當前位置:首頁 » 操作系統 » 遺傳演算法工具箱

遺傳演算法工具箱

發布時間: 2022-01-17 11:32:02

1. 怎樣才能知道已經成功安裝了遺傳演算法的工具箱呢

我的工具箱是在咱們的論壇裡面下的.......

2. 遺傳演算法工具箱的具體使用

matlab遺傳演算法工具箱函數及實例講解 核心函數:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始種群的生成函數
【輸出參數】
pop--生成的初始種群
【輸入參數】
num--種群中的個體數目
bounds--代表變數的上下界的矩陣
eevalFN--適應度函數
eevalOps--傳遞給適應度函數的參數
options--選擇編碼形式(浮點編碼或是二進制編碼)[precision F_or_B],如
precision--變數進行二進制編碼時指定的精度
F_or_B--為1時選擇浮點編碼,否則為二進制編碼,由precision指定精度)
(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遺傳演算法函數
【輸出參數】
x--求得的最優解
endPop--最終得到的種群
bPop--最優種群的一個搜索軌跡
【輸入參數】
bounds--代表變數上下界的矩陣
evalFN--適應度函數
evalOps--傳遞給適應度函數的參數
startPop-初始種群
opts[epsilon prob_ops display]--opts(1:2)等同於initializega的options參數,第三個參數控制是否輸出,一般為0。如[1e-6 1 0]
termFN--終止函數的名稱,如['maxGenTerm']
termOps--傳遞個終止函數的參數,如[100]
selectFN--選擇函數的名稱,如['normGeomSelect']
selectOps--傳遞個選擇函數的參數,如[0.08]
xOverFNs--交叉函數名稱表,以空格分開,如['arithXover heuristicXover simpleXover']
xOverOps--傳遞給交叉函數的參數表,如[2 0;2 3;2 0]
mutFNs--變異函數表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--傳遞給交叉函數的參數表,如[4 0 0;6 100 3;4 100 3;4 0 0]
【問題】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】選擇二進制編碼,種群中的個體數目為10,二進制編碼長度為20,交叉概率為0.95,變異概率為0.08
【程序清單】
%編寫目標函數
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函數存儲為fitness.m文件並放在工作目錄下
initPop=initializega(10,[0 9],'fitness');%生成初始種群,大小為10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遺傳迭代
運算借過為:x =
7.8562 24.8553(當x為7.8562時,f(x)取最大值24.8553)
註:遺傳演算法一般用來取得近似最優解,而不是最優解。
遺傳演算法實例2
【問題】在-5<=Xi<=5,i=1,2區間內,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】種群大小10,最大代數1000,變異率0.1,交叉率0.3
【程序清單】
%源函數的matlab代碼
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%適應度函數的matlab代碼
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遺傳演算法的matlab代碼
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
註:前兩個文件存儲為m文件並放在工作目錄下,運行結果為
p =
0.0000 -0.0000 0.0055
大家可以直接繪出f(x)的圖形來大概看看f(x)的最值是多少,也可是使用優化函數來驗證。matlab命令行執行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

3. 求matlab遺傳演算法工具箱GA Toolbox。。並求解釋如下

GA自己寫一個就好了,也挺簡單的。
雖然很多函數都能知道表達式,但是仍然有很多函數不能用倒數來求解,所以要知道空間的極值和最值就必須用遍歷的方法。然而對於實數范圍內或者大規模數據的離散數據情況下,遍歷畫圖的方法會耗費很大的計算復雜度,因為你並不知道是在參數范圍的邊緣還是中間有最值,有多少個最值也不知道。GA就提供了一種基於種群的搜索優化方法,可以快速的收斂到優秀的解的個體,但是要防止陷入局部最優。
簡而言之就是遍歷的搜索方法要用時10小時完成的事情,GA快速優化可能1分鍾或者10分鍾搞定,佔用內存也少。

4. 如何調用MATLAB遺傳演算法工具箱

1、打開MATLAB軟體。

5. matlab7.1遺傳演算法自帶工具箱和sheffield大學的遺傳演算法工具箱(gatbx)各有何特點哪個好些

只用過MATLAB的遺傳工具箱,速度還可以(比一般自己寫的C++要好些)。和其它程序結合的話,先編一個options的結構體,設定好參數(非常重要,特別是初始范圍),然後在調用ga()函數,就可以了。沒有工具箱的界面,但乾的活是一樣的。 我曾用它描過一個函數,函數值是當某些參數去到最優時的參數值。通過嵌套一個循環,每次改變一點參數做一次優化,就可以描出一條曲線來。

6. matlab遺傳演算法工具箱優化結果數值

ga就是在窮舉不可能完成時,用一種方式找到最優解
ga工具的完整形式如下表示
[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] =
GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)
X是最優自變數
FVAL是求得的最優值
其他以此是推出標志,結構體,終止時的總群,終止時種群函數值
後半部分以此是目標函數,目標函數自變數個數
A和b是線性約束不等式AX〈b
Aeq和beq是一對線性等式約束,AeqX=beq
lb是X值下限,ub是X值下限
NONLCON是非線性約束函數 options是運行方式。這兩個可以寫函數自己完成,也可默認
函數默認計算最小值,計算最大值要加負號

7. 遺傳演算法工具箱是什麼

遺傳工具箱是MATLAB中的一個工具,主要是用來求解優化問題的

8. matlab 遺傳演算法工具箱怎麼用

推薦用shefiled的GA工具箱,裡面的子函數寫的很好,調用很方便。 配合一本gA的書 學的很快;
另外 關於你這個問題, 你的目標函數和約束函數是否在工作目錄下,還有 在調用的時候 在函數名前面加@試試, 希望能幫到你

9. matlab 遺傳演算法工具箱

有可能是沒有了,也有可能是你安裝的版本裡面沒有,需要去官方網站購買。你用的是正版嗎?正版的網路授權可以使用大部分的工具箱。 如果是D版,很可能是你用的版本正好沒有這個。 如果只是用到一些函數,你可以去別人的電腦復制這個工具箱的函數(老版本的估計也能用),添加路徑以後可能也可以用的。

10. 請教一下,用遺傳演算法工具箱怎麼求下面函數的最小值

題主給出函數用遺傳演算法工具箱求其最小值,可以這樣來做:

1、自定義函數,並保存為leijia.m文件。

2、在當前目錄下,執行 optimtool,打開最優化工具箱,再選擇遺傳演算法工具箱

3、按表中格式,輸入相關內容,最後執行可以得到

熱點內容
安卓手機下游戲有密碼怎麼辦 發布:2022-05-18 00:46:42 瀏覽:57
連接谷歌的伺服器地址 發布:2022-05-18 00:45:25 瀏覽:606
思科的保存配置命令是什麼 發布:2022-05-18 00:42:42 瀏覽:776
androidstudio降版本 發布:2022-05-18 00:42:08 瀏覽:930
有源碼怎麼建站 發布:2022-05-18 00:40:43 瀏覽:676
利用舊電腦搭建nas伺服器 發布:2022-05-18 00:40:41 瀏覽:602
多開軟體看什麼配置好 發布:2022-05-18 00:39:31 瀏覽:376
如何挑選伺服器託管 發布:2022-05-18 00:37:52 瀏覽:627
寶可夢大集結安卓手機在哪裡下ios 發布:2022-05-18 00:37:46 瀏覽:684
實驗報告頁面置換演算法 發布:2022-05-18 00:30:50 瀏覽:60