當前位置:首頁 » 操作系統 » 排課演算法舉例

排課演算法舉例

發布時間: 2022-08-29 22:53:56

1. 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

2. 排課的演算法

排課演算法是一個復雜程度相當高的演算法,窮舉是行不通的。不同的班級,不同的教師的課程縱橫交錯,不可能對每一種組合一一窮舉。一間不到三十個班的學校,其課程組合的數量級常常超過整個宇宙質子數的總和。
但在這么多的課程組合中,找出「相對合理」的課程組合,滿足學校、教師、學生的要求是可行的。

3. 有沒有人知道最優排課演算法怎麼設計

不是所有的問題都能在你能接受的時間復雜度內得到最優解的。
多項式演算法並不總是存在。

排課問題。。

你這什麼意思啊。這個每個班不是人數固定嘛?那讓人待在一個地方老師來教不就行了啊。。正納悶你什麼意思。。

這個問題能不能應用線性規劃模型?因為你敘述不清,所以我也沒有辦法幫你建立模型。

至於DFS(深度優先搜索,就是你所謂的遞歸窮舉)演算法,那是一定要最優性剪枝和可行性剪枝的。運用地恰當可以大大減小搜索樹的大小,至於20,20...這種數據量是小兒科的,應用DFS+剪枝應該可以得到很好的效果(我的意思是1s出解,因為我的世界衡量好與不好就是1s的限制)。

可行性剪枝:你自己定吧,我實在不明白你什麼意思。
最優性剪枝:這個需要動態規劃演算法協助估計剩餘可能需要的最小的目標函數值,再加上當前的目標函數值,大於最優解直接跳出。

我在剪枝上面基本上是文盲,不過對於解決你這個問題應該問題不大。

建議你好好考慮問題,再次用DFS演算法,用上面兩個方向考慮去掉多餘的解,這是完全可以得到的。

實際中這種問題的演算法都是非完美演算法。(我不知道這個問題的性質是P類還是NP類,NP類是一定沒有多項式時間演算法的)

比如很簡單的應用模擬退火演算法和遺傳演算法都可以比較完美地解決問題。
一般實際中較少地要求最優解,因為比起消耗,這是不值得的。

4. 自動排課系統的一些演算法思想, 寫出一些關於自動排課的演算法思想,講述明白一點.

排課演算法的重點就是課程合理安排的問題,這裡面最要的部分應該是正確的使用演算法實現數學中排列組合.
比如寫規定好某某課不能放在第幾節,某某課一天不能超過幾節,某某課屬於某個老師,同一個老師的課同一時間只能安排一節,然後根據這些先決條件進行排列組合就可以了.
good luck.

5. 怎樣做好高校排課

1課題背景與研究意義
排課問題早在70年代就證明是一個NP完全問題,即演算法的計算時間是呈指數增長的,這一論斷確立了排課問題的理論深度。對於NP問題完全問題目前在數學上是沒有一個通用的演算法能夠很好地解決。然而很多NP完全問題目具有很重要的實際意義,例如。大家熟悉地路由演算法就是很典型的一個NP完全問題,路由要在從多的節點中找出最短路徑完成信息的傳遞。既然都是NP完全問題,那麼很多路由演算法就可以運用到解決排課問題上,如Dijkstra演算法、節點子樹剪枝構造網路最短路徑法等等。
目前大家對NP 完全問題研究的主要思想是如何降低其計算復雜度。即利用一個近似演算法來代替,力爭使得解決問題的時間從指數增長化簡到多項式增長。結合到課表問題就是建立一個合適的現實簡約模型,利用該簡約模型能夠大大降低演算法的復雜度,便於程序實現,這是解決排課問題一個很多的思路。
在高等院校中,培養學生的主要途徑是教學。在教學活動中,有一系列管理工作,其中,教學計劃的實施是一個重要的教學環節。每學期管理人員都要整理教學計劃,根據教學計劃下達教學任務書,然後根據教學任務書編排課程表。在這些教學調度工作中,既有大量繁瑣的數據整理工作,更有嚴謹思維的腦力勞動,還要填寫大量的表格。因此工作非常繁重。
加之,隨著教學改革的進行及「211」工程的實施,新的教育體制對課表的編排提出了更高的要求。手工排課時,信息的上通下達是極其麻煩的,而採用計算機排課,教學中的信息可以一目瞭然,對於優化學生的學習進程,評估每位教師對教學的貢獻,領導合理決策等都具有重要的意義,必將會大大推進教學的良性循環。
2課題的應用領域
本課題的研究對開發高校排課系統有指導作用。
排課問題的核心為多維資源的沖突與搶占,對其研究對類似的問題(特別是與時間表有關的問題:如考試排考場問題、電影院排座問題、航空航線問題)也是個參考。
3 課題的現狀
年代末,國外就有人開始研究課表編排問題。1962年,Gotlieb曾提出了一個課表問題的數學模型,並利用匈牙利演算法解決了三維線性運輸問題。次後,人們對課表問題的演算法、解的存在性等問題做了很多深入探討。但是大多數文獻所用的數學模型都是Gotlieb的數學模型的簡化或補充,而至今還沒有一個可行的演算法來解決課表問題。
近40年來,人們對課表問題的計算機解法做了許多嘗試。其中,課表編排的整數規劃模型將問題歸結為求一組0-1變數的解,但是其計算量非常大。解決0-1線性優化問題的分支一定界技術卻只適用也規模較小的課表編排,Mihoc和Balas(1965)將課表公式化為一個優化問題,Krawczk則提出一種線性編程的方法。Junginger將課表問題簡化為三維運輸問題,而Tripathy則把課表問題視作整數線性編程問題並提出了大學課表的數學模型。
此外,有些文獻試圖從圖論的角度來求解排課表的問題,但是圖的染色問題也是NP完全問題,只有在極為簡單的情況下才可以將課表編排轉化為二部圖匹配問題,這樣的數學模型與實際相差太遠,所以對於大多數學校的課表編排問題來說沒有實用價值。
進入九十年代以後,國外對課表問題的研究仍然十分活躍。比較有代表的有印度的Vastapur大學管理學院的ArabindaTripathy、加拿大Montreal大學的Jean Aubin和Jacques Ferland等。目前,解決課表方法的問題有:模擬手工排課法,圖論方法,拉格朗日法,二次分配型法等多種方法。由於課表約束復雜,用數學方法進行描述時往往導致問題規模劇烈增大,這已經成為應用數學編程解決課表問題的巨大障礙。國外的研究表明,解決大規模課表編排問題單純靠數學方法是行不通的,而利用運籌學中分層規劃的思想將問題分解,將是一個有希望得到成功的辦法。
在國內,對課表問題的研究開始於80年代初期、具有代表性的有:南京工學院的UTSS(A University Timetable Scheling System)系統,清華大學的TISER(Timetable SchelER)系統,大連理工大學的智能教學組織管理與課程調度等,這些系統大多數都是模擬手工排課過程,以「班」為單位,運用啟發式函數來進行編排的。但是這些系統課表編排系統往往比較依賴於各個學校的教學體制,不宜進行大量推廣。
從實際使用的情況來看,國內外研製開發的這些軟體系統在實用性上仍不盡如人意。一方面原因是作為一個很復雜的系統,排課要想面面俱到是一件很困難的事;另一方面每個學校由於其各自的特殊性,自動排課軟體很難普遍實用,特別是在調度的過程中一個很小的變動,要引起全部課程的大調整,這意味著全校課程大變動,在實際的應用中這是很難實現的事。
4解決NP問題的幾種演算法及其比較
解決NP完全問題只能依靠近似演算法,所以下面介紹幾種常用演算法的設計思想,包括動態規劃、貪心演算法、回溯法等。
動態規劃法是將求解的問題一層一層地分解成一級一級、規模逐步縮小的子問題,直到可以直接求出其解的子問題為止。分解成的所有子問題按層次關系構成一顆子問題樹。樹根是原問題。原問題的解依賴於子問題樹中所有子問題的解。動態規劃演算法通常用於求一個問題在某種意義下的最優解。設計一個動態規劃演算法,通常可按以下幾個步驟進行:
1. 分析最優解的性質,並刻劃其結構特徵。
2. 遞歸的定義最優解。
3. 以自底向上的方式計算出最優解。
4. 根據計算最優解時得到的信息,構造一個最優解。
步驟1~3是動態規劃演算法的基本步驟。在只需要求出最優解的情形,步驟4可以省去。若需要求出問題的一個最優解,則必須執行步驟4。此時,在步驟3中計算最優解時,通常需記錄更多的信息,以便在步驟4中,根據所記錄的信息,快速地構造出一個最優解。
(二)貪心演算法
當一個問題具有最優子結構性質時,我們會想到用動態規劃法去解它,但有時會有更簡單、更有效的演算法,即貪心演算法。顧名思義,貪心演算法總是做出在當前看來最好的選擇。也就是說貪心演算法並不是整體最優上加以考慮,他所作出的選擇只是在某種意義上的局部最優的選擇。雖然貪心演算法不是對所有問題都能得到整體最優解,但對范圍相當廣的許多問題它能產生整體最優解,如圖的演算法中單源最短路徑問題,最小支撐樹問題等。在一些情況下,即使貪心演算法不能得到整體最優解,但其最終結果卻是最優解的很好的近似解。
在貪心演算法中較為有名的演算法是Dijkstra演算法。它作為路由演算法用來尋求兩個節點間的最短路徑。Dijkstra演算法的思想是:假若G有n個頂點,於是我們總共需要求出n-1條最短路徑,求解的方法是:初試,寫出V0(始頂點)到各頂點(終頂點)的路徑長度,或有路徑,則令路徑的長度為邊上的權值;或無路經,則令為∞。再按長度的遞增順序生成每條最短路徑。事實上生成最短路徑的過程就是不斷地在始頂點V何終頂點W間加入中間點的過程,因為在每生成了一條最短路徑後,就有一個該路徑的終頂點U,那麼那些還未生成最短路徑的路徑就會由於經過U而比原來的路徑短,於是就讓它經過U。
(三)回溯法
回溯法有「通用的解題法」之稱。用它可以求出問題的所有解或任一解。概括地說,回溯法是一個既帶有系統性又帶有跳躍性的搜索法。它在包含問題所有解的一顆狀態空間樹上,按照深度優先的策略,從根出發進行搜索。搜索每到達狀態空間樹的一個節點,總是先判斷以該節點為根的子樹是否肯定不包含問題的解。如果肯定不包含,則跳過對該子樹的系統搜索,一層一層地向它的祖先節點繼續搜索,直到遇到一個還有未被搜索過的兒子的節點,才轉向該節點的一個未曾搜索過的兒子節點繼續搜索;否則,進入子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根的所有兒子都已被搜索過才結束;而在用來求問題的任一解時,只要搜索到問題的一個解就可結束。
加油!

6. 求排課演算法源碼

排課演算法:有N個老師,每個老師每星期有若干節課。其中每節課都固定安排在某星期段上。每個星期有固定節課。我們要求排課並且不沖突。

熱點內容
汽修汽配源碼 發布:2025-05-14 20:08:53 瀏覽:742
蜜蜂編程官網 發布:2025-05-14 19:59:28 瀏覽:57
優酷怎麼給視頻加密 發布:2025-05-14 19:31:34 瀏覽:635
夢三國2副本腳本 發布:2025-05-14 19:29:58 瀏覽:860
phpxmlhttp 發布:2025-05-14 19:29:58 瀏覽:434
Pua腳本 發布:2025-05-14 19:24:56 瀏覽:449
蘋果像素低為什麼比安卓好 發布:2025-05-14 19:13:23 瀏覽:461
安卓機微信怎麼設置紅包提醒 發布:2025-05-14 19:00:15 瀏覽:272
androidsystem許可權設置 發布:2025-05-14 18:56:02 瀏覽:971
mq腳本 發布:2025-05-14 18:45:37 瀏覽:25