,如IBM的System x系列伺服器、HP的Proliant 系列伺服器等。 價格便宜、兼容性好、穩定性差、不安全,主要用在中小企業和非關鍵業務中。
從當前的網路發展狀況看,以「小、巧、穩」為特點的x86架構的PC伺服器得到了更為廣泛的應用。
從理論定義來看,伺服器是網路環境中的高性能計算機,它偵聽網路上其它計算機(客戶機)提交的服務請求,並提供相應的服務。為此,伺服器必須具有承擔服務並且保障服務質量的能力。
但是這樣來解釋仍然顯得較為深奧模糊,其實伺服器與個人電腦的功能相類似,均是幫助人類處理信息的工具,只是二者的定位不同,個人電腦(簡稱為Personal Computer,PC)是為滿足個人的多功能需要而設計的,而伺服器是為滿足眾多用戶同時在其上處理數據而設計的。而多人如何同時使用同一台伺服器呢?這只能通過網路互聯,來幫助達到這一共同使用的目的。
我們再來看伺服器的功能,伺服器可以用來搭建網頁服務(我們平常上網所看到的網頁頁面的數據就是存儲在伺服器上供人訪問的)、郵件服務(我們發的所有電子郵件都需要經過伺服器的處理、發送與接收)、文件共享&列印共享服務、資料庫服務等。而這所有的應用都有一個共同的特點,他們面向的都不是一個人,而是眾多的人,同時處理的是眾多的數據。所以伺服器與網路是密不可分的。可以說離開了網路,就沒有伺服器;伺服器是為提供服務而生,只有在網路環境下它才有存在的價值。而個人電腦完全可以在單機的情況下完成主人的數據處理任務。
二:按應用層次劃分
按應用層次劃分通常也稱為"按伺服器檔次劃分"或"按網路規模"分,是伺服器最為普遍的一種劃分方法,它主要根據伺服器在網路中應用的層次(或伺服器的檔次來)來劃分的。要注意的是這里所指的伺服器檔次並不是按伺服器CPU主頻高低來劃分,而是依據整個伺服器的綜合性能,特別是所採用的一些伺服器專用技術來衡量的。按這種劃分方法,伺服器可分為:入門級伺服器、工作組級伺服器、部門級伺服器、企業級伺服器。
1、入門級伺服器
這類伺服器是最基礎的一類伺服器,也是最低檔的伺服器。隨著PC技術的日益提高,現在許多入門級伺服器與PC機的配置差不多,所以目前也有部分人認為入門級伺服器與"PC伺服器"等同。這類伺服器所包含的伺服器特性並不是很多,通常只具備以下幾方面特性:
·有一些基本硬體的冗餘,如硬碟、電源、風扇等,但不是必須的;
·通常採用SCSI介面硬碟,現在也有採用SATA串列介面的;
·部分部件支持熱插撥,如硬碟和內存等,這些也不是必須的;
·通常只有一個CPU,但不是絕對,如SUN的入門級伺服器有的就可支持到2個處理器的;
·內存容量也不會很大,一般在1GB以內,但通常會採用帶ECC糾錯技術的伺服器專用內存。
這類伺服器主要採用Windows或者NetWare網路操作系統,可以充分滿足辦公室型的中小型網路用戶的文件共享、數據處理、Internet接入及簡單資料庫應用的需求。這種伺服器與一般的PC機很相似,有很多小型公司乾脆就用一台高性能的品牌PC機作為伺服器,所以這種伺服器無論在性能上,還是價格上都與一台高性能PC品牌機相差無幾,如DELL最新的PowerEdge4000 SC的價格僅5808元,HP也有類似配置和價格的入門級伺服器。
入門級伺服器所連的終端比較有限(通常為20台左右),況且在穩定性、可擴展性以及容錯冗餘性能較差,僅適用於沒有大型資料庫數據交換、日常工作網路流量不大,無需長期不間斷開機的小型企業。不過要說明的一點就是目前有的比較大型的伺服器開發、生產廠商在後面我們要講的企業級伺服器中也劃分出幾個檔次,其中最低檔的一個企業級伺服器檔次就是稱之為"入門級企業級伺服器",這里所講的入門級並不是與我們上面所講的"入門級"具有相同的含義,不過這種劃分的還是比較少。還有一點就是,這種伺服器一般採用Intel的專用伺服器CPU晶元,是基於Intel架構(俗稱"IA結構")的,當然這並不是一種硬性的標准規定,而是由於伺服器的應用層次需要和價位的限制。
2、工作組伺服器
工作組伺服器是一個比入門級高一個層次的伺服器,但仍屬於低檔伺服器之類。從這個名字也可以看出,它只能連接一個工作組(50台左右)那麼多用戶,網路規模較小,伺服器的穩定性也不像下面我們要講的企業級伺服器那樣高的應用環境,當然在其它性能方面的要求也相應要低一些。工作組伺服器具有以下幾方面的主要特點:
·通常僅支持單或雙CPU結構的應用伺服器(但也不是絕對的,特別是SUN的工作組伺服器就有能支持多達4個處理器的工作組伺服器,當然這類型的伺服器價格方面也就有些不同了);
·可支持大容量的ECC內存和增強伺服器管理功能的SM匯流排;
·功能較全面、可管理性強,且易於維護;
·採用Intel伺服器CPU和Windows/NetWare網路操作系統,但也有一部分是採用UNIX系列操作系統的;
·可以滿足中小型網路用戶的數據處理、文件共享、Internet接入及簡單資料庫應用的需求。
工作組伺服器較入門級伺服器來說性能有所提高,功能有所增強,有一定的可擴展性,但容錯和冗餘性能仍不完善、也不能滿足大型資料庫系統的應用,但價格也比前者貴許多,一般相當於2~3台高性能的PC品牌機總價。
3、部門級伺服器
這類伺服器是屬於中檔伺服器之列,一般都是支持雙CPU以上的對稱處理器結構,具備比較完全的硬體配置,如磁碟陣列、存儲托架等。部門級伺服器的最大特點就是,除了具有工作組伺服器全部伺服器特點外,還集成了大量的監測及管理電路,具有全面的伺服器管理能力,可監測如溫度、電壓、風扇、機箱等狀態參數,結合標准伺服器管理軟體,使管理人員及時了解伺服器的工作狀況。同時,大多數部門級伺服器具有優良的系統擴展性,能夠滿足用戶在業務量迅速增大時能夠及時在線升級系統,充分保護了用戶的投資。它是企業網路中分散的各基層數據採集單位與最高層的數據中心保持順利連通的必要環節,一般為中型企業的首選,也可用於金融、郵電等行業。
部門級伺服器一般採用IBM、SUN和HP各自開發的CPU晶元,這類晶元一般是RISC結構,所採用的操作系統一般是UNIX系列操作系統,現在的LINUX也在部門級伺服器中得到了廣泛應用。以前能生產部門級伺服器的廠商通常只有IBM、HP、SUN、COMPAQ(現在也已並入HP)這么幾家,不過現在隨著其它一些伺服器廠商開發技術的提高,現在能開發、生產部門級伺服器的廠商比以前多了許多。國內也有好幾傢具備這個實力,如聯想、曙光、浪潮等。當然因為並沒有一個行業標准來規定什麼樣的伺服器配置才能算得上部門級伺服器,所以現在也有許多實力並不雄厚的企業也聲稱其擁有部門級伺服器,但其產品配置卻基本上與入門級伺服器沒什麼差別,用戶要注意了。
部門級伺服器可連接100個左右的計算機用戶、適用於對處理速度和系統可靠性高一些的中小型企業網路,其硬體配置相對較高,其可靠性比工作組級伺服器要高一些,當然其價格也較高(通常為5台左右高性能PC機價格總和)。由於這類伺服器需要安裝比較多的部件,所以機箱通常較大,採用機櫃式的。
4、企業級伺服器
企業級伺服器是屬於高檔伺服器行列,正因如此,能生產這種伺服器的企業也不是很多,但同樣因沒有行業標准硬體規定企業級伺服器需達到什麼水平,所以現在也看到了許多本不具備開發、生產企業級伺服器水平的企業聲稱自己有了企業級伺服器。企業級伺服器最起碼是採用4個以上CPU的對稱處理器結構,有的高達幾十個。另外一般還具有獨立的雙PCI通道和內存擴展板設計,具有高內存帶寬、大容量熱插拔硬碟和熱插拔電源、超強的數據處理能力和群集性能等。這種企業級伺服器的機箱就更大了,一般為機櫃式的,有的還由幾個機櫃來組成,像大型機一樣。企業級伺服器產品除了具有部門級伺服器全部伺服器特性外,最大的特點就是它還具有高度的容錯能力、優良的擴展性能、故障預報警功能、在線診斷和RAM、PCI、CPU等具有熱插撥性能。有的企業級伺服器還引入了大型計算機的許多優良特性,如IBM和SUN公司的企業級伺服器。這類伺服器所採用的晶元也都是幾大伺服器開發、生產廠商自己開發的獨有CPU晶元,所採用的操作系統一般也是UNIX(Solaris)或LINUX。目前在全球范圍內能生產高檔企業級伺服器的廠商也只有IBM、HP、SUN這么幾家,絕大多數國內外廠家的企業級伺服器都只能算是中、低檔企業級伺服器。企業級伺服器適合運行在需要處理大量數據、高處理速度和對可靠性要求極高的金融、證券、交通、郵電、通信或大型企業。企業級伺服器用於聯網計算機在數百台以上、對處理速度和數據安全要求非常高的大型網路。企業級伺服器的硬體配置最高,系統可靠性也最強。 [編輯本段]伺服器硬體 其實說起來伺服器系統的硬體構成與我們平常所接觸的電腦有眾多的相似之處,主要的硬體構成仍然包含如下幾個主要部分:中央處理器、內存、晶元組、I/O匯流排、I/O設備、電源、機箱和相關軟體。這也成了我們選購一台伺服器時所主要關注的指標。
整個伺服器系統就像一個人,處理器就是伺服器的大腦,而各種匯流排就像是分布與全身肌肉中的神經,晶元組就像是脊髓,而I/O設備就像是通過神經系統支配的人的手、眼睛、耳朵和嘴;而電源系統就像是血液循環系統,它將能量輸送到身體的所有地方。
對於一台伺服器來講,伺服器的性能設計目標是如何平衡各部分的性能,使整個系統的性能達到最優。如果一台伺服器有每秒處理1000個服務請求的能力,但網卡只能接受200個請求,而硬碟只能負擔150個,而各種匯流排的負載能力僅能承擔100個請求的話,那這台伺服器得處理能力只能是100個請求/秒,有超過80%的處理器計算能力浪費了。
所以設計一個好伺服器的最終目的就是通過平衡各方面的性能,使得各部分配合得當,並能夠充分發揮能力。我們可以從這幾個方面來衡量伺服器是否達到了其設計目的;R:Reliability——可靠性;A:Availability——可用性;S:Scalability——可擴展性;U:Usability——易用性; M:Manageability——可管理性,即伺服器的RASUM衡量標准。
由於伺服器在網路中提供服務,那麼這個服務的質量對承擔多種應用的網路計算環境是非常重要的,承擔這個服務的計算機硬體必須有能力保障服務質量。這個服務首先要有一定的容量,能響應單位時間內合理數量的伺服器請求,同時這個服務對單個服務請求的響應時間要盡量快,還有這個服務要在要求的時間范圍內一直存在。
如果一個WEB伺服器只能在1分鍾里處理1個主頁請求,1個以外的其他請求必須排隊等待,而這一個請求必須要3分鍾才能處理完,同時這個WEB伺服器在1個小時以前可以訪問到,但一個小時以後卻連接不上了,這種WEB伺服器在現在的Internet計算環境里是無法想像的。
現在的WEB伺服器必須能夠同時處理上千個訪問,同時每個訪問的響應時間要短,而且這個WEB伺服器不能停機,否則這個WEB伺服器就會造成訪問用戶的流失。
為達到上面的要求,作為伺服器硬體必須具備如下的特點:性能,使伺服器能夠在單位時間內處理相當數量的伺服器請求並保證每個服務的響應時間;可靠性,使得伺服器能夠不停機;可擴展性,使伺服器能夠隨著用戶數量的增加不斷提升性能。因此我們說不能把一台普通的PC作為伺服器來使用,因為,PC遠遠達不到上面的要求。這樣我們在伺服器的概念上又加上一點就是伺服器必須具有承擔服務並保障服務質量的能力。這也是區別低價伺服器和PC的差異的主要方面。
在信息系統中,伺服器主要應用於資料庫和Web服務,而PC主要應用於桌面計算和網路終端,設計根本出發點的差異決定了伺服器應該具備比PC更可靠的持續運行能力、更強大的存儲能力和網路通信能力、更快捷的故障恢復功能和更廣闊的擴展空間,同時,對數據相當敏感的應用還要求伺服器提供數據備份功能。而PC機在設計上則更加重視人機介面的易用性、圖像和3D處理能力及其他多媒體性能。 [編輯本段]伺服器內存 制約伺服器性能的硬體條件中,內存可以說是重中之重!其性能和品質也是考核伺服器產品的一個重要方面。可是對於伺服器內存,相信由於大多數人接觸不多,還是缺乏了解。本文主要給讀者朋友回答兩個方面的問題:何謂伺服器內存?它與台式機的內存存在著什麼本質的差別?
伺服器內存重要性闡述
伺服器運行著企業關鍵業務,一次內存錯誤導致的宕機將使數據永久丟失。本身內存作為一種電子器件,很容易出現各種錯誤。
因此,面臨著企業事實的壓力和本身的不足,各個廠商都早已積極推出自己獨特的伺服器內存技術,像HP的「在線備份內存」和熱插拔鏡像內存;IBM的ChipKill內存技術和熱更換和熱增加內存技術。而隨著企業信息系統的擴展所需,內存的密度和容量也將會得到相應的發展。

⑧ 如何查看linux伺服器的配置

1、首先,連接相應linux主機,進入到linux命令行狀態下,等待輸入shell指令。

熱點內容
圖論演算法及matlab實現 發布:2022-08-18 10:40:56 瀏覽:138
安卓怎麼查找按鍵記錄 發布:2022-08-18 10:40:49 瀏覽:467
安卓為什麼不能車機互聯 發布:2022-08-18 10:39:14 瀏覽:165
諸神黃昏伺服器怎麼使用 發布:2022-08-18 10:37:38 瀏覽:286
少兒python培訓 發布:2022-08-18 10:37:27 瀏覽:540
c語言編譯器手機版輸出亂碼 發布:2022-08-18 10:34:20 瀏覽:780
qe如何設置密碼 發布:2022-08-18 10:31:16 瀏覽:897
ubuntu編譯安裝nginx 發布:2022-08-18 10:31:03 瀏覽:97
植物大戰僵屍安卓版如何轉移存檔 發布:2022-08-18 10:31:02 瀏覽:112
怎麼重新架設伺服器 發布:2022-08-18 10:30:45 瀏覽:741