當前位置:首頁 » 操作系統 » 規整度演算法

規整度演算法

發布時間: 2022-09-21 22:19:48

㈠ 分子鏈的規整度 是什麼

立構規整度:是立構規整聚合物占總聚合物的分數,是評價聚合物性能、引發劑定向聚合能力的一個重要指標。

立體異構中有三種常見的構型,無規立構,全同立構,間同異構。例如CH2=CXY的單體中XY指不同原子,其中XY排列的規整性稱分子鏈的立構規整度。

若X側基和Y側基各在一側叫全同立構,交替分布在兩側則為間同立構,若沒有規律則為無規立構。

全同立構中側基若X在紙面的前面,Y在紙面的後面。

間同立構中側基X在紙面的前面,Y在紙面的後面,則相鄰的一對側基的排列與此相反。

立構規整度是聚合物形成時所確定的,用觸媒劑直接聚合生產有規則的立構聚合物的發明者獲得過諾貝爾獎。有規則立構規整度的聚合物有可能結晶。無規立構聚合物因為他的非周期本質不能成晶體。
希望對您有幫助 有疑問可以追問

㈡ 什麼叫立構規整度

立構規整度

[英文]: degree of tacticity

[說明]: 又稱定向度或定向指數。重復單元在高分子鏈中立體結構排列的規整度。即立構規整聚合物所佔總聚合物含量的百分數,常用以表示催化劑在聚合反應中的定向能力。可用光譜分析如紅外、核磁和聚合物的物理性質如相對密度、熔點、溶解度來測定。

㈢ 語音識別技術的基本方法

朋友進行語音識別,你可以試試ocr文字識別軟體,現在科技發達,軟體可以解決你的問題,下面來說說我的方法吧:

第一步:首先,打開ocr文字識別軟體,點擊上面【語音識別】功能按鈕。

第二步:接著,點擊左上角的【添加文件】,把需要識別的語音文件添加進去。

第三步:然後,點擊右邊開始識別。

第四步:最後,點擊右下角【保存為TXT】文檔。

朋友你試試我的方法可以不。

㈣ dtw演算法在語音識別系統的應用,

DTW是動態時間規整演算法,在語音識別系統中通常用於特定人識別,特定人識別即A用戶使用這個語音識別系統,B用戶使用就會出現語音識別出錯或無法識別的現象。
DTW在語音識別系統中,是一個需要用戶事先訓練的系統。從操作方面上,首先需要訓練,對需要控制的命令錄制對應的語音;使用時只要說出與訓練時同樣的語音命令,即可出現識別結果,實現聲控。

DTW在語音識別系統中充當數據匹配比對模塊。語音識別系統首先採集用戶的語音,經過端點檢測,找出用戶的有效語音而把其他非語音段給刪除;然後經過MFCC特徵提取,得到用戶聲音的特徵,最後進入DTW,進行歐式距離的比對,距離最小對應的模板,即為識別結果。

希望以上信息對你有所幫助。

㈤ 圖像的特徵提取都有哪些演算法

常用的圖像特徵有顏色特徵、紋理特徵、形狀特徵、空間關系特徵。

一 顏色特徵

(一)特點:顏色特徵是一種全局特徵,描述了圖像或圖像區域所對應的景物的表面性質。一般顏色特徵是基於像素點的特徵,此時所有屬於圖像或圖像區域的像素都有各自的貢獻。由於顏色對圖像或圖像區域的方向、大小等變化不敏感,所以顏色特徵不能很好地捕捉圖像中對象的局部特徵。另外,僅使用顏色特徵查詢時,如果資料庫很大,常會將許多不需要的圖像也檢索出來。顏色直方圖是最常用的表達顏色特徵的方法,其優點是不受圖像旋轉和平移變化的影響,進一步藉助歸一化還可不受圖像尺度變化的影響,基缺點是沒有表達出顏色空間分布的信息。

(二)常用的特徵提取與匹配方法

(1) 顏色直方圖

其優點在於:它能簡單描述一幅圖像中顏色的全局分布,即不同色彩在整幅圖像中所佔的比例,特別適用於描述那些難以自動分割的圖像和不需要考慮物體空間位置的圖像。其缺點在於:它無法描述圖像中顏色的局部分布及每種色彩所處的空間位置,即無法描述圖像中的某一具體的對象或物體。

最常用的顏色空間:RGB顏色空間、HSV顏色空間。

顏色直方圖特徵匹配方法:直方圖相交法、距離法、中心距法、參考顏色表法、累加顏色直方圖法。

(2) 顏色集

顏色直方圖法是一種全局顏色特徵提取與匹配方法,無法區分局部顏色信息。顏色集是對顏色直方圖的一種近似首先將圖像從 RGB顏色空間轉化成視覺均衡的顏色空間(如 HSV 空間),並將顏色空間量化成若干個柄。然後,用色彩自動分割技術將圖像分為若干區域,每個區域用量化顏色空間的某個顏色分量來索引,從而將圖像表達為一個二進制的顏色索引集。在圖像匹配中,比較不同圖像顏色集之間的距離和色彩區域的空間關系

(3) 顏色矩

這種方法的數學基礎在於:圖像中任何的顏色分布均可以用它的矩來表示。此外,由於顏色分布信息主要集中在低階矩中,因此,僅採用顏色的一階矩(mean)、二階矩(variance)和三階矩(skewness)就足以表達圖像的顏色分布。

(4) 顏色聚合向量

其核心思想是:將屬於直方圖每一個柄的像素分成兩部分,如果該柄內的某些像素所佔據的連續區域的面積大於給定的閾值,則該區域內的像素作為聚合像素,否則作為非聚合像素。

(5) 顏色相關圖

二 紋理特徵

(一)特點:紋理特徵也是一種全局特徵,它也描述了圖像或圖像區域所對應景物的表面性質。但由於紋理只是一種物體表面的特性,並不能完全反映出物體的本質屬性,所以僅僅利用紋理特徵是無法獲得高層次圖像內容的。與顏色特徵不同,紋理特徵不是基於像素點的特徵,它需要在包含多個像素點的區域中進行統計計算。在模式匹配中,這種區域性的特徵具有較大的優越性,不會由於局部的偏差而無法匹配成功。作為一種統計特徵,紋理特徵常具有旋轉不變性,並且對於雜訊有較強的抵抗能力。但是,紋理特徵也有其缺點,一個很明顯的缺點是當圖像的解析度變化的時候,所計算出來的紋理可能會有較大偏差。另外,由於有可能受到光照、反射情況的影響,從2-D圖像中反映出來的紋理不一定是3-D物體表面真實的紋理。

例如,水中的倒影,光滑的金屬面互相反射造成的影響等都會導致紋理的變化。由於這些不是物體本身的特性,因而將紋理信息應用於檢索時,有時這些虛假的紋理會對檢索造成「誤導」。

在檢索具有粗細、疏密等方面較大差別的紋理圖像時,利用紋理特徵是一種有效的方法。但當紋理之間的粗細、疏密等易於分辨的信息之間相差不大的時候,通常的紋理特徵很難准確地反映出人的視覺感覺不同的紋理之間的差別。

(二)常用的特徵提取與匹配方法

紋理特徵描述方法分類

(1)統計方法統計方法的典型代表是一種稱為灰度共生矩陣的紋理特徵分析方法Gotlieb 和 Kreyszig 等人在研究共生矩陣中各種統計特徵基礎上,通過實驗,得出灰度共生矩陣的四個關鍵特徵:能量、慣量、熵和相關性。統計方法中另一種典型方法,則是從圖像的自相關函數(即圖像的能量譜函數)提取紋理特徵,即通過對圖像的能量譜函數的計算,提取紋理的粗細度及方向性等特徵參數

(2)幾何法

所謂幾何法,是建立在紋理基元(基本的紋理元素)理論基礎上的一種紋理特徵分析方法。紋理基元理論認為,復雜的紋理可以由若干簡單的紋理基元以一定的有規律的形式重復排列構成。在幾何法中,比較有影響的演算法有兩種:Voronio 棋盤格特徵法和結構法。

(3)模型法

模型法以圖像的構造模型為基礎,採用模型的參數作為紋理特徵。典型的方法是隨機場模型法,如馬爾可夫(Markov)隨機場(MRF)模型法和 Gibbs 隨機場模型法

(4)信號處理法

紋理特徵的提取與匹配主要有:灰度共生矩陣、Tamura 紋理特徵、自回歸紋理模型、小波變換等。

灰度共生矩陣特徵提取與匹配主要依賴於能量、慣量、熵和相關性四個參數。Tamura 紋理特徵基於人類對紋理的視覺感知心理學研究,提出6種屬性,即:粗糙度、對比度、方向度、線像度、規整度和粗略度。自回歸紋理模型(simultaneous auto-regressive, SAR)是馬爾可夫隨機場(MRF)模型的一種應用實例。

三 形狀特徵

(一)特點:各種基於形狀特徵的檢索方法都可以比較有效地利用圖像中感興趣的目標來進行檢索,但它們也有一些共同的問題,包括:①目前基於形狀的檢索方法還缺乏比較完善的數學模型;②如果目標有變形時檢索結果往往不太可靠;③許多形狀特徵僅描述了目標局部的性質,要全面描述目標常對計算時間和存儲量有較高的要求;④許多形狀特徵所反映的目標形狀信息與人的直觀感覺不完全一致,或者說,特徵空間的相似性與人視覺系統感受到的相似性有差別。另外,從 2-D 圖像中表現的 3-D 物體實際上只是物體在空間某一平面的投影,從 2-D 圖像中反映出來的形狀常不是 3-D 物體真實的形狀,由於視點的變化,可能會產生各種失真。

(二)常用的特徵提取與匹配方法

Ⅰ幾種典型的形狀特徵描述方法

通常情況下,形狀特徵有兩類表示方法,一類是輪廓特徵,另一類是區域特徵。圖像的輪廓特徵主要針對物體的外邊界,而圖像的區域特徵則關繫到整個形狀區域。

幾種典型的形狀特徵描述方法:

(1)邊界特徵法該方法通過對邊界特徵的描述來獲取圖像的形狀參數。其中Hough 變換檢測平行直線方法和邊界方向直方圖方法是經典方法。Hough 變換是利用圖像全局特性而將邊緣像素連接起來組成區域封閉邊界的一種方法,其基本思想是點—線的對偶性;邊界方向直方圖法首先微分圖像求得圖像邊緣,然後,做出關於邊緣大小和方向的直方圖,通常的方法是構造圖像灰度梯度方向矩陣。

(2)傅里葉形狀描述符法

傅里葉形狀描述符(Fourier shape descriptors)基本思想是用物體邊界的傅里葉變換作為形狀描述,利用區域邊界的封閉性和周期性,將二維問題轉化為一維問題。

由邊界點導出三種形狀表達,分別是曲率函數、質心距離、復坐標函數。

(3)幾何參數法

形狀的表達和匹配採用更為簡單的區域特徵描述方法,例如採用有關形狀定量測度(如矩、面積、周長等)的形狀參數法(shape factor)。在 QBIC 系統中,便是利用圓度、偏心率、主軸方向和代數不變矩等幾何參數,進行基於形狀特徵的圖像檢索。

需要說明的是,形狀參數的提取,必須以圖像處理及圖像分割為前提,參數的准確性必然受到分割效果的影響,對分割效果很差的圖像,形狀參數甚至無法提取。

(4)形狀不變矩法

利用目標所佔區域的矩作為形狀描述參數。

(5)其它方法

近年來,在形狀的表示和匹配方面的工作還包括有限元法(Finite Element Method 或 FEM)、旋轉函數(Turning Function)和小波描述符(Wavelet Descriptor)等方法。

Ⅱ 基於小波和相對矩的形狀特徵提取與匹配

該方法先用小波變換模極大值得到多尺度邊緣圖像,然後計算每一尺度的 7個不變矩,再轉化為 10 個相對矩,將所有尺度上的相對矩作為圖像特徵向量,從而統一了區域和封閉、不封閉結構。

四 空間關系特徵

(一)特點:所謂空間關系,是指圖像中分割出來的多個目標之間的相互的空間位置或相對方向關系,這些關系也可分為連接/鄰接關系、交疊/重疊關系和包含/包容關系等。通常空間位置信息可以分為兩類:相對空間位置信息和絕對空間位置信息。前一種關系強調的是目標之間的相對情況,如上下左右關系等,後一種關系強調的是目標之間的距離大小以及方位。顯而易見,由絕對空間位置可推出相對空間位置,但表達相對空間位置信息常比較簡單。

空間關系特徵的使用可加強對圖像內容的描述區分能力,但空間關系特徵常對圖像或目標的旋轉、反轉、尺度變化等比較敏感。另外,實際應用中,僅僅利用空間信息往往是不夠的,不能有效准確地表達場景信息。為了檢索,除使用空間關系特徵外,還需要其它特徵來配合。

(二)常用的特徵提取與匹配方法
提取圖像空間關系特徵可以有兩種方法:一種方法是首先對圖像進行自動分割,劃分出圖像中所包含的對象或顏色區域,然後根據這些區域提取圖像特徵,並建立索引;另一種方法則簡單地將圖像均勻地劃分為若干規則子塊,然後對每個圖像子塊提取特徵,並建立索引。

㈥ 動態時間規整的動態時間規整的原理描述

60年代由日本學者提出,演算法的思想是把未知量伸長或縮短(壓擴),直到與參考模板的長度一致,在這一過程中,未知單詞的時間軸會產生扭曲或彎折,以便其特徵量與標准模式對應。 DTW 是把時間規整和距離測度計算結合起來。測試語音參數共有I幀矢量,而參考模板共有J幀矢量,I和J不等,尋找一個時間規整函數j=w(i),它將測試矢量的時間軸i非線性地映射到模板的時間軸j上,並使該函數w(i)滿足: 第i幀測試矢量T(i)和第j幀模板矢量R(j)之間的距離測度D
最優時間規整情況下所有矢量幀間的距離,也稱為代價函數計算兩倒譜矢量幀(i和j) 間的歐氏距離,兩矢量幀中分別具有p個倒譜參數。
為了使T(測試)的第i個樣本與R(參考)的第j個樣本對正,其對應的點不在直線對角線上,得到一條彎曲的曲線j=w(i) 。j=w(i)稱為規整函數。 設 T={a1 , a2 , …… , ai , …… , aI} i=1~I
R={b1 , b2 , …… , bj , …… , bJ} j=1~J
I≠J
時間規整要解決的問題是使元素a和元素b之間匹配,使每對匹配樣本之間的差別最小,達到歐氏距離最小。

㈦ 全面歸納距離和相似度計算方法

距離(distance,差異程度)、相似度(similarity,相似程度)方法可以看作是以某種的距離函數計算元素間的距離,這些方法作為機器學習的基礎概念,廣泛應用於如:Kmeans聚類、協同過濾推薦演算法、相似度演算法、MSE損失函數等等。本文對常用的距離計算方法進行歸納以及解析,分為以下幾類展開:

對於點x=(x1,x2...xn) 與點y=(y1,y2...yn) , 閔氏距離可以用下式表示:

閔氏距離是對多個距離度量公式的概括性的表述,p=1退化為曼哈頓距離;p=2退化為歐氏距離;切比雪夫距離是閔氏距離取極限的形式。

曼哈頓距離 公式:

歐幾里得距離公式:

如下圖藍線的距離即是曼哈頓距離(想像你在曼哈頓要從一個十字路口開車到另外一個十字路口實際駕駛距離就是這個「曼哈頓距離」,此即曼哈頓距離名稱的來源,也稱為城市街區距離),紅線為歐幾里得距離:

切比雪夫距離起源於國際象棋中國王的走法,國際象棋中國王每次只能往周圍的8格中走一步,那麼如果要從棋盤中A格(x1,y1)走到B格(x2,y2)最少需要走幾步?你會發現最少步數總是max(|x2-x1|,|y2-y1|)步。有一種類似的一種距離度量方法叫切比雪夫距離。

切比雪夫距離就是當p趨向於無窮大時的閔氏距離:

距離函數並不一定是距離度量,當距離函數要作為距離度量,需要滿足:

由此可見,閔氏距離可以作為距離度量,而大部分的相似度並不能作為距離度量。

閔氏距離也是Lp范數(如p==2為常用L2范數正則化)的一般化定義。
下圖給出了一個Lp球( ||X||p = 1 )的形狀隨著P的減少的可視化圖:

距離度量隨著空間的維度d的不斷增加,計算量復雜也逐增,另外在高維空間下,在維度越高的情況下,任意樣本之間的距離越趨於相等(樣本間最大與最小歐氏距離之間的相對差距就趨近於0),也就是維度災難的問題,如下式結論:

對於維度災難的問題,常用的有PCA方法進行降維計算。

假設各樣本有年齡,工資兩個變數,計算歐氏距離(p=2)的時候,(年齡1-年齡2)² 的值要遠小於(工資1-工資2)² ,這意味著在不使用特徵縮放的情況下,距離會被工資變數(大的數值)主導, 特別當p越大,單一維度的差值對整體的影響就越大。因此,我們需要使用特徵縮放來將全部的數值統一到一個量級上來解決此問題。基本的解決方法可以對數據進行「標准化」和「歸一化」。

另外可以使用馬氏距離(協方差距離),與歐式距離不同其考慮到各種特性之間的聯系是(量綱)尺度無關 (Scale Invariant) 的,可以排除變數之間的相關性的干擾,缺點是誇大了變化微小的變數的作用。馬氏距離定義為:

馬氏距離原理是使用矩陣對兩兩向量進行投影後,再通過常規的歐幾里得距離度量兩對象間的距離。當協方差矩陣為單位矩陣,馬氏距離就簡化為歐氏距離;如果協方差矩陣為對角陣,其也可稱為正規化的歐氏距離。

根據向量x,y的點積公式:

我們可以利用向量間夾角的cos值作為向量相似度[1]:

餘弦相似度的取值范圍為:-1~1,1 表示兩者完全正相關,-1 表示兩者完全負相關,0 表示兩者之間獨立。餘弦相似度與向量的長度無關,只與向量的方向有關,但餘弦相似度會受到向量平移的影響(上式如果將 x 平移到 x+1, 餘弦值就會改變)。

另外,歸一化後計算歐氏距離,等價於餘弦值:兩個向量x,y, 夾角為A,歐氏距離D=(x-y)^2 = x 2+y 2-2|x||y|cosA = 2-2cosA

協方差是衡量多維數據集中,變數之間相關性的統計量。如下公式X,Y的協方差即是,X減去其均值 乘以 Y減去其均值,所得每一組數值的期望(平均值)。

如果兩個變數之間的協方差為正值,則這兩個變數之間存在正相關,若為負值,則為負相關。

皮爾遜相關系數數值范圍也是[-1,1]。皮爾遜相關系數可看作是在餘弦相似度或協方差基礎上做了優化(變數的協方差除以標准差)。它消除每個分量標准不同(分數膨脹)的影響,具有平移不變性和尺度不變性。

卡方檢驗X2,主要是比較兩個分類變數的關聯性、獨立性分析。如下公式,A代表實際頻數;E代表期望頻數:

Levenshtein 距離是 編輯距離 (Editor Distance) 的一種,指兩個字串之間,由一個轉成另一個所需的最少編輯操作次數。允許的編輯操作包括將一個字元替換成另一個字元,插入一個字元,刪除一個字元。
像hallo與hello兩個字元串編輯距離就是1,我們通過替換」a「 為 」e「,就可以完成轉換。

漢明距離為兩個等長字元串對應位置的不同字元的個數,也就是將一個字元串變換成另外一個字元串所需要替換的字元個數。例如:1011101 與 1001001 之間的漢明距離是 2,「toned」 與 「roses」 之間的漢明距離是 3

另外的,對於字元串距離來說,不同字元所佔的份量是不一樣的。比如」我樂了「 與【「我怒了」,」我樂了啊」 】的Levenshtein 距離都是1,但其實兩者差異還是很大的,因為像「啊」這種語氣詞的重要性明顯不如「樂」,考慮字元(特徵)權重的相似度方法有:TF-IDF、BM25、WMD演算法。

Jaccard 取值范圍為0~1,0 表示兩個集合沒有重合,1 表示兩個集合完全重合。

但Dice不滿足距離函數的三角不等式,不是一個合適的距離度量。

基礎地介紹下信息熵,用來衡量一個隨機變數的不確定性程度。對於一個隨機變數 X,其概率分布為:

互信息用於衡量兩個變數之間的關聯程度,衡量了知道這兩個變數其中一個,對另一個不確定度減少的程度。公式為:

如下圖,條件熵表示已知隨機變數X的情況下,隨機變數Y的信息熵,因此互信息實際上也代表了已知隨機變數X的情況下,隨機變數Y的(信息熵)不確定性的減少程度。

JS 散度解決了 KL 散度不對稱的問題,定義為:

群體穩定性指標(Population Stability Index,PSI), 可以看做是解決KL散度非對稱性的一個對稱性度量指標,用於度量分布之間的差異(常用於風控領域的評估模型預測的穩定性)。

psi與JS散度的形式是非常類似的,如下公式:

PSI的含義等同P與Q,Q與P之間的KL散度之和。

DTW 距離用於衡量兩個序列之間的相似性,適用於不同長度、不同節奏的時間序列。DTW採用了動態規劃DP(dynamic programming)的方法來進行時間規整的計算,通過自動warping扭曲 時間序列(即在時間軸上進行局部的縮放),使得兩個序列的形態盡可能的一致,得到最大可能的相似度。(具體可參考[5])

圖結構間的相似度計算,有圖同構、最大共同子圖、圖編輯距離、Graph Kernel 、圖嵌入計算距離等方法(具體可參考[4][6])。

度量學習的對象通常是樣本特徵向量的距離,度量學習的關鍵在於如何有效的度量樣本間的距離,目的是通過訓練和學習,減小或限制同類樣本之間的距離,同時增大不同類別樣本之間的距離,簡單歸類如下[2]:

最後,附上常用的距離和相似度度量方法[3]:

㈧ 什麼叫聚合物的立體規整性

聚合物的立構規整性
又稱定向度或定向指數.重復單元在高分子鏈中立體結構排列的規整度.即立構規整聚合物所佔總聚合物含量的百分數,常用以表示催化劑在聚合反應中的定向能力.可用光譜分析如紅外、核磁共振和聚合物的物理性質如相對密度、熔點、溶解度等方法來測定.

㈨ 機器視覺特徵描述方法

常用的機器視覺提取特徵方法有哪些?一般常用的機器視覺圖像特徵有顏色特徵、紋理特徵、形狀特徵、空間關系特徵,沃德普機器視覺昨天給大家介紹過了顏色特徵的提取,今天給大家介紹的是紋理特徵、形狀特徵、空間關系特徵這三種特徵方法提取。
1.紋理特徵描述方法分類:
(1)統計方法
統計方法的典型代表是一種稱為灰度共生矩陣的紋理特徵分析方法,在研究共生矩陣中各種統計特徵基礎上,通過實驗,得出灰度共生矩陣的四個關鍵特徵:能量、慣量、熵和相關性。統計方法中另一種典型方法,則是從圖像的自相關函數(即圖像的能量譜函數)提取紋理特徵,即通過對圖像的能量譜函數的計算,提取紋理的粗細度及方向性等特徵參數。
(2)幾何法
所謂幾何法,是建立在紋理基元(基本的紋理元素)理論基礎上的一種紋理特徵分析方法。紋理基元理論認為,復雜的紋理可以由若干簡單的紋理基元以一定的有規律的形式重復排列構成。在幾何法中,比較有影響的演算法有兩種:Voronio 棋盤格特徵法和結構法。
(3)模型法
模型法以圖像的構造模型為基礎,採用模型的參數作為紋理特徵。典型的方法是隨機場模型法,如馬爾可夫(Markov)隨機場(MRF)模型法和 Gibbs 隨機場模型法。
(4)信號處理法
紋理特徵的提取與匹配主要有:灰度共生矩陣、Tamura 紋理特徵、自回歸紋理模型、小波變換等。
灰度共生矩陣特徵提取與匹配主要依賴於能量、慣量、熵和相關性四個參數。Tamura 紋理特徵基於人類對紋理的視覺感知心理學研究,提出6種屬性,即:粗糙度、對比度、方向度、線像度、規整度和粗略度。自回歸紋理模型(simultaneous auto-regressive, SAR)是馬爾可夫隨機場(MRF)模型的一種應用實例。

㈩ 什麼是紋理圖像

紋理圖像一般指圖像紋理,圖像紋理是一種反映圖像中同質現象的視覺特徵,它體現了物體表面的具有緩慢變化或者周期性變化的表面結構組織排列屬性。

紋理具有三大標志:某種局部序列性不斷重復、非隨機排列、紋理區域內大致為均勻的統一體。紋理不同於灰度、顏色等圖像特徵,它通過像素及其周圍空間鄰域的灰度分布來表現,即:局部紋理信息。局部紋理信息不同程度的重復性,即全局紋理信息。

不同於灰度、顏色等圖像特徵,紋理通過像素及其周圍空間鄰域的灰度分布來表現,即局部紋理信息。另外,局部紋理信息不同程度上的重復性,就是全局紋理信息。

紋理特徵體現全局特徵的性質的同時,它也描述了圖像或圖像區域所對應景物的表面性質。但由於紋理只是一種物體表面的特性,並不能完全反映出物體的本質屬性,所以僅僅利用紋理特徵是無法獲得高層次圖像內容的。

與顏色特徵不同,紋理特徵不是基於像素點的特徵,它需要在包含多個像素點的區域中進行統計計算。在模式匹配中,這種區域性的特徵具有較大的優越性,不會由於局部的偏差而無法匹配成功。

在檢索具有粗細、疏密等方面較大差別的紋理圖像時,利用紋理特徵是一種有效的方法。但當紋理之間的粗細、疏密等易於分辨的信息之間相差不大的時候,通常的紋理特徵很難准確地反映出人的視覺感覺不同的紋理之間的差別。

例如,水中的倒影,光滑的金屬面互相反射造成的影響等都會導致紋理的變化。由於這些不是物體本身的特性,因而將紋理信息應用於檢索時,有時這些虛假的紋理會對檢索造成「誤導」。

(10)規整度演算法擴展閱讀:

紋理圖像分類

1、統計型紋理特徵。基於像元及其鄰域內的灰度屬性,研究紋理區域中的統計特徵,或者像元及其鄰域內灰度的一階、二階或者高階統計特徵。

統計型紋理特徵中以GLCM(灰度共生矩陣)為主,它是建立在估計圖像的二階組合條件概率密度基礎上的一種方法。GLCM主要描述在theta方向上,相隔d個像元距離的一對像元分別具有灰度值i和j的出現的概率。

盡管GLCM提取的紋理特徵具有較好的鑒別能力,但是這個方法在計算上是昂貴的,尤其是對於像素級的紋理分類更具有局限性。並且,GLCM的計算較為耗時,好在不斷有研究人員對其提出改進。

2、模型型紋理特徵。假設紋理是以某種參數控制的分布模型方式形成的,從紋理圖像的實現來估計計算模型參數,以參數為特徵或採用某種策略進行圖像分割,因此,模型參數的估計是這種方法的核心問題。

模型型紋理特徵提取方法以隨機場方法和分形方法為主。

3、信號處理型紋理特徵。建立在時域、頻域分析與多尺度分析基礎之上,對紋理圖像中某個區域內實行某種變換之後,再提取保持相對平穩的特徵值,以此特徵值作為特徵表示區域內的一致性以及區域間的相異性。

信號處理類的紋理特徵主要是利用某種線性變換、濾波器或者濾波器組將紋理轉換到變換域,然後應用某種能量准則提取紋理特徵。因此,基於信號處理的方法也稱之為濾波方法。大多數信號處理方法的提出,都基於這樣一個假設:頻域的能量分布能夠鑒別紋理。

4、結構型紋理特徵。基於「紋理基元」分析紋理特徵,著力找到紋理基元,認為紋理由許多紋理基元構成,不同類型的紋理基元、不同的方向及數目,決定了紋理的表現形式。

熱點內容
內置存儲卡可以拆嗎 發布:2025-05-18 04:16:35 瀏覽:336
編譯原理課時設置 發布:2025-05-18 04:13:28 瀏覽:378
linux中進入ip地址伺服器 發布:2025-05-18 04:11:21 瀏覽:612
java用什麼軟體寫 發布:2025-05-18 03:56:19 瀏覽:32
linux配置vim編譯c 發布:2025-05-18 03:55:07 瀏覽:107
砸百鬼腳本 發布:2025-05-18 03:53:34 瀏覽:944
安卓手機如何拍視頻和蘋果一樣 發布:2025-05-18 03:40:47 瀏覽:741
為什麼安卓手機連不上蘋果7熱點 發布:2025-05-18 03:40:13 瀏覽:803
網卡訪問 發布:2025-05-18 03:35:04 瀏覽:511
接收和發送伺服器地址 發布:2025-05-18 03:33:48 瀏覽:372