當前位置:首頁 » 操作系統 » 聚類入侵演算法

聚類入侵演算法

發布時間: 2022-09-14 21:00:30

① 有哪些常用的聚類演算法

聚類分析計算方法主要有如下幾種:
1.
劃分法(partitioning
methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K
評論
0
0
0
載入更多

② 數據挖掘 聚類演算法概述

文 | 宿痕
來源 | 知乎
本篇重點介紹聚類演算法的原理,應用流程、使用技巧、評估方法、應用案例等。具體的演算法細節可以多查閱相關的資料。聚類的主要用途就是客戶分群。
1.聚類 VS 分類
分類是「監督學習」,事先知道有哪些類別可以分。

聚類是「無監督學習」,事先不知道將要分成哪些類。

舉個例子,比如蘋果、香蕉、獼猴桃、手機、電話機。
根據特徵的不同,我們聚類會分為【蘋果、香蕉、獼猴桃】為水果的一類,和【手機、電話機】為數碼產品的一類。
而分類的話,就是我們在判斷「草莓」的時候,把它歸為「水果」一類。
所以通俗的解釋就是:分類是從訓練集學習對數據的判斷能力,再去做未知數據的分類判斷;而聚類就是把相似的東西分為一類,它不需要訓練數據進行學習。
學術解釋:分類是指分析資料庫中的一組對象,找出其共同屬性。然後根據分類模型,把它們劃分為不同的類別。分類數據首先根據訓練數據建立分類模型,然後根據這些分類描述分類資料庫中的測試數據或產生更恰當的描述。
聚類是指資料庫中的數據可以劃分為一系列有意義的子集,即類。在同一類別中,個體之間的距離較小,而不同類別上的個體之間的距離偏大。聚類分析通常稱為「無監督學習」。
2.聚類的常見應用
我們在實際情況的中的應用會有:
marketing:客戶分群
insurance:尋找汽車保險高索賠客戶群
urban planning:尋找相同類型的房產
比如你做買家分析、賣家分析時,一定會聽到客戶分群的概念,用標准分為高價值客戶、一般價值客戶和潛在用戶等,對於不同價值的客戶提供不同的營銷方案;

還有像在保險公司,那些高索賠的客戶是保險公司最care的問題,這個就是影響到保險公司的盈利問題;
還有在做房產的時候,根據房產的地理位置、價格、周邊設施等情況聚類熱房產區域和冷房產區域。

3.k-means
(1)假定K個clusters(2)目標:尋找緊致的聚類
a.隨機初始化clusters

b.分配數據到最近的cluster

c.重復計算clusters

d.repeat直到收斂

優點:局部最優
缺點:對於非凸的cluster有問題
其中K=?
K<=sample size
取決於數據的分布和期望的resolution
AIC,DIC
層次聚類避免了這個問題
4.評估聚類
魯棒性?
聚類如何,是否過度聚合?
很多時候是取決於聚合後要干什麼。
5.case案例
case 1:賣家分群雲圖

作者:宿痕 授權轉載
原文鏈接:http://zhuanlan.hu.com/dataman/20397891

③ 聚類的計算方法

傳統的聚類分析計算方法主要有如下幾種:
1、劃分方法(partitioning methods)
給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:(1) 每一個分組至少包含一個數據紀錄;(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法;
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
2、層次方法(hierarchical methods)
這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。例如在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等;
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
3、基於密度的方法(density-based methods)
基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。這個方法的指導思想就是,只要一個區域中的點的密度大過某個閥值,就把它加到與之相近的聚類中去。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;
4、基於網格的方法(grid-based methods)
這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
很多空間數據挖掘問題,使用網格通常都是一種有效的方法。因此,基於網格的方法可以和其他聚類方法集成。
5、基於模型的方法(model-based methods)
基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。通常有兩種嘗試方向:統計的方案和神經網路的方案。
當然聚類方法還有:傳遞閉包法,布爾矩陣法,直接聚類法,相關性分析聚類,基於統計的聚類方法等。

④ 聚類演算法的具體方法

k-means 演算法接受輸入量 k ;然後將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
k-means 演算法的工作過程說明如下:
首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;
然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。
一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。 K-MEANS有其缺點:產生類的大小相差不會很大,對於臟數據很敏感。
改進的演算法:k—medoids 方法。這兒選取一個對象叫做mediod來代替上面的中心的作用,這樣的一個medoid就標識了這個類。K-medoids和K-means不一樣的地方在於中心點的選取,在K-means中,我們將中心點取為當前cluster中所有數據點的平均值,在 K-medoids演算法中,我們將從當前cluster 中選取這樣一個點——它到其他所有(當前cluster中的)點的距離之和最小——作為中心點。
步驟:
1,任意選取K個對象作為medoids(O1,O2,…Oi…Ok)。
以下是循環的:
2,將餘下的對象分到各個類中去(根據與medoid最相近的原則);
3,對於每個類(Oi)中,順序選取一個Or,計算用Or代替Oi後的消耗—E(Or)。選擇E最小的那個Or來代替Oi。這樣K個medoids就改變了,下面就再轉到2。
4,這樣循環直到K個medoids固定下來。
這種演算法對於臟數據和異常數據不敏感,但計算量顯然要比K均值要大,一般只適合小數據量。 上面提到K-medoids演算法不適合於大數據量的計算。Clara演算法,這是一種基於采樣的方法,它能夠處理大量的數據。
Clara演算法的思想就是用實際數據的抽樣來代替整個數據,然後再在這些抽樣的數據上利用K-medoids演算法得到最佳的medoids。Clara演算法從實際數據中抽取多個采樣,在每個采樣上都用K-medoids演算法得到相應的(O1, O2 … Oi … Ok),然後在這當中選取E最小的一個作為最終的結果。 Clara演算法的效率取決於采樣的大小,一般不太可能得到最佳的結果。
在Clara演算法的基礎上,又提出了Clarans的演算法,與Clara演算法不同的是:在Clara演算法尋找最佳的medoids的過程中,采樣都是不變的。而Clarans演算法在每一次循環的過程中所採用的采樣都是不一樣的。
與上面所講的尋找最佳medoids的過程不同的是,必須人為地來限定循環的次數。

⑤ PhenoGraph聚類演算法

PhenoGraph演算法的輸入是一個N X D的矩陣, 把這個矩陣中的行劃分到類別中,使得類別間的差異大於類別內的差異。

我們的假設是,這些類別代表具有生物學意義表型的細胞群。我們的前提假設是細胞群聚集在D維空間的密集區域,由緊密Marker表達組合定義。因此,我們的目標是在D維空間中辨別這些密集的細胞區域。然而,我們不知道數據中類別的數量,大小或高維形狀(例如,橢球,凸)。 單細胞域(domain)特別具有挑戰性,因為不同類別之間,類別大小可能會有數量級上的差異(例如,造血幹細胞與T細胞),並且我們希望識別罕見子集(類別)而不是將它們作為離群點而丟棄。此外,雖然大多數聚類演算法都假設類別內樣本分布近似橢球形,但我們已經證明許多細胞亞類具有復雜的形狀並且不一定是凸形的(viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013)。 用於密度檢測的參數方法需要關於細胞群體(例如,橢球,凸)的形狀的強依賴性假設,而單細胞數據中通常不符合這樣的假設。

為了克服這些障礙,我們構建了一個圖形結構來表示單細胞數據中細胞狀態的高維幾何結構。每個細胞作為節點並且通過邊連接到其鄰居細胞(與其最相似的細胞),該邊的權重由細胞之間的相似性設置。細胞在高維空間中的密集區域將在該圖中表現為高度互連的模塊,通過該模塊內具有高密度的邊的特徵來識別。一旦構建完畢,該圖可以被劃分成這些緊密互連的模塊的子集,稱為群體(communities),代表不同的表型亞群(類別)。這些圖中的群體(communities)的檢測(Community structure in social and biological networks. Proc. Natl. Acad. Sci. 2002)為識別亞群提供了一種高效方法。與混合模型等參數化方法不同,該方法不假設子群(某一類別)的大小、分布或數量。該方法成功的關鍵是構造一個圖形結構,這個圖形結構真實的表示D維空間中存在的幾何結構。PhenoGraph分兩步建立單細胞數據的圖結構。

第一步,使用歐式距離為每個細胞識別k個最近鄰居,其中k是該方法的唯一參數;如果k值太大,較小的群體(communities)會受到其他節點的影響,難以被識別出來。而如果,k值太小會導致我們想要找的細胞群體內緊密度較差。

因此,在第二步中,我們改進了第一步中定義的k鄰居。對所有細胞的k近鄰搜索的結果是一組集合:N組k鄰居。我們對這些集合進行操作以建立一個加權圖。在這個圖中,每對節點(細胞)之間的權重是基於它們共享的鄰居的數量。

節點i和j之間的權重由以下公式給出:

其中v(i)是節點i的k鄰居;v(j)是節點j的k鄰居。

以這種方式由真實數據構造的圖具有明顯的模塊化結構。

群體(communities)檢測是指將節點劃分成不同的群體(communities),從而捕獲這個模塊化結構。對於一組群體(communities)的確定C={c_(1,) c_(2,),…,c_k},模塊系數Q的定義由下面公式確定:

其中Wij是節點i,j的邊權重,si是節點i與其他所有節點的邊權重加和,sj同上,ci是節點i所在的群體(communities),如果u=v,Kronecker delta 函數δ(u,v)=1;否則為0,m=1/2 ∑▒W_ij 是一個標准化常數。

模塊系數Q介於-1到1之間,對於任意一個確定了群體(communities)圖結構都可以計算這么一個指標。所以該指標可以作為客觀衡量把圖結構區分成子集的質量。這樣,該問題就轉化成一個組合優化問題,即NP完全問題。

接下來用Louvain方法(Fast unfolding of communities in large networks. J. Stat. Mech. 2008)來解決上述問題。Louvain方法具體步驟是,在第一次迭代時,每一個節點(細胞)被單獨作為一類(一個群體),在每一次迭代時,若兩個節點的合並能使得模塊系數Q有最大的增長,那麼將這兩個節點合並成一類。直到模塊系數Q不再增加為止。

REF: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. 2015 Cell.

檢測群體(communities)結構對於發現復雜網路中結構與功能之間的聯系以及生物學和社會學等許多學科的實際應用至關重要。現在廣泛使用的一種流行方法依賴於對模塊的數量的優化,這是將網路劃分為群體(communities)的質量指標。我們發現,即使在模塊定義明確的情況下,模塊化優化也可能無法識別小於一定規模的模塊,該模塊的規模取決於網路的總大小和模塊的互連程度。Newman和Girvan(Finding and evaluating community structure in networks. Physical review E, 2004.)在群體(communities)檢測方面取得了決定性的進展,他們引入了一種定量方法來衡量將網路劃分為群體(communities)的質量,即模塊化。該度量實質上將給定模塊內的連接數與相同大小和相同度數序列的隨機圖的期望值進行比較。如果選擇模塊化作為相關質量函數,則群體(communities)檢測的問題就等同於模塊化優化。後者非常重要,因為將網路劃分為群體(communities)的可能性至少隨著網路的大小呈指數增長,即使對於較小的圖,窮舉式優化在計算上也不可行。我們表明模塊化優化確實不能解決大數量的模塊。因此,有必要對通過模塊化優化獲得的模塊進行檢查。我們表明,模塊化存在一個固有規模,該規模取決於網路中邊的總數。小於此規模的模塊可能無法解析,即使在極端情況下,它們是通過單橋連接的完整圖形。模塊化解析度的極限實際上取決於群體(communities)對之間的互連程度,並且可以達到整個網路大小的數量級。因此,事先無法確定通過模塊化優化檢測到的模塊(大還是小)確實是單個模塊還是多個較小模塊的集合。然而,最大模塊性因網路的不同而不同,並且取決於網路的連接數。我們證明了任何網路的模塊性值的上限都是1,並且我們看到模塊性是與網路尺度相關的。

REF: Resolution limit in community detection. 2007 PNAS.

函數FindClusters

FindClusters(object, molarity.fxn = 1, initial.membership = NULL, weights = NULL, node.sizes = NULL,  resolution = 0.8, algorithm = 1, n.start = 10, n.iter = 10, random.seed = 0, group.singletons = TRUE, temp.file.location = NULL, edge.file.name = NULL, verbose = TRUE, ...)

參數

#object: Seurat Object

#molarity.fxn: 計算模塊系數函數,1為標准函數;2為備選函數,這里沒有具體說明是什麼函數,我認為1是上面提到的Kronecker delta函數。

# resolution: 解析度參數,如果大於1,則會得到較多數目的群體(communities);如果小於1,則會得到較少數目的群體(communities)。

#algorithm: 模塊系數優化演算法,1使用原始Louvain演算法;2使用Louvain algorithm with multilevel refinement;3使用SLM演算法;4使用Leiden演算法(註:4需要額外安裝插件)

#n.start: 隨機開始的數量

#n.iter: 最大迭代次數

#random.seed: 隨機數種子

#graph.name: 圖的名字

#group.singletons: (TRUE/FALSE)是否把比較特異的細胞分配到最近的類別中,若FALSE,則可能會出現某個類只有一個細胞的情況

#verbose: 是否在控制台輸出結果

⑥ 哪位高手有聚類演算法在入侵檢測中的應用的源代碼

不要問了.直接搜一下....看下能不能找得到,再不行去SOSO.GOOGLE.裡面去找一下...這個懂的人N多少.能看到你這個問題的人更少了.....

⑦ 什麼是聚類分析聚類演算法有哪幾種

聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於

分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行

定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識

難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又

將多元分析的技術引入到數值分類學形成了聚類分析。

聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論

聚類法、聚類預報法等。

聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical

methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based

methods): 基於模型的方法(model-based methods)。

⑧ 常用的聚類方法有哪幾種

聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。

1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。

2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。

3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。

5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。

6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。

(8)聚類入侵演算法擴展閱讀:

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。

它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

⑨ 大數據分析之聚類演算法

大數據分析之聚類演算法
1. 什麼是聚類演算法
所謂聚類,就是比如給定一些元素或者對象,分散存儲在資料庫中,然後根據我們感興趣的對象屬性,對其進行聚集,同類的對象之間相似度高,不同類之間差異較大。最大特點就是事先不確定類別。
這其中最經典的演算法就是KMeans演算法,這是最常用的聚類演算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之後,根據一個類簇內的所有點重新計算該類簇的中心點(取平均值),然後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。
KMeans演算法本身思想比較簡單,但是合理的確定K值和K個初始類簇中心點對於聚類效果的好壞有很大的影響。
聚類演算法實現
假設對象集合為D,准備劃分為k個簇。
基本演算法步驟如下:
1、從D中隨機取k個元素,作為k個簇的各自的中心。
2、分別計算剩下的元素到k個簇中心的相異度,將這些元素分別劃歸到相異度最低的簇。
3、根據聚類結果,重新計算k個簇各自的中心,計算方法是取簇中所有元素各自維度的算術平均數。
4、將D中全部元素按照新的中心重新聚類。
5、重復第4步,直到聚類結果不再變化。
6、將結果輸出。

核心Java代碼如下:
/**
* 迭代計算每個點到各個中心點的距離,選擇最小距離將該點劃入到合適的分組聚類中,反復進行,直到
* 分組不再變化或者各個中心點不再變化為止。
* @return
*/
public List[] comput() {
List[] results = new ArrayList[k];//為k個分組,分別定義一個聚簇集合,未來放入元素。

boolean centerchange = true;//該變數存儲中心點是否發生變化
while (centerchange) {
iterCount++;//存儲迭代次數
centerchange = false;
for (int i = 0; i < k; i++) {
results[i] = new ArrayList<T>();
}
for (int i = 0; i < players.size(); i++) {
T p = players.get(i);
double[] dists = new double[k];
for (int j = 0; j < initPlayers.size(); j++) {
T initP = initPlayers.get(j);
/* 計算距離 這里採用的公式是兩個對象相關屬性的平方和,最後求開方*/
double dist = distance(initP, p);
dists[j] = dist;
}

int dist_index = computOrder(dists);//計算該點到各個質心的距離的最小值,獲得下標
results[dist_index].add(p);//劃分到對應的分組。
}
/*
* 將點聚類之後,重新尋找每個簇的新的中心點,根據每個點的關注屬性的平均值確立新的質心。
*/
for (int i = 0; i < k; i++) {
T player_new = findNewCenter(results[i]);
System.out.println("第"+iterCount+"次迭代,中心點是:"+player_new.toString());
T player_old = initPlayers.get(i);
if (!IsPlayerEqual(player_new, player_old)) {
centerchange = true;
initPlayers.set(i, player_new);
}

}

}

return results;
}
上面代碼是其中核心代碼,我們根據對象集合List和提前設定的k個聚集,最終完成聚類。我們測試一下,假設要測試根據NBA球員的場均得分情況,進行得分高中低的聚集,很簡單,高得分在一組,中等一組,低得分一組。
我們定義一個Player類,裡面有屬性goal,並錄入數據。並設定分組數目為k=3。
測試代碼如下:
List listPlayers = new ArrayList();
Player p1 = new Player();
p1.setName(「mrchi1」);
p1.setGoal(1);
p1.setAssists(8);
listPlayers.add(p1);

Player p2 = new Player();
p2.setName("mrchi2");
p2.setGoal(2);
listPlayers.add(p2);

Player p3 = new Player();
p3.setName("mrchi3");
p3.setGoal(3);
listPlayers.add(p3);
//其他對象定義此處略。製造幾個球員的對象即可。
Kmeans<Player> kmeans = new Kmeans<Player>(listPlayers, 3);
List<Player>[] results = kmeans.comput();
for (int i = 0; i < results.length; i++) {
System.out.println("類別" + (i + 1) + "聚集了以下球員:");
List<Player> list = results[i];
for (Player p : list) {
System.out.println(p.getName() + "--->" + p.getGoal()

}
}
演算法運行結果:

可以看出中心點經歷了四次迭代變化,最終分類結果也確實是相近得分的分到了一組。當然這種演算法有缺點,首先就是初始的k個中心點的確定非常重要,結果也有差異。可以選擇彼此距離盡可能遠的K個點,也可以先對數據用層次聚類演算法進行聚類,得到K個簇之後,從每個類簇中選擇一個點,該點可以是該類簇的中心點,或者是距離類簇中心點最近的那個點。

⑩ 建議收藏!10 種 python 聚類演算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。

有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。

一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:

每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。

已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:

熱點內容
為啥編程廣告 發布:2025-07-04 07:30:01 瀏覽:569
資料庫備機 發布:2025-07-04 07:30:00 瀏覽:532
靜態內部類java 發布:2025-07-04 07:25:45 瀏覽:234
玉林電信dns伺服器地址 發布:2025-07-04 07:17:34 瀏覽:437
用鏡像壓縮 發布:2025-07-04 07:17:31 瀏覽:635
lgg3如何設置鎖屏密碼 發布:2025-07-04 06:41:39 瀏覽:346
sqlserver2005命令 發布:2025-07-04 06:27:08 瀏覽:734
壓縮文件啥樣 發布:2025-07-04 06:21:42 瀏覽:300
linux的回車換行 發布:2025-07-04 06:21:39 瀏覽:134
c語言的窗口 發布:2025-07-04 06:20:54 瀏覽:985