追逃演算法
『壹』 指紋識別技術公司有哪些
AuthenTec
自從被蘋果收購後,AuthenTec一躍成為全球最大的半導體指紋識別感測器供應商,蘋果的Touch ID使用的正是AuthenTec的技術。但是由於專供蘋果,其他商家已無法在市面上購買到AuthenTec的技術或產品。
FPC (Fingerprint Cards AB)
瑞典公司,是目前全球除AuthenTec外,最大的按壓式指紋識別感測器供應商(不含演算法和演算法晶元)。得益於AuthenTec只對蘋果提供產品和技術,FPC成了非蘋果手機陣營的寵兒。今年國內也有不少手機搭配的是FPC的指紋識別感測器。如:華為榮耀7、中興ARON、魅族MX5、OPPO R7 Plus、一加OnePlus 2等
目前FPC的勢頭非常火熱,但它的感測器價格也不低。相信隨著更多指紋識別供應商的產品通過測試和小批量驗證,FPC的價格會回歸到正常的范圍。
Synaptics
美國公司,屬行業的跨界者,自從2013年10月收購Validity之後開始涉足指紋識別行業。目前量產的指紋識別感測器主要以刮擦式(滑動採集)的為主,體驗差於按壓式感測器。三星Galaxy S5、HTC One Max等手機上的刮擦式指紋識別感測器正是由Synaptics提供。
該公司的優勢主要集中在觸控和人機交互,指紋識別方面的布局尚屬開始階段,未來該公司的目標是把指紋識別集成到手機顯示屏。
IDEX
挪威公司,最大的優勢在指紋成像技術。目前擁有刮擦式、按壓式兩種指紋感測器,並正在研發隱藏式的指紋感測器。該公司目前正在積極准備進入手機市場。
貝爾賽克(Biosec-上海圖正)
國內公司,該公司董事長劉君18年前就開始從事指紋演算法研究,並於2002年擔任軍工企業洛陽凱邁的指紋技術總顧問,曾在2006年以唯一技術創始人身份創辦了亞洲首家指紋支付運營公司——指付通。目前全球最大的鎖具集團亞薩合萊、全球規模最大的保險箱櫃巨頭企業艾譜均獨家使用貝爾賽克的指紋識別模組和配套方案。
貝爾賽克和其他從事指紋識別的公司最大的不同就是他們不僅提供半導體指紋識別感測器(大小尺寸均有),還自有指紋識別演算法和演算法晶元。關鍵技術的同源化大大提高了產品的良率,也讓他們的產品極具性價比。
邁瑞微
國內公司,成立時間較短,但具有較強的研發和產品能力。目前手機市場已開始上量,擁有多項指紋方面的專利技術。
神盾
台灣公司,專注於電容式指紋識別感測器IC設計、研發、測試及銷售業務,同時擁有IC設計技術與系統設計技術研發團隊,包含晶圓製程與封裝技術的設計能力。三星Note5搭載的是神盾的指紋識別方案。
匯頂科技
國內公司,行業的跨界者,是聯發科的戰略合作夥伴。該公司的按壓式藍寶石指紋識別方案與Touch ID非常類似。去年,該公司率先發布隱藏式指紋識別IFS,將指紋識別模塊放置在觸控面板之下。預計該方案將會受到Android手機廠商的歡迎,因為他們將不再需要在手機上開孔(無論是正面還是背面),也無需去培養終端用戶的使用習慣。
不過距離IFS發布已過了1年多,目前仍沒能在市面上看到採用IFS指紋識別方案的手機。最近發布的樂1s手機採用的是匯頂的玻璃指紋識別感測器(置於背面)。
最近一年,匯頂陷入了與Synaptics的專利糾紛中。雙方互有訴訟,最終結果仍需等待專利局的判定。
思立微
國內公司,行業的跨界者,由CEO帶領多名矽谷歸國高級技術及管理人員於2010年10月創立。 該公司專注於多點電容觸控IC晶元的研發和銷售,以及多點懸觸技術的前瞻性研究。2014年時推出過一款半導體指紋識別感測器,但目前仍較少在市場上看到搭載該感測器的終端產品。
此外比亞迪、敦泰等一批企業也加入角逐。
『貳』 數學建模規劃問題
可以分為:按是否線性可分為線性規劃和非線性規劃,一次是線性的,其他就是非線性的,按是否份過程階段 分動態規劃和非動態規劃,按目標函數的多少分,可以分單目標規劃和多目標規劃 。
線性和非線性的比較常見,我說說其他的吧。
動態規劃(dynamic programming)是運籌學的一個重要分支,它是解決多階段決策問題的一種有效的數量化方法.動態規劃是由美國學者貝爾曼(R.Bellman)等人所創立的.1951年貝爾曼首先提出了動態規劃中解決多階段決策問題的最優化原理,並給出了許多實際問題的解法.1957年貝爾曼發表了《動態規劃》一書,標志著運籌學這一重要分支的誕生.
動態規劃從創立到現在五十多年來,無論在工程技術,企業管理還是在工農業生產及軍事等部門都有廣泛的應用,並獲得了顯著的效果.在管理方面,動態規劃可用於資源分配問題,最短路徑問題,庫存問題,背包問題,設備更新問題,最優控制問題等等.所以動態規劃是現代管理學中進行科學決策不可缺少的工具.
動態規劃的優點在於,它把一個多維決策問題轉化為若干個一維最優化(optimization)問題,而對一維最優化問題一個一個地去解.這種方法是許多求極值方法所做不到的,它幾乎優於所有現存的優化方法.除此之外,動態規劃能求出全局極大或極小,這一點也優於其他優化方法.需要指出的是,動態規劃是求解最優化問題的一種方法,是解決問題的一種途徑,而不是一種新的演算法.在前面我們學習了用單純形解線性規劃問題,凡是具有線性規劃問題那樣統一的數學模型都可以用單純形法去求解,而動態規劃問題的求解卻沒有統一的方法(類似於單純形法).因此在用動態規劃求解最優化問題中,必須對具體問題具體分析,針對不同的問題,使用動態規劃的最優化原理(optimization principle)和方法,建立起與其相應的數學模型,然後再用動態規劃方法去求解.根據動態規劃這些特點,要求我們在學好動態規劃的基本原理和方法的同時,還應具有豐富的想像力,只有這樣才能建好模型求出問題的最優解.
可根據時間變數是離散的還是連續的,把動態規劃問題的模型分為離散決策過程和連續決策過程,根據決策過程的演變是確定性的還是隨機性的,動態規劃問題的模型又可分為確定性的決策過程和隨機性的決策過程,即離散確定性,離散隨機性,連續確定性,連續隨機性四種決策過程模型.我們主要研究離散確定性模型.
2.隨機規劃和模糊規劃是處理隨機和模糊優化問題的兩大數學規劃工具,稱之為不確定規劃。主要目的是為不確定環境中的優化理論奠定一個基礎。不確定規劃理論由三大類組成:期望值模型,機 會約束規劃和相關機會規劃。
3.隨機規劃的概念比較少見
可以參考一下運籌學的分支
數學規劃的研究對象是計劃管理工作中有關安排和估值的問題,解決的主要問題是在給定條件下,按某一衡量指標來尋找安排的最優方案。它可以表示成求函數在滿足約束條件下的極大極小值問題。
數學規劃和古典的求極值的問題有本質上的不同,古典方法只能處理具有簡單表達式,和簡單約束條件的情況。而現代的數學規劃中的問題目標函數和約束條件都很復雜,而且要求給出某種精確度的數字解答,因此演算法的研究特別受到重視。
這里最簡單的一種問題就是線性規劃。如果約束條件和目標函數都是呈線性關系的就叫線性規劃。要解決線性規劃問題,從理論上講都要解線性方程組,因此解線性方程組的方法,以及關於行列式、矩陣的知識,就是線性規劃中非常必要的工具。
線性規劃及其解法—單純形法的出現,對運籌學的發展起了重大的推動作用。許多實際問題都可以化成線性規劃來解決,而單純形法有是一個行之有效的演算法,加上計算機的出現,使一些大型復雜的實際問題的解決成為現實。
非線性規劃是線性規劃的進一步發展和繼續。許多實際問題如設計問題、經濟平衡問題都屬於非線性規劃的范疇。非線性規劃擴大了數學規劃的應用范圍,同時也給數學工作者提出了許多基本理論問題,使數學中的如凸分析、數值分析等也得到了發展。還有一種規劃問題和時間有關,叫做「動態規劃」。近年來在工程式控制制、技術物理和通訊中的最佳控制問題中,已經成為經常使用的重要工具。
排隊論是運籌學的又一個分支,它有叫做隨機服務系統理論。它的研究目的是要回答如何改進服務機構或組織被服務的對象,使得某種指標達到最優的問題。比如一個港口應該有多少個碼頭,一個工廠應該有多少維修人員等。
排隊論最初是在二十世紀初由丹麥工程師艾爾郎關於電話交換機的效率研究開始的,在第二次世界大戰中為了對飛機場跑道的容納量進行估算,它得到了進一步的發展,其相應的學科更新論、可靠性理論等也都發展起來。
因為排隊現象是一個隨機現象,因此在研究排隊現象的時候,主要採用的是研究隨機現象的概率論作為主要工具。此外,還有微分和微分方程。排隊論把它所要研究的對象形象的描述為顧客來到服務台前要求接待。如果服務台以被其它顧客佔用,那麼就要排隊。另一方面,服務台也時而空閑、時而忙碌。就需要通過數學方法求得顧客的等待時間、排隊長度等的概率分布。
排隊論在日常生活中的應用是相當廣泛的,比如水庫水量的調節、生產流水線的安排,鐵路分成場的調度、電網的設計等等。
對策論也叫博弈論,前面講的田忌賽馬就是典型的博弈論問題。作為運籌學的一個分支,博弈論的發展也只有幾十年的歷史。系統地創建這門學科的數學家,現在一般公認為是美籍匈牙利數學家、計算機之父——馮·諾依曼。
最初用數學方法研究博弈論是在國際象棋中開始的——如何確定取勝的著法。由於是研究雙方沖突、制勝對策的問題,所以這門學科在軍事方面有著十分重要的應用。近年來,數學家還對水雷和艦艇、殲擊機和轟炸機之間的作戰、追蹤等問題進行了研究,提出了追逃雙方都能自主決策的數學理論。近年來,隨著人工智慧研究的進一步發展,對博弈論提出了更多新的要求。
搜索論是由於第二次世界大戰中戰爭的需要而出現的運籌學分支。主要研究在資源和探測手段受到限制的情況下,如何設計尋找某種目標的最優方案,並加以實施的理論和方法。在第二次世界大戰中,同盟國的空軍和海軍在研究如何針對軸心國的潛艇活動、艦隊運輸和兵力部署等進行甄別的過程中產生的。搜索論在實際應用中也取得了不少成效,例如二十世紀六十年代,美國尋找在大西洋失蹤的核潛艇「打穀者號」和「蠍子號」,以及在地中海尋找丟失的氫彈,都是依據搜索論獲得成功的。
運籌學有廣闊的應用領域,它已滲透到諸如服務、庫存、搜索、人口、對抗、控制、時間表、資源分配、廠址定位、能源、設計、生產、可靠性、等各個方面。
應該排隊論和隨機規劃是比較接近的
具體的還希望你問一下專業的老師
希望對你有幫助
『叄』 什麼是運籌學
Operation Research原意是操作研究、作業研究、運用研究、作戰研究,譯作運籌學,是借用了《史記》「運籌策於帷幄之中,決勝於千里之外」一語中「運籌」二字,既顯示其軍事的起源,也表明它在我國已早有萌芽。
運籌學作為一門現代科學,是在第二次世界大戰期間首先在英美兩國發展起來的,有的學者把運籌學描述為就組織系統的各種經營作出決策的科學手段。P.M.Morse與G.E.Kimball在他們的奠基作中給運籌學下的定義是:「運籌學是在實行管理的領域,運用數學方法,對需要進行管理的問題統籌規劃,作出決策的一門應用科學。」運籌學的另一位創始人定義運籌學是:「管理系統的人為了獲得關於系統運行的最優解而必須使用的一種科學方法。」它使用許多數學工具(包括概率統計、數理分析、線性代數等)和邏輯判斷方法,來研究系統中人、財、物的組織管理、籌劃調度等問題,以期發揮最大效益。
現代運籌學的起源可以追溯到幾十年前,在某些組織的管理中最先試用科學手段的時候。可是,現在普遍認為,運籌學的活動是從二次世界大戰初期的軍事任務開始的。當時迫切需要把各項稀少的資源以有效的方式分配給各種不同的軍事經營及在每一經營內的各項活動,所以美國及隨後美國的軍事管理當局都號召大批科學家運用科學手段來處理戰略與戰術問題,實際上這便是要求他們對種種(軍事)經營進行研究,這些科學家小組正是最早的運籌小組。
第二次世界大戰期間,「OR」成功地解決了許多重要作戰問題,顯示了科學的巨大物質威力,為「OR」後來的發展鋪平了道路。
當戰後的工業恢復繁榮時,由於組織內與日俱增的復雜性和專門化所產生的問題,使人們認識到這些問題基本上與戰爭中所曾面臨的問題類似,只是具有不同的現實環境而已,運籌學就這樣潛入工商企業和其它部門,在50年代以後得到了廣泛的應用。對於系統配置、聚散、競爭的運用機理深入的研究和應用,形成了比較完備的一套理論,如規劃論、排隊論、存貯論、決策論等等,由於其理論上的成熟,電子計算機的問世,又大大促進了運籌學的發展,世界上不少國家已成立了致力於該領域及相關活動的專門學會,美國於1952年成立了運籌學會,並出版期刊《運籌學》,世界其它國家也先後創辦了運籌學會與期刊,1957年成立了國際運籌學協會。
運籌學的特點是:1.運籌學已被廣泛應用於工商企業、軍事部門、民政事業等研究組織內的統籌協調問題,故其應用不受行業、部門之限制;2.運籌學既對各種經營進行創造性的科學研究,又涉及到組織的實際管理問題,它具有很強的實踐性,最終應能向決策者提供建設性意見,並應收到實效;3.它以整體最優為目標,從系統的觀點出發,力圖以整個系統最佳的方式來解決該系統各部門之間的利害沖突。對所研究的問題求出最優解,尋求最佳的行動方案,所以它也可看成是一門優化技術,提供的是解決各類問題的優化方法。
運籌學的研究方法有:1.從現實生活場合抽出本質的要素來構造數學模型,因而可尋求一個跟決策者的目標有關的解;2.探索求解的結構並導出系統的求解過程;3.從可行方案中尋求系統的最優解法。
運籌學的具體內容包括:規劃論(包括線性規劃、非線性規劃、整數規劃和動態規劃)、圖論、決策論、對策論、排隊論、存儲論、可靠性理論等。
數學規劃即上面所說的規劃論,是運籌學的一個重要分支,早在1939年蘇聯的康托洛維奇(H.B.Kahtopob )和美國的希奇柯克(F.L.Hitchcock)等人就在生產組織管理和制定交通運輸方案方面首先研究和應用一線性規劃方法。1947年旦茨格等人提出了求解線性規劃問題的單純形方法,為線性規劃的理論與計算奠定了基礎,特別是電子計算機的出現和日益完善,更使規劃論得到迅速的發展,可用電子計算機來處理成千上萬個約束條件和變數的大規模線性規劃問題,從解決技術問題的最優化,到工業、農業、商業、交通運輸業以及決策分析部門都可以發揮作用。從范圍來看,小到一個班組的計劃安排,大至整個部門,以至國民經濟計劃的最優化方案分析,它都有用武之地,具有適應性強,應用面廣,計算技術比較簡便的特點。非線性規劃的基礎性工作則是在1951年由庫恩(H.W.Kuhn)和達克(A.W.Tucker)等人完成的,到了70年代,數學規劃無論是在理論上和方法上,還是在應用的深度和廣度上都得到了進一步的發展。
圖論是一個古老的但又十分活躍的分支,它是網路技術的基礎。圖論的創始人是數學家歐拉。1736年他發表了圖論方面的第一篇論文,解決了著名的哥尼斯堡七橋難題,相隔一百年後,在1847年基爾霍夫第一次應用圖論的原理分析電網,從而把圖論引進到工程技術領域。20世紀50年代以來,圖論的理論得到了進一步發展,將復雜龐大的工程系統和管理問題用圖描述,可以解決很多工程設計和管理決策的最優化問題,例如,完成工程任務的時間最少,距離最短,費用最省等等。圖論受到數學、工程技術及經營管理等各方面越來越廣泛的重視。
排隊論又叫隨機服務系統理論。1909年丹麥的電話工程師愛爾朗(A.K.Erlang)排隊問題,1930年以後,開始了更為一般情況的研究,取得了一些重要成果。1949年前後,開始了對機器管理、陸空交通等方面的研究,1951年以後,理論工作有了新的進展,逐漸奠定了現代隨機服務系統的理論基礎。排隊論主要研究各種系統的排隊隊長,排隊的等待時間及所提供的服務等各種參數,以便求得更好的服務。它是研究系統隨機聚散現象的理論。
可靠性理論是研究系統故障、以提高系統可靠性問題的理論。可靠性理論研究的系統一般分為兩類:(1)不可修系統:如導彈等,這種系統的參數是壽命、可靠度等,(2)可修復系統:如一般的機電設備等,這種系統的重要參數是有效度,其值為系統的正常工作時間與正常工作時間加上事故修理時間之比。
決策論研究決策問題。所謂決策就是根據客觀可能性,藉助一定的理論、方法和工具,科學地選擇最優方案的過程。決策問題是由決策者和決策域構成的,而決策域又由決策空間、狀態空間和結果函數構成。研究決策理論與方法的科學就是決策科學。決策所要解決的問題是多種多樣的,從不同角度有不同的分類方法,按決策者所面臨的自然狀態的確定與否可分為:確定型決策、風險型決策和不確定型決策;按決策所依據的目標個數可分為:單目標決策與多目標決策;按決策問題的性質可分為:戰略決策與策略決策,以及按不同准則劃分成的種種決策問題類型。不同類型的決策問題應採用不同的決策方法。決策的基本步驟為:(1)確定問題,提出決策的目標;(2)發現、探索和擬定各種可行方案;(3)從多種可行方案中,選出最滿意的方案;(4)決策的執行與反饋,以尋求決策的動態最優。
如果決策者的對方也是人(一個人或一群人)雙方都希望取勝,這類具有競爭性的決策稱為對策或博弈型決策。構成對策問題的三個根本要素是:局中人、策略與一局對策的得失。目前對策問題一般可分為有限零和兩人對策、陣地對策、連續對策、多人對策與微分對策等。
運籌學是軟科學中「硬度」較大的一門學科,兼有邏輯的數學和數學的邏輯的性質,是系統工程學和現代管理科學中的一種基礎理論和不可缺少的方法、手段和工具。運籌學已被應用到各種管理工程中,在現代化建設中發揮著重要作用。
『肆』 指紋識別概念上市公司有哪些
海鑫指紋移動追逃系統
一、系統概述
「破案追逃」是公安機關打擊犯罪的重要日常工作機制。網上聯合追逃手段已經廣泛使用,切實為偵破跨區域犯罪提供了先進的工作思路。但是美中不足的是,落實到實際的追逃、抓捕行動上,幹警所採取的具體方法還是傳統的破案方法,沒有顯著的技術突破。
本系統正是針對性地滿足公安追逃行動的實際需要,利用指紋這一現行最實用的生物識別技術並結合移動式計算機,便於戶外作業的特點,為及時、方便、准確地破案提供技術支撐。
二、系統組成
系統採用筆記本電腦和USB指紋採集儀組成移動式設備,現場採集滾動指紋,與事先定 制的特定逃犯指紋庫相比對,從而確定可疑人物,為抓捕逃犯提供依據。因此本系統服務公安基層,特別適合應用在關卡、野外、案發現場等室外地點,提高了公安 機關打擊跨區域流竄犯罪的能力和後勁,成為了追逃行動中最實用、最有效的工具之一。
海鑫指掌紋自動識別系統
一、系統概述
海鑫指掌紋自動識別系統(CAPFIS)基於內部多個演算法小組的科研成果,運用特徵 比對和數線比對等多種演算法,採用多級匹配技術,保證了演算法的先進性和長期發展。在2004年國際權威的大規模測試中演算法精確度排名第一,CAPFIS被認 為是「the most accurate(最准確)」的系統,該項核心技術也是公司核心競爭力的體現。
二、系統特點
A.先進的核心技術
1、指紋系統比對排前率高.海鑫指紋自動識別系統在480萬實際庫容下實現了94%的正查比對准確率,前十名的排前率高達90%。
2、指紋系統大庫比對衰減率低.指紋庫容不斷增加導致指紋比對的准確率下降是所有指紋廠商必須解決的關鍵課題。海鑫指紋自動識別系統的指紋大庫比對衰減率極低。
B.優異的實戰功能
1、平面指紋參與比對
效果顯著:
據實戰統計,採用平面指紋參與現場指紋比對後,破案率增加了近10%,而且所有被比中的指紋中,平面指紋排在滾動捺印指紋前面的佔38%,其中約5%左右的案件僅有平面指紋出現。
應用廣泛:
平面指紋與滾動指紋的高精度比對,使指紋系統延伸到反恐、出國人員無刑檢索、從業資格無刑檢索等綜合應用已經能夠成為現實。
『伍』 急!在線等!求助:寫一篇小論文,結合運籌學方法解決一個在工作、學習、生活中所遇到的實際問題!
Operation Research原意是操作研究、作業研究、運用研究、作戰研究,譯作運籌學,是借用了《史記》「運籌策於帷幄之中,決勝於千里之外」一語中「運籌」二字,既顯示其軍事的起源,也表明它在我國已早有萌芽。
運籌學作為一門現代科學,是在第二次世界大戰期間首先在英美兩國發展起來的,有的學者把運籌學描述為就組織系統的各種經營作出決策的科學手段。P.M.Morse與G.E.Kimball在他們的奠基作中給運籌學下的定義是:「運籌學是在實行管理的領域,運用數學方法,對需要進行管理的問題統籌規劃,作出決策的一門應用科學。」運籌學的另一位創始人定義運籌學是:「管理系統的人為了獲得關於系統運行的最優解而必須使用的一種科學方法。」它使用許多數學工具(包括概率統計、數理分析、線性代數等)和邏輯判斷方法,來研究系統中人、財、物的組織管理、籌劃調度等問題,以期發揮最大效益。
現代運籌學的起源可以追溯到幾十年前,在某些組織的管理中最先試用科學手段的時候。可是,現在普遍認為,運籌學的活動是從二次世界大戰初期的軍事任務開始的。當時迫切需要把各項稀少的資源以有效的方式分配給各種不同的軍事經營及在每一經營內的各項活動,所以美國及隨後美國的軍事管理當局都號召大批科學家運用科學手段來處理戰略與戰術問題,實際上這便是要求他們對種種(軍事)經營進行研究,這些科學家小組正是最早的運籌小組。
第二次世界大戰期間,「OR」成功地解決了許多重要作戰問題,顯示了科學的巨大物質威力,為「OR」後來的發展鋪平了道路。
當戰後的工業恢復繁榮時,由於組織內與日俱增的復雜性和專門化所產生的問題,使人們認識到這些問題基本上與戰爭中所曾面臨的問題類似,只是具有不同的現實環境而已,運籌學就這樣潛入工商企業和其它部門,在50年代以後得到了廣泛的應用。對於系統配置、聚散、競爭的運用機理深入的研究和應用,形成了比較完備的一套理論,如規劃論、排隊論、存貯論、決策論等等,由於其理論上的成熟,電子計算機的問世,又大大促進了運籌學的發展,世界上不少國家已成立了致力於該領域及相關活動的專門學會,美國於1952年成立了運籌學會,並出版期刊《運籌學》,世界其它國家也先後創辦了運籌學會與期刊,1957年成立了國際運籌學協會。
運籌學的特點是:1.運籌學已被廣泛應用於工商企業、軍事部門、民政事業等研究組織內的統籌協調問題,故其應用不受行業、部門之限制;2.運籌學既對各種經營進行創造性的科學研究,又涉及到組織的實際管理問題,它具有很強的實踐性,最終應能向決策者提供建設性意見,並應收到實效;3.它以整體最優為目標,從系統的觀點出發,力圖以整個系統最佳的方式來解決該系統各部門之間的利害沖突。對所研究的問題求出最優解,尋求最佳的行動方案,所以它也可看成是一門優化技術,提供的是解決各類問題的優化方法。
運籌學的研究方法有:1.從現實生活場合抽出本質的要素來構造數學模型,因而可尋求一個跟決策者的目標有關的解;2.探索求解的結構並導出系統的求解過程;3.從可行方案中尋求系統的最優解法。
運籌學的具體內容包括:規劃論(包括線性規劃、非線性規劃、整數規劃和動態規劃)、圖論、決策論、對策論、排隊論、存儲論、可靠性理論等。
數學規劃即上面所說的規劃論,是運籌學的一個重要分支,早在1939年蘇聯的康托洛維奇(H.B.Kahtopob )和美國的希奇柯克(F.L.Hitchcock)等人就在生產組織管理和制定交通運輸方案方面首先研究和應用一線性規劃方法。1947年旦茨格等人提出了求解線性規劃問題的單純形方法,為線性規劃的理論與計算奠定了基礎,特別是電子計算機的出現和日益完善,更使規劃論得到迅速的發展,可用電子計算機來處理成千上萬個約束條件和變數的大規模線性規劃問題,從解決技術問題的最優化,到工業、農業、商業、交通運輸業以及決策分析部門都可以發揮作用。從范圍來看,小到一個班組的計劃安排,大至整個部門,以至國民經濟計劃的最優化方案分析,它都有用武之地,具有適應性強,應用面廣,計算技術比較簡便的特點。非線性規劃的基礎性工作則是在1951年由庫恩(H.W.Kuhn)和達克(A.W.Tucker)等人完成的,到了70年代,數學規劃無論是在理論上和方法上,還是在應用的深度和廣度上都得到了進一步的發展。
圖論是一個古老的但又十分活躍的分支,它是網路技術的基礎。圖論的創始人是數學家歐拉。1736年他發表了圖論方面的第一篇論文,解決了著名的哥尼斯堡七橋難題,相隔一百年後,在1847年基爾霍夫第一次應用圖論的原理分析電網,從而把圖論引進到工程技術領域。20世紀50年代以來,圖論的理論得到了進一步發展,將復雜龐大的工程系統和管理問題用圖描述,可以解決很多工程設計和管理決策的最優化問題,例如,完成工程任務的時間最少,距離最短,費用最省等等。圖論受到數學、工程技術及經營管理等各方面越來越廣泛的重視。
排隊論又叫隨機服務系統理論。1909年丹麥的電話工程師愛爾朗(A.K.Erlang)排隊問題,1930年以後,開始了更為一般情況的研究,取得了一些重要成果。1949年前後,開始了對機器管理、陸空交通等方面的研究,1951年以後,理論工作有了新的進展,逐漸奠定了現代隨機服務系統的理論基礎。排隊論主要研究各種系統的排隊隊長,排隊的等待時間及所提供的服務等各種參數,以便求得更好的服務。它是研究系統隨機聚散現象的理論。
可靠性理論是研究系統故障、以提高系統可靠性問題的理論。可靠性理論研究的系統一般分為兩類:(1)不可修系統:如導彈等,這種系統的參數是壽命、可靠度等,(2)可修復系統:如一般的機電設備等,這種系統的重要參數是有效度,其值為系統的正常工作時間與正常工作時間加上事故修理時間之比。
決策論研究決策問題。所謂決策就是根據客觀可能性,藉助一定的理論、方法和工具,科學地選擇最優方案的過程。決策問題是由決策者和決策域構成的,而決策域又由決策空間、狀態空間和結果函數構成。研究決策理論與方法的科學就是決策科學。決策所要解決的問題是多種多樣的,從不同角度有不同的分類方法,按決策者所面臨的自然狀態的確定與否可分為:確定型決策、風險型決策和不確定型決策;按決策所依據的目標個數可分為:單目標決策與多目標決策;按決策問題的性質可分為:戰略決策與策略決策,以及按不同准則劃分成的種種決策問題類型。不同類型的決策問題應採用不同的決策方法。決策的基本步驟為:(1)確定問題,提出決策的目標;(2)發現、探索和擬定各種可行方案;(3)從多種可行方案中,選出最滿意的方案;(4)決策的執行與反饋,以尋求決策的動態最優。
如果決策者的對方也是人(一個人或一群人)雙方都希望取勝,這類具有競爭性的決策稱為對策或博弈型決策。構成對策問題的三個根本要素是:局中人、策略與一局對策的得失。目前對策問題一般可分為有限零和兩人對策、陣地對策、連續對策、多人對策與微分對策等。
運籌學是軟科學中「硬度」較大的一門學科,兼有邏輯的數學和數學的邏輯的性質,是系統工程學和現代管理科學中的一種基礎理論和不可缺少的方法、手段和工具。運籌學已被應用到各種管理工程中,在現代化建設中發揮著重要作用。
在中國戰國時期,曾經有過一次流傳後世的賽馬比賽,相信大家都知道,這就是田忌賽馬。田忌賽馬的故事說明在已有的條件下,經過籌劃、安排,選擇一個最好的方案,就會取得最好的效果。可見,籌劃安排是十分重要的。
現在普遍認為,運籌學是近代應用數學的一個分支,主要是將生產、管理等事件中出現的一些帶有普遍性的運籌問題加以提煉,然後利用數學方法進行解決。前者提供模型,後者提供理論和方法。
運籌學的思想在古代就已經產生了。敵我雙方交戰,要克敵制勝就要在了解雙方情況的基礎上,做出最優的對付敵人的方法,這就是「運籌帷幄之中,決勝千里之外」的說法。
但是作為一門數學學科,用純數學的方法來解決最優方法的選擇安排,卻是晚多了。也可以說,運籌學是在二十世紀四十年代才開始興起的一門分支。
運籌學主要研究經濟活動和軍事活動中能用數量來表達的有關策劃、管理方面的問題。當然,隨著客觀實際的發展,運籌學的許多內容不但研究經濟和軍事活動,有些已經深入到日常生活當中去了。運籌學可以根據問題的要求,通過數學上的分析、運算,得出各種各樣的結果,最後提出綜合性的合理安排,已達到最好的效果。
運籌學作為一門用來解決實際問題的學科,在處理千差萬別的各種問題時,一般有以下幾個步驟:確定目標、制定方案、建立模型、制定解法。
雖然不大可能存在能處理及其廣泛對象的運籌學,但是在運籌學的發展過程中還是形成了某些抽象模型,並能應用解決較廣泛的實際問題。
隨著科學技術和生產的發展,運籌學已滲入很多領域里,發揮了越來越重要的作用。運籌學本身也在不斷發展,現在已經是一個包括好幾個分支的數學部門了。比如:數學規劃(又包含線性規劃;非線性規劃;整數規劃;組合規劃等)、圖論、網路流、決策分析、排隊論、可靠性數學理論、庫存論、對策論、搜索論、模擬等等。
各分支簡介
數學規劃的研究對象是計劃管理工作中有關安排和估值的問題,解決的主要問題是在給定條件下,按某一衡量指標來尋找安排的最優方案。它可以表示成求函數在滿足約束條件下的極大極小值問題。
數學規劃和古典的求極值的問題有本質上的不同,古典方法只能處理具有簡單表達式,和簡單約束條件的情況。而現代的數學規劃中的問題目標函數和約束條件都很復雜,而且要求給出某種精確度的數字解答,因此演算法的研究特別受到重視。
這里最簡單的一種問題就是線性規劃。如果約束條件和目標函數都是呈線性關系的就叫線性規劃。要解決線性規劃問題,從理論上講都要解線性方程組,因此解線性方程組的方法,以及關於行列式、矩陣的知識,就是線性規劃中非常必要的工具。
線性規劃及其解法—單純形法的出現,對運籌學的發展起了重大的推動作用。許多實際問題都可以化成線性規劃來解決,而單純形法有是一個行之有效的演算法,加上計算機的出現,使一些大型復雜的實際問題的解決成為現實。
非線性規劃是線性規劃的進一步發展和繼續。許多實際問題如設計問題、經濟平衡問題都屬於非線性規劃的范疇。非線性規劃擴大了數學規劃的應用范圍,同時也給數學工作者提出了許多基本理論問題,使數學中的如凸分析、數值分析等也得到了發展。還有一種規劃問題和時間有關,叫做「動態規劃」。近年來在工程式控制制、技術物理和通訊中的最佳控制問題中,已經成為經常使用的重要工具。
排隊論是運籌學的又一個分支,它有叫做隨機服務系統理論。它的研究目的是要回答如何改進服務機構或組織被服務的對象,使得某種指標達到最優的問題。比如一個港口應該有多少個碼頭,一個工廠應該有多少維修人員等。
排隊論最初是在二十世紀初由丹麥工程師艾爾郎關於電話交換機的效率研究開始的,在第二次世界大戰中為了對飛機場跑道的容納量進行估算,它得到了進一步的發展,其相應的學科更新論、可靠性理論等也都發展起來。
因為排隊現象是一個隨機現象,因此在研究排隊現象的時候,主要採用的是研究隨機現象的概率論作為主要工具。此外,還有微分和微分方程。排隊論把它所要研究的對象形象的描述為顧客來到服務台前要求接待。如果服務台以被其它顧客佔用,那麼就要排隊。另一方面,服務台也時而空閑、時而忙碌。就需要通過數學方法求得顧客的等待時間、排隊長度等的概率分布。
排隊論在日常生活中的應用是相當廣泛的,比如水庫水量的調節、生產流水線的安排,鐵路分成場的調度、電網的設計等等。
對策論也叫博弈論,前面講的田忌賽馬就是典型的博弈論問題。作為運籌學的一個分支,博弈論的發展也只有幾十年的歷史。系統地創建這門學科的數學家,現在一般公認為是美籍匈牙利數學家、計算機之父——馮·諾依曼。
最初用數學方法研究博弈論是在國際象棋中開始的——如何確定取勝的著法。由於是研究雙方沖突、制勝對策的問題,所以這門學科在軍事方面有著十分重要的應用。近年來,數學家還對水雷和艦艇、殲擊機和轟炸機之間的作戰、追蹤等問題進行了研究,提出了追逃雙方都能自主決策的數學理論。近年來,隨著人工智慧研究的進一步發展,對博弈論提出了更多新的要求。
搜索論是由於第二次世界大戰中戰爭的需要而出現的運籌學分支。主要研究在資源和探測手段受到限制的情況下,如何設計尋找某種目標的最優方案,並加以實施的理論和方法。在第二次世界大戰中,同盟國的空軍和海軍在研究如何針對軸心國的潛艇活動、艦隊運輸和兵力部署等進行甄別的過程中產生的。搜索論在實際應用中也取得了不少成效,例如二十世紀六十年代,美國尋找在大西洋失蹤的核潛艇「打穀者號」和「蠍子號」,以及在地中海尋找丟失的氫彈,都是依據搜索論獲得成功的。
運籌學有廣闊的應用領域,它已滲透到諸如服務、庫存、搜索、人口、對抗、控制、時間表、資源分配、廠址定位、能源、設計、生產、可靠性、等各個方面。