crc8演算法
/*http://www.koders.com/java/.aspx?s=Address#L34
*---------------------------------------------------------------------------
* Copyright (C) 1999,2000 Dallas Semiconctor Corporation, All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, , modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above right notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Dallas Semiconctor
* shall not be used except as stated in the Dallas Semiconctor
* Branding Policy.
*---------------------------------------------------------------------------
*/
package com.dalsemi.onewire.utils;
/**
* CRC8 is a class to contain an implementation of the
* Cyclic-Rendency-Check CRC8 for the iButton. The CRC8 is used
* in the 1-Wire Network address of all iButtons and 1-Wire
* devices.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @version 0.00, 28 Aug 2000
* @author DS
*
*/
public class CRC8
{
//--------
//-------- Variables
//--------
/**
* CRC 8 lookup table
*/
private static byte dscrc_table [];
/*
* Create the lookup table
*/
static
{
//Translated from the assembly code in iButton Standards, page 129.
dscrc_table = new byte [256];
int acc;
int crc;
for (int i = 0; i < 256; i++)
{
acc = i;
crc = 0;
for (int j = 0; j < 8; j++)
{
if (((acc ^ crc) & 0x01) == 0x01)
{
crc = ((crc ^ 0x18) >> 1) | 0x80;
}
else
crc = crc >> 1;
acc = acc >> 1;
}
dscrc_table [i] = ( byte ) crc;
}
}
//--------
//-------- Constructor
//--------
/**
* Private constructor to prevent instantiation.
*/
private CRC8 ()
{
}
//--------
//-------- Methods
//--------
/**
* Perform the CRC8 on the data element based on the provided seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc data element on which to perform the CRC8
* @param seed seed the CRC8 with this value
* @return CRC8 value
*/
public static int compute (int dataToCRC, int seed)
{
return (dscrc_table [(seed ^ dataToCRC) & 0x0FF] & 0x0FF);
}
/**
* Perform the CRC8 on the data element based on a zero seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc data element on which to perform the CRC8
* @return CRC8 value
*/
public static int compute (int dataToCRC)
{
return (dscrc_table [dataToCRC & 0x0FF] & 0x0FF);
}
/**
* Perform the CRC8 on an array of data elements based on a
* zero seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc array of data elements on which to perform the CRC8
* @return CRC8 value
*/
public static int compute (byte dataToCrc [])
{
return compute(dataToCrc, 0, dataToCrc.length);
}
/**
* Perform the CRC8 on an array of data elements based on a
* zero seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc array of data elements on which to perform the CRC8
* @param off offset into array
* @param len length of data to crc
* @return CRC8 value
*/
public static int compute (byte dataToCrc [], int off, int len)
{
return compute(dataToCrc, off, len, 0);
}
/**
* Perform the CRC8 on an array of data elements based on the
* provided seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc array of data elements on which to perform the CRC8
* @param off offset into array
* @param len length of data to crc
* @param seed seed to use for CRC8
* @return CRC8 value
*/
public static int compute (byte dataToCrc [], int off, int len, int seed)
{
// loop to do the crc on each data element
int CRC8 = seed;
for (int i = 0; i < len; i++)
CRC8 = dscrc_table [(CRC8 ^ dataToCrc [i + off]) & 0x0FF];
return (CRC8 & 0x0FF);
}
/**
* Perform the CRC8 on an array of data elements based on the
* provided seed.
* <p>
* CRC8 is based on the polynomial = X^8 + X^5 + X^4 + 1.
*
* @param dataToCrc array of data elements on which to perform the CRC8
* @param seed seed to use for CRC8
* @return CRC8 value
*/
public static int compute (byte dataToCrc [], int seed)
{
return compute(dataToCrc, 0, dataToCrc.length, seed);
}
}
2. CRC校驗的演算法
在代數編碼理論中,將一個碼組表示為一個多項式,碼組中各碼元當作多項式的系數。例如 1100101 表示為1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
設編碼前的原始信息多項式為P(x),P(x)的最高冪次加1等於k;生成多項式為G(x),G(x)的最高冪次等於r;CRC多項式為R(x);編碼後的帶CRC的信息多項式為T(x)。
發送方編碼方法:將P(x)乘以xr(即對應的二進制碼序列左移r位),再除以G(x),所得余式即為R(x)。用公式表示為T(x)=xrP(x)+R(x)
接收方解碼方法:將T(x)除以G(x),得到一個數,如果這個余數為0,則說明傳輸中無錯誤發生,否則說明傳輸有誤。
舉例來說,設信息編碼為1100,生成多項式為1011,即P(x)=x3+x2,G(x)=x3+x+1,計算CRC的過程為
xrP(x) =x3(x3+x2) = x6+x5 G(x)= x3+x+1 即 R(x)=x。注意到G(x)最高冪次r=3,得出CRC為010。
如果用豎式除法(計算機的模二,計算過程為
1110 ------- 1011 /1100000 (1100左移3位) 1011 ---- 1110 1011 ----- 1010 1011 ----- 0010 0000 ---- 010 因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果傳輸無誤,
T(x)= (x6+x5+x)/G(x) = , G(x)= 無余式。回頭看一下上面的豎式除法,如果被除數是1100010,顯然在商第三個1時,就能除盡。
上述推算過程,有助於我們理解CRC的概念。但直接編程來實現上面的演算法,不僅繁瑣,效率也不高。實際上在工程中不會直接這樣去計算和驗證CRC。
下表中列出了一些見於標準的CRC資料:
名稱 生成多項式 簡記式* 應用舉例
CRC-4 x4+x+1 3 ITU G.704
CRC-8 x8+x5+x4+1 31 DS18B20
CRC-12 x12+x11+x3+x2+x+1 80F
CRC-16 x16+x15+x2+1 8005 IBM SDLC
CRC-ITU** x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS,ZigBee
CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI,IEEE 1394,PPP-FCS
CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP
* 生成多項式的最高冪次項系數是固定的1,故在簡記式中,將最高的1統一去掉了,如04C11DB7實際上是104C11DB7。 ** 前稱CRC-CCITT。ITU的前身是CCITT。
備註:
(1)生成多項式是標准規定的
(2)CRC校驗碼是基於將位串看作是系數為0或1的多項式,一個k位的數據流可以看作是關於x的從k-1階到0階的k-1次多項式的系數序列。採用此編碼,發送方和接收方必須事先商定一個生成多項式G(x),其高位和低位必須是1。要計算m位的幀M(x)的校驗和,基本思想是將校驗和加在幀的末尾,使這個帶校驗和的幀的多項式能被G(x)除盡。當接收方收到加有校驗和的幀時,用G(x)去除它,如果有餘數,則CRC校驗錯誤,只有沒有餘數的校驗才是正確的。
3. CRC8校驗演算法的作用是什麼
不了解不好意思!
4. 求一個C# CRC8 的演算法代碼 生成多項式可以隨意選 能夠得到CRC碼 然後調用函數
public static byte CRC8(byte[] buffer,byte poly)
{
byte crc = 0;
byte CRCPoly = poly;
for (int j = 0; j < buffer.Length; j++)
{
crc ^= buffer[j];
for (int i = 0; i < 8; i++)
{
if ((crc & 0x80) != 0)
{
crc <<= 1;
crc ^= CRCPoly;
}
else
{
crc <<= 1;
}
}
}
crc = Convert.ToByte(crc ^ 0x00);
return crc;
}
5. 有關CRC—8的程序
/////crc.c
//*****************************************************************************
//
// The CRC table for the polynomial C(x) = x^8 + x^2 + x + 1 (CRC-8-CCITT).
//
//*****************************************************************************
static const unsigned char g_pucCrc8CCITT[256] =
{
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15,
0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65,
0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5,
0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85,
0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2,
0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2,
0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32,
0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42,
0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C,
0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC,
0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C,
0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C,
0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B,
0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B,
0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB,
0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB,
0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
};
//*****************************************************************************
//
// This macro executes one iteration of the CRC-8-CCITT.
//
//*****************************************************************************
#define CRC8_ITER(crc, data) g_pucCrc8CCITT[(unsigned char)((crc) ^ (data))]
//*****************************************************************************
//
//! Calculates the CRC-8-CCITT of an array of bytes.
//!
//! \param ucCrc is the starting CRC-8-CCITT value.
//! \param pucData is a pointer to the data buffer.
//! \param ulCount is the number of bytes in the data buffer.
//!
//! This function is used to calculate the CRC-8-CCITT of the input buffer.
//! The CRC-8-CCITT is computed in a running fashion, meaning that the entire
//! data block that is to have its CRC-8-CCITT computed does not need to be
//! supplied all at once. If the input buffer contains the entire block of
//! data, then \b ucCrc should be set to 0. If, however, the entire block of
//! data is not available, then \b ucCrc should be set to 0 for the first
//! portion of the data, and then the returned value should be passed back in
//! as \b ucCrc for the next portion of the data.
//!
//! For example, to compute the CRC-8-CCITT of a block that has been split into
//! three pieces, use the following:
//!
//! \verbatim
//! ucCrc = Crc8CCITT(0, pucData1, ulLen1);
//! ucCrc = Crc8CCITT(ucCrc, pucData2, ulLen2);
//! ucCrc = Crc8CCITT(ucCrc, pucData3, ulLen3);
//! \endverbatim
//!
//! Computing a CRC-8-CCITT in a running fashion is useful in cases where the
//! data is arriving via a serial link (for example) and is therefore not all
//! available at one time.
//!
//! \return The CRC-8-CCITT of the input data.
//
//*****************************************************************************
unsigned char
Crc8CCITT(unsigned char ucCrc, const unsigned char *pucData,
unsigned long ulCount)
{
unsigned long ulTemp;
//
// If the data buffer is not short-aligned, then perform a single step of
// the CRC to make it short-aligned.
//
if((unsigned long)pucData & 1)
{
//
// Perform the CRC on this input byte.
//
ucCrc = CRC8_ITER(ucCrc, *pucData);
//
// Skip this input byte.
//
pucData++;
ulCount--;
}
//
// If the data buffer is not word-aligned and there are at least two bytes
// of data left, then perform two steps of the CRC to make it word-aligned.
//
if(((unsigned long)pucData & 2) && (ulCount > 1))
{
//
// Read the next short.
//
ulTemp = *(unsigned short *)pucData;
//
// Perform the CRC on these two bytes.
//
ucCrc = CRC8_ITER(ucCrc, ulTemp);
ucCrc = CRC8_ITER(ucCrc, ulTemp >> 8);
//
// Skip these input bytes.
//
pucData += 2;
ulCount -= 2;
}
//
// While there is at least a word remaining in the data buffer, perform
// four steps of the CRC to consume a word.
//
while(ulCount > 3)
{
//
// Read the next word.
//
ulTemp = *(unsigned long *)pucData;
//
// Perform the CRC on these four bytes.
//
ucCrc = CRC8_ITER(ucCrc, ulTemp);
ucCrc = CRC8_ITER(ucCrc, ulTemp >> 8);
ucCrc = CRC8_ITER(ucCrc, ulTemp >> 16);
ucCrc = CRC8_ITER(ucCrc, ulTemp >> 24);
//
// Skip these input bytes.
//
pucData += 4;
ulCount -= 4;
}
//
// If there is a short left in the input buffer, then perform two steps of
// the CRC.
//
if(ulCount > 1)
{
//
// Read the short.
//
ulTemp = *(unsigned short *)pucData;
//
// Perform the CRC on these two bytes.
//
ucCrc = CRC8_ITER(ucCrc, ulTemp);
ucCrc = CRC8_ITER(ucCrc, ulTemp >> 8);
//
// Skip these input bytes.
//
pucData += 2;
ulCount -= 2;
}
//
// If there is a final byte remaining in the input buffer, then perform a
// single step of the CRC.
//
if(ulCount != 0)
{
ucCrc = CRC8_ITER(ucCrc, *pucData);
}
//
// Return the resulting CRC-8-CCITT value.
//
return(ucCrc);
}
6. 求java的 crc8演算法方法
你的意思就翻譯一下,是嗎:
static char crc8fun ( char in, char prest)
{
int loop;
char out;
char crc_pol=0xb8; /*多項式*/
out = in^prest;
for(loop=0;loop<8;loop++){
if(out&0x01){
out=(out>>1)^crc_pol;
}else{
out=(out>>1);
}
return out;
}
}