當前位置:首頁 » 操作系統 » 醫學圖像分割演算法

醫學圖像分割演算法

發布時間: 2022-09-25 19:14:49

⑴ 圖像分割演算法分為幾類

從學術角度講圖像分割主要分成3大類,一是基於邊緣的,二是基於區域的,三是基於紋理的。由於基於紋理的也可以看成是基於區域的,所以有些專家也把分割方法分成基於邊緣和基於區域兩大類。
選擇演算法的時候主要參考你要分割的圖像樣本的特點。
如果圖像的邊界特別分明,比如綠葉和紅花,在邊界處紅綠明顯不同,可以精確提取到邊界,這時候用基於邊緣的方法就可行。但如果是像醫學圖像一樣,輪廓不是特別明顯,比如心臟圖像,左心房和左心室顏色比較接近,它們之間的隔膜僅僅是顏色比它們深一些,但是色彩上來說很接近,這時候用基於邊緣的方法就不合適了,用基於區域的方法更好。再比如帶紋理的圖像,例如條紋衫,如果用基於邊緣的方法很可能就把每一條紋都分割成一個物體,但實際上衣服是一個整體,這時候用基於紋理的方法就能把紋理相同或相似的區域分成一個整體。
不過總體來說,基於區域的方法近些年更熱一些,如Meanshift分割方法、測地線活動輪廓模型、JSEG等。

⑵ 圖像分割演算法總結

       圖像處理的很多任務都離不開圖像分割。因為圖像分割在cv中實在太重要(有用)了,就先把圖像分割的常用演算法做個總結。

        接觸機器學習和深度學習時間已經不短了。期間看過各種相關知識但從未總結過。本文過後我會盡可能詳細的從工程角度來總結,從傳統機器學習演算法,傳統計算機視覺庫演算法到深度學習目前常用演算法和論文,以及模型在各平台的轉化,量化,服務化部署等相關知識總結。

        圖像分割常用演算法大致分為下面幾類。由於圖像的能量范函,邊緣追蹤等方法的效果往往只能解決特定問題,效果並不理想,這里不再闡述。當然二值化本身也可以分割一些簡單圖像的。但是二值化演算法較多,我會專門做一個文章來總結。這里不再贅述。

        1.基於邊緣的圖像分割演算法:

            有利用圖像梯度的傳統演算法運算元的sobel,roberts,prewitt,拉普拉斯以及canny等。

            這些演算法的基本思想都是採用合適的卷積運算元,對圖像做卷積。從而求出圖像對應的梯度圖像。(至於為什麼通過如圖1這樣的運算元卷積,即可得到圖像的梯度圖像,請讀者復習下卷積和倒數的概念自行推導)由於圖像的邊緣處往往是圖像像素差異較大,梯度較大地方。因此我們通過合適的卷積核得到圖像的梯度圖像,即得到了圖像的邊緣圖像。至於二階運算元的推導,與一階類似。優點:傳統運算元梯度檢測,只需要用合適的卷積核做卷積,即可快速得出對應的邊緣圖像。缺點:圖像邊緣不一定準確,復雜圖像的梯度不僅僅出現在圖像邊緣,可以能出現在圖像內部的色彩和紋理上。

             也有基於深度學習方法hed,rcf等。由於這類網路都有同一個比較嚴重的缺陷,這里只舉例hed網路。hed是基於FCN和VGG改進,同時引出6個loss進行優化訓練,通過多個層輸出不同scale的粒度的邊緣,然後通過一個訓練權重融合各個層的邊緣結果。hed網路結構如下:

可以得到一個比較完整的梯度圖像,可參考github的hed實現。優點:圖像的梯度細節和邊緣完整性,相比傳統的邊緣運算元要好很多。但是hed對於邊緣的圖像內部的邊緣並不能很好的區分。當然我們可以自行更改loss來嘗試只擬合外部的圖像邊緣。但最致命的問題在於,基於vgg的hed的網路表達能力有限,對於圖像和背景接近,或者圖像和背景部分相融的圖片,hed似乎就有點無能為力了。

        2.基於區域分割的演算法:

            區域分割比較常用的如傳統的演算法結合遺傳演算法,區域生長演算法,區域分裂合並,分水嶺演算法等。這里傳統演算法的思路是比較簡單易懂的,如果有無法理解的地方,歡迎大家一起討論學習。這里不再做過多的分析。

            基於區域和語意的深度學習分割演算法,是目前圖像分割成果較多和研究的主要方向。例如FCN系列的全卷積網路,以及經典的醫學圖像分割常用的unet系列,以及rcnn系列發展下的maskrcnn,以及18年底的PAnet。基於語意的圖像分割技術,無疑會成為圖像分割技術的主流。

            其中,基於深度學習語意的其他相關演算法也可以間接或直接的應用到圖像分割。如經典的圖像matting問題。18年又出現了許多非常優秀的演算法和論文。如Deep-Image-Matting,以及效果非常優秀的MIT的 semantic soft segmentation(sss).

            基於語意的圖像分割效果明顯要好於其他的傳統演算法。我在解決圖像分割的問題時,首先嘗試用了hed網路。最後的效果並不理想。雖然也參考github,做了hed的一些fine-tune,但是還是上面提到的原因,在我多次嘗試後,最終放棄。轉而適用FCN系列的網路。但是fcn也無法解決圖像和背景相融的問題。圖片相融的分割,感覺即需要大的感受野,又需要未相融部分原圖像細節,所以單原FCN的網路,很難做出准確的分割。中間還測試過很多其他相關的網路,但都效果不佳。考慮到感受野和原圖像細節,嘗試了resnet和densenet作為圖像特徵提取的底層。最終我測試了unet系列的網路:

                unet的原始模型如圖所示。在自己拍照爬蟲等手段採集了將近1000張圖片。去掉了圖片質量太差的,圖片內容太過類似的。爬蟲最終收集160多張,自己拍照收集200張圖片後,又用ps手動p了邊緣圖像,採用圖像增強變換,大約有300*24張圖片。原生unet網路的表現比較一般。在將unet普通的卷積層改為resnet後,網路的表達能力明顯提升。在將resnet改為resnet101,此時,即使對於部分相融的圖像,也能較好的分割了。但是unet的模型體積已經不能接受。

                在最後階段,看到maskrcnn的實例分割。maskrcnn一路由rcnn,fasterrcnn發展過來。於是用maskrcnn來加入自己的訓練數據和label圖像進行訓練。maskrcnn的結果表現並不令人滿意,對於邊緣的定位,相比於其他演算法,略顯粗糙。在產品應用中,明顯還不合適。                

        3.基於圖的分割演算法

            基於深度學習的deepgrab,效果表現並不是十分理想。deepgrab的git作者backbone採用了deeplabv2的網路結構。並沒有完全安裝原論文來做。

論文原地址參考: https://arxiv.org/pdf/1707.00243.pdf

整體結構類似於encode和decoder。並沒有太仔細的研究,因為基於resent101的結構,在模型體積,速度以及deeplab的分割精度上,都不能滿足當前的需求。之前大致總結過計算機視覺的相關知識點,既然目前在討論移動端模型,那後面就分模塊總結下移動端模型的應用落地吧。

由於時間實在有限。這里並沒有針對每個演算法進行詳細的講解。後續我會從基礎的機器學習演算法開始總結。

⑶ 圖像分割的特定理論

圖像分割至今尚無通用的自身理論。隨著各學科許多新理論和新方法的提出,出現了許多與一些特定理論、方法相結合的圖像分割方法。 特徵空間聚類法進行圖像分割是將圖像空間中的像素用對應的特徵空間點表示,根據它們在特徵空間的聚集對特徵空間進行分割,然後將它們映射回原圖像空間,得到分割結果。其中,K均值、模糊C均值聚類(FCM)演算法是最常用的聚類演算法。K均值演算法先選K個初始類均值,然後將每個像素歸入均值離它最近的類並計算新的類均值。迭代執行前面的步驟直到新舊類均值之差小於某一閾值。模糊C均值演算法是在模糊數學基礎上對K均值演算法的推廣,是通過最優化一個模糊目標函數實現聚類,它不像K均值聚類那樣認為每個點只能屬於某一類,而是賦予每個點一個對各類的隸屬度,用隸屬度更好地描述邊緣像素亦此亦彼的特點,適合處理事物內在的不確定性。利用模糊C均值(FCM)非監督模糊聚類標定的特點進行圖像分割,可以減少人為的干預,且較適合圖像中存在不確定性和模糊性的特點。
FCM演算法對初始參數極為敏感,有時需要人工干預參數的初始化以接近全局最優解,提高分割速度。另外,傳統FCM演算法沒有考慮空間信息,對雜訊和灰度不均勻敏感。 模糊集理論具有描述事物不確定性的能力,適合於圖像分割問題。1998年以來,出現了許多模糊分割技術,在圖像分割中的應用日益廣泛。模糊技術在圖像分割中應用的一個顯著特點就是它能和現有的許多圖像分割方法相結合,形成一系列的集成模糊分割技術,例如模糊聚類、模糊閾值、模糊邊緣檢測技術等。
模糊閾值技術利用不同的S型隸屬函數來定義模糊目標,通過優化過程最後選擇一個具有最小不確定性的S函數。用該函數增強目標及屬於該目標的像素之間的關系,這樣得到的S型函數的交叉點為閾值分割需要的閾值,這種方法的困難在於隸屬函數的選擇。基於模糊集合和邏輯的分割方法是以模糊數學為基礎,利用隸屬圖像中由於信息不全面、不準確、含糊、矛盾等造成的不確定性問題。該方法在醫學圖像分析中有廣泛的應用,如薛景浩 等人提出的一種新的基於圖像間模糊散度的閾值化演算法以及它在多閾值選擇中的推廣演算法,採用了模糊集合分別表達分割前後的圖像,通過最小模糊散度准則來實現圖像分割中最優閾值的自動提取。該演算法針對圖像閾值化分割的要求構造了一種新的模糊隸屬度函數,克服了傳統S函數帶寬對分割效果的影響,有很好的通用性和有效性,方案能夠快速正確地實現分割,且不需事先認定分割類數。實驗結果令人滿意。 概述
小波變換是2002年來得到了廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,而且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。
小波變換的分割方法
基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,有尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算饋與圖像尺寸大小呈線性變化。

⑷ 骨髓細胞圖像分割演算法研究的意義

這個題目有幾個元素

一是骨髓細胞.骨髓細胞內有多種細胞,識別,計數這些細胞對醫學研究和臨床診斷有重要意義--這個就不多說了吧?比如某種細胞形態異常/數量異常與某種疾病有聯系,等等.

二是圖像.以上的目的都是通過觀察細胞來實現的.人工來看,很直觀,但有幾個問題:一是費時費力,隨便一個樣品就有成千上萬個細胞,人工計數都是一個一個地數,重復性強,效率低;二是不同的人來看得到的結果相差可能很大,這跟經驗有關,跟人的疲勞程度也有關.所以為了高效,穩定地,統一標准地識別計數骨髓細胞,最好是讓電腦來做,這就是一個圖像處理的問題.

三是分割演算法.這是圖像處理的一個基本技術,並不算生物學的范疇.大致意思是說為了識別圖像中的有用信息,需要把圖像分割成小塊.哪裡是目標物(在這里就是細胞啦),哪塊是背景。更細的可能還需要分割細胞內部哪個區域是細胞核,以及其他的細胞器(為了識別細胞的種類)。

又想了想,其實同樣的目的,把樣品放到流式細胞儀來做,結果可能更可靠。但是樣品的處理和染色都需要時間,自然沒有直接做個塗片快,而且免疫熒光染色的抗體可是一大筆開銷啊。。。。

⑸ 圖像分割的分割方法

灰度閾值分割 法是一種最常用的並行區域技術,它是圖像分割中應用數量最多的一類。閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:
其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。
由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。在重視運算效率的應用場合(如用於硬體實現),它得到了廣泛應用。
人們發展了各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。
全局閾值是指整幅圖像使用同一個閾值做分割處理,適用於背景和前景有明顯對比的圖像。它是根據整幅圖像確定的:T=T(f)。但是這種方法只考慮像素本身的灰度值,一般不考慮空間特徵,因而對雜訊很敏感。常用的全局閾值選取方法有利用圖像灰度直方圖的峰谷法、最小誤差法、最大類間方差法、最大熵自動閾值法以及其它一些方法。
在許多情況下,物體和背景的對比度在圖像中的各處不是一樣的,這時很難用一個統一的閾值將物體與背景分開。這時可以根據圖像的局部特徵分別採用不同的閾值進行分割。實際處理時,需要按照具體問題將圖像分成若乾子區域分別選擇閾值,或者動態地根據一定的鄰域范圍選擇每點處的閾值,進行圖像分割。這時的閾值為自適應閾值。
閾值的選擇需要根據具體問題來確定,一般通過實驗來確定。對於給定的圖像,可以通過分析直方圖的方法確定最佳的閾值,例如當直方圖明顯呈現雙峰情況時,可以選擇兩個峰值的中點作為最佳閾值。
圖1(a)和(b)分別為用全局閾值和自適應閾值對經典的Lena圖像進行分割的結果。
區域生長和分裂合並法是兩種典型的串列區域技術,其分割過程後續步驟的處理要根據前面步驟的結果進行判斷而確定。 區域生長 區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。
區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。區域生長法的優點是計算簡單,對於較均勻的連通目標有較好的分割效果。它的缺點是需要人為確定種子點,對雜訊敏感,可能導致區域內有空洞。另外,它是一種串列演算法,當目標較大時,分割速度較慢,因此在設計演算法時,要盡量提高效率。
區域分裂合並
區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標提取。分裂合並差不多是區域生長的逆過程:從整個圖像出發,不斷分裂得到各個子區域,然後再把前景區域合並,實現目標提取。分裂合並的假設是對於一幅圖像,前景區域由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級,那麼就可以判定該像素是否為前景像素。當所有像素點或者子區域完成判斷以後,把前景區域或者像素合並就可得到前景目標。
在這類方法中,最常用的方法是四叉樹分解法(如圖3所示)。設R代表整個正方形圖像區域,P代表邏輯謂詞。基本分裂合並演算法步驟如下:(1)對任一個區域,如果H(Ri)=FALSE就將其分裂成不重疊的四等份;
(2)對相鄰的兩個區域Ri和Rj,它們也可以大小不同(即不在同一層),如果條件H(Ri∪Rj)=TRUE滿足,就將它們合並起來。
(3)如果進一步的分裂或合並都不可能,則結束。
分裂合並法的關鍵是分裂合並准則的設計。這種方法對復雜圖像的分割效果較好,但演算法較復雜,計算量大,分裂還可能破壞區域的邊界。 圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。
圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。
由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,如圖4所示。其中loG運算元是採用Laplacian運算元求高斯函數的二階導數,Canny運算元是高斯函數的一階導數,它在雜訊抑制和邊緣檢測之間取得了較好的平衡。關於微分運算元的邊緣檢測的詳細內容可參考文獻 。 與其他圖像分割方法相比,基於直方圖的方法是非常有效的圖像分割方法,因為他們通常只需要一個通過像素。在這種方法中,直方圖是從圖像中的像素的計算,並在直方圖的波峰和波谷是用於定點陣圖像中的簇。顏色和強度可以作為衡量。
這種技術的一種改進是遞歸應用直方圖求法的集群中的形象以分成更小的簇。重復此操作,使用更小的簇直到沒有更多的集群的形成。
基於直方圖的方法也能很快適應於多個幀,同時保持他們的單通效率。直方圖可以在多個幀被考慮的時候採取多種方式。同樣的方法是採取一個框架可以應用到多個,和之後的結果合並,山峰和山谷在以前很難識別,但現在更容易區分。直方圖也可以應用於每一個像素的基礎上,將得到的信息被用來確定的像素點的位置最常見的顏色。這種方法部分基於主動對象和一個靜態的環境,導致在不同類型的視頻分割提供跟蹤。

⑹ 影像分割流程

影像分割是獲取目標區域的一個重要手段。多尺度影像分割法採用不同的分割尺度生成不同尺度的影像對象層,使得具有固定解析度的影像數據由不同解析度的數據組成,從而構建一個與地表實體相似的層次等級結構,實現原始像元數據在不同空間尺度間的傳遞,以適應特定的應用需要,從而有效地將目標區域從背景中分離出來。

Definiens 軟體中的多尺度影像分割採用異質性最小的區域合並演算法,其允許兩個方向生成層次: 從下到上 ( Create Above) 和從上到下 ( Create Below) 。從下到上的分割 ( 由小尺度到大尺度的分割) 相對較簡單,合並子對象形成父對象,這種區域合並演算法計算過程中的對象只有第一次是像元,以後的均針對對象進行,時間代價較小。從上到下的分割( 由大尺度到小尺度的多種分割) 需要在父對象范圍內以像元為單位用區域合並演算法形成子對象,區域合並演算法每次均是針對單個像元進行,時間代價大。多尺度分割兩種方向生成層次在時間利用和生成對象個數方面有很大差異,以研究區某一子區域為例,如表5 -1所示。

表 5 -1 多尺度分割兩種方向生成層次消耗的時間

從上表可以看出兩點: ① 兩個方向的分割結果略有差異,主要表現為對象個數不盡相同; ②「從下到上」的分割由於是在子對象基礎上的合並,所以除了第一次針對像元的分割速度稍慢之外,其後進行的各次分割速度明顯快於第一次分割; 而 「從上到下」的分割,由於每次分割操作都是針對像元重新進行,除了分割尺度最小的基於像元的那次操作之外,每次分割所耗費的時間都遠遠多於同一尺度 「從下到上」的分割。

從下到上的多尺度分割方法主要思想是一種從像元開始由下至上、逐級進行區域合並的過程。經過多次迭代過程,小的同質區域變成大的同質區域。

Definiens 軟體中多尺度分割的具體演算法步驟如下 ( 圖 5 - 12) :

1) 設置分割參數,包括設定一個尺度閾值,以此閾值作為判斷是否停止像元合並的條件,根據影像信息的紋理特徵以及所提取的專題信息的要求,確定光譜因子和形狀因子的權重; 在形狀因子中根據大多數地物類別的結構屬性確定緊致度和光滑度因子的權重,以及在計算光譜差異性時需要用到的每一個波段的權重值; 必要時,也可考慮是否加入專題圖進行分割。

2) 以影像中任意一個像元為中心開始分割,第一次分割時單個像元被看做是一個最小的多邊形對象參與異質性值的計算; 第一次分割後,以生成的多邊形對象為基礎進行第二次分割,同樣計算異質性值。

3) 假設 f 為最小異質性值,s 為分割尺度值。每次判斷 f 與預定的閾值之間的差異,若 f 小於閾值 s,則繼續進行下一次分割,以此循環。

4) 若 f 等於或大於閾值 s,則停止影像的分割工作,形成一個固定尺度值的影像對象層。

大多數情況下,光譜因子是生成有意義對象的最重要的一條標准,而形狀因子則有助於避免產生不規則破碎的對象,適合高紋理的影像數據。因此,Definiens 軟體建議,在進行影像分割的過程中應遵循兩條原則: ① 盡可能設置大的顏色因子權重,因為光譜信息是影像數據中所包含的主要數據,形狀因子權重過大將導致光譜均質性的損失; ② 對於邊界不太光滑但是聚集度較高的影像對象,盡可能地使用必要的形狀因子。

圖 5 -12 異質性最小的區域合並影像分割流程

⑺ unet醫學圖像分割的國內外發展狀況

咨詢記錄 · 回答於2021-11-18

⑻ 圖像分割演算法那麼多 如何正確的使用適合的演算法

從學術角度講圖像分割主要分成3大類,一是基於邊緣的,二是基於區域的,三是基於紋理的。由於基於紋理的也可以看成是基於區域的,所以有些專家也把分割方法分成基於邊緣和基於區域兩大類。
選擇演算法的時候主要參考你要分割的圖像樣本的特點。
如果圖像的邊界特別分明,比如綠葉和紅花,在邊界處紅綠明顯不同,可以精確提取到邊界,這時候用基於邊緣的方法就可行。但如果是像醫學圖像一樣,輪廓不是特別明顯,比如心臟圖像,左心房和左心室顏色比較接近,它們之間的隔膜僅僅是顏色比它們深一些,但是色彩上來說很接近,這時候用基於邊緣的方法就不合適了,用基於區域的方法更好。再比如帶紋理的圖像,例如條紋衫,如果用基於邊緣的方法很可能就把每一條紋都分割成一個物體,但實際上衣服是一個整體,這時候用基於紋理的方法就能把紋理相同或相似的區域分成一個整體。
不過總體來說,基於區域的方法近些年更熱一些,如Meanshift分割方法、測地線活動輪廓模型、JSEG等。

⑼ OCR圖像文字識別圖像分割演算法

對於文字ocr中的分割步驟應用的演算法一般是個綜合體,不是像你說的單一某種演算法可完成的
比如不粘連的 可以用連通檢測分割, 粘連的一般會用投影分割加驗知,粘連厲害的可以用像滴水法等

⑽ 跪求圖像分割snake演算法詳細解釋

主要公式為曲線能量Esnake(公式1);Esnake由內部能量Eint(公式2)及外部能量Eext(公式3)組成;而根據公式2內部能量Eint是由一階導得到的平滑性約束(彈性繩子)二階導得到的氣球約束(剛性棍子)共同決定;根據公式3外部能Eext由梯度場決定(另一個分量不考慮)那麼粗略表示為Esnake=Vs+Vss+Eext;可以認為當Esnake的能量達到最小時snake曲線和物體的邊緣一致。

上面這些基本是每個論文上面都有的,下面照我的理解來講。結合很多論文上用的那個U形物體,snake檢測它的輪廓時,預先以一個圓形的像素圈套住它作為初始的snake線,可以取一定個數的點來離散化snake線,那麼這時就可以求這條snake線與原始圖像間的曲線能量Esnake了;Vs對應的是一階的平滑性,可轉化為snake線中相鄰像素之間的坐標差;差值越大能量越大平滑性也就越差;Vss對應的是二階的剛性;可轉化為snake線中某點和它相鄰的線上點間的法線方向的增長度量;Eext是梯度場能量,是由原本的灰度圖決定的,可轉化為snake中某點在灰度圖中的鄰域梯度。求出了這三個;再以一定的方式進行循環逼近那個使Esnake最小的snake線就找到了輪廓。
過獎了~我也是在研究中,你留個郵箱,我發個程序給你,看實例好理解點

熱點內容
百度雲下載文件夾 發布:2025-05-18 03:17:33 瀏覽:674
php雲開發 發布:2025-05-18 03:12:41 瀏覽:447
sql語句顯示表 發布:2025-05-18 03:12:30 瀏覽:690
資料庫系統的例子 發布:2025-05-18 03:02:42 瀏覽:191
數字化儲存與編譯是什麼 發布:2025-05-18 02:56:55 瀏覽:217
個人網站模板源碼 發布:2025-05-18 02:51:17 瀏覽:490
主伺服器ip地址 發布:2025-05-18 02:46:29 瀏覽:856
電腦配置太低玩不了絕地求生怎麼辦 發布:2025-05-18 02:38:39 瀏覽:797
存儲過程怎麼出錯了 發布:2025-05-18 02:37:16 瀏覽:368
32寸演算法 發布:2025-05-18 02:22:14 瀏覽:744