聚類演算法的java實現
這得分詞+vsm+k-means啊。k-means演算法網上應該不少,但是對文檔的話,還得進行分詞,構建矢量空間模型才能進行聚類啊。
B. 聚類演算法K-means演算法實現的Java源代碼 數據是文件讀入的,跪求!!!!
不會用跟我說,我自己寫的,親測可用
C. K-Means 聚類演算法
問題導入
假如有這樣一種情況,在一天你想去某個城市旅遊,這個城市裡你想去的有70個地方,現在你只有每一個地方的地址,這個地址列表很長,有70個位置。事先肯定要做好攻略,你要把一些比較接近的地方放在一起組成一組,這樣就可以安排交通工具抵達這些組的「某個地址」,然後步行到每個組內的地址。那麼,如何確定這些組,如何確定這些組的「某個地址」?答案就是聚類。而本文所提供的k-means聚類分析方法就可以用於解決這類問題。
一,聚類思想
所謂聚類演算法是指將一堆沒有標簽的數據自動劃分成幾類的方法,屬於無監督學習方法,這個方法要保證同一類的數據有相似的特徵,如下圖:
根據樣本之間的距離或者說相似性,把越相似,差異越小的樣本聚成一類(簇),最後形成多個簇,使同一個簇內部的樣本相似度高,不同簇之間差異性高。
二,K-Means聚類分析演算法
K-Means是一種基於自下而上的聚類分析方法,基本概念就是空間中有N個點,初始選擇K個點作為中心聚類點,將N個點分別與K個點計算距離,選擇自己最近的點作為自己的中心點,不斷地更新中心聚集點。
相關概念:
K值:要得到的簇的個數
質心:每個簇的均值向量,即向量各維取品軍即可
距離度量:常用歐幾里得距離和餘弦相似度(先標准化)
兩點之間的距離:
演算法流程:
1 首先確定一個K值,即我們希望將數據集經過聚類得到 K個集合;
2 從數據集中隨機選擇K個數據點作為質心;
3 對數據集中每一個點,計算其與每個質心的距離(如歐式距離),離哪個質心近,就劃分到哪個質心所屬的集合
4 把所有數據歸好集合,一共有K個集合,然後重新計算每個集合的質心;
5 如果新計算出來的質心和原來的質心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),我們可以認為聚類已經達到期望的結果,演算法終止。
6 如果新質心和原質心距離變化大,需要迭代3-5步驟
K-means實現過程
K-means 聚類演算法是一種非監督學習演算法,被用於非標簽數據(data without defined categories or groups)。該演算法使用迭代細化來產生最終結果。演算法輸入的是集群的數量 K 和數據集。數據集是每個數據點的一組功能。
演算法從 Κ 質心的初始估計開始,其可以隨機生成或從數據集中隨機選擇 。然後演算法在下面兩個步驟之間迭代:
1.數據分配:
每個質心定義一個集群。在此步驟中,基於平方歐氏距離將每個數據點分配到其最近的質心。更正式一點, ci 屬於質心集合 C ,然後每個數據點 x 基於下面的公式被分配到一個集群中。
其中 dist(·)是標准(L2)歐氏距離。讓指向第 i 個集群質心的數據點集合定為 Si 。
2. 質心更新:
在此步驟中,重新計算質心。這是通過獲取分配給該質心集群的所有數據點的平均值來完成的。公式如下:
K-means 演算法在步驟 1 和步驟 2 之間迭代,直到滿足停止條件(即,沒有數據點改變集群,距離的總和最小化,或者達到一些最大迭代次數)。
K 值的選擇
上述演算法找到特定預選 K 值和數據集標簽。為了找到數據中的集群數,用戶需要針對一系列 K 值運行 K-means 聚類演算法並比較結果。通常,沒有用於確定 K 的精確值的方法,但是可以使用以下技術獲得准確的估計。
Elbow point 拐點方法
通常用於比較不同 K 值的結果的度量之一是數據點與其聚類質心之間的平均距離。由於增加集群的數量將總是減少到數據點的距離,因此當 K 與數據點的數量相同時,增加 K 將總是減小該度量,達到零的極值。因此,該指標不能用作唯一目標。相反,繪制了作為 K 到質心的平均距離的函數,並且可以使用減小率急劇變化的「拐點」來粗略地確定 K 。
DBI(Davies-Bouldin Index)
DBI 是一種評估度量的聚類演算法的指標,通常用於評估 K-means 演算法中 k 的取值。簡單的理解就是:DBI 是聚類內的距離與聚類外的距離的比值。所以,DBI 的數值越小,表示分散程度越低,聚類效果越好。
還存在許多用於驗證 K 的其他技術,包括交叉驗證,信息標准,信息理論跳躍方法,輪廓方法和 G 均值演算法等等。
三,數學原理
K-Means採用的啟發式很簡單,可以用下面一組圖來形象的描述:
上述a表達了初始的數據集,假設 k=2 。在圖b中,我們隨機選擇了兩個 k 類所對應的類別質點,即圖中的紅色質點和藍色質點,然後分別求樣本中所有點到這兩個質心的距離,並標記每個樣本類別為和該樣本距離最小的質心的類別,如圖c所示,經過計算樣本和紅色質心和藍色質心的距離,我們得到了所有樣本點的第一輪迭代後的類別。此時我們對我們當前標記為紅色和藍色的點分別求其新的質心,如圖d所示,新的紅色質心和藍色質心大熱位置已經發生了變化。圖e和圖f重復了我們在圖c和圖d的過程,即將所有點的類別標記為距離最近的質心的類別並求出新的質心。最終我們得到的兩個類別如圖f.
四,實例
坐標系中有六個點:
1、我們分兩組,令K等於2,我們隨機選擇兩個點:P1和P2
2、通過勾股定理計算剩餘點分別到這兩個點的距離:
3、第一次分組後結果:
組A:P1
組B:P2、P3、P4、P5、P6
4、分別計算A組和B組的質心:
A組質心還是P1=(0,0)
B組新的質心坐標為:P哥=((1+3+8+9+10)/5,(2+1+8+10+7)/5)=(6.2,5.6)
5、再次計算每個點到質心的距離:
6、第二次分組結果:
組A:P1、P2、P3
組B:P4、P5、P6
7、再次計算質心:
P哥1=(1.33,1)
P哥2=(9,8.33)
8、再次計算每個點到質心的距離:
9、第三次分組結果:
組A:P1、P2、P3
組B:P4、P5、P6
可以發現,第三次分組結果和第二次分組結果一致,說明已經收斂,聚類結束。
五、K-Means的優缺點
優點:
1、原理比較簡單,實現也是很容易,收斂速度快。
2、當結果簇是密集的,而簇與簇之間區別明顯時, 它的效果較好。
3、主要需要調參的參數僅僅是簇數k。
缺點:
1、K值需要預先給定,很多情況下K值的估計是非常困難的。
2、K-Means演算法對初始選取的質心點是敏感的,不同的隨機種子點得到的聚類結果完全不同 ,對結果影響很大。
3、對噪音和異常點比較的敏感。用來檢測異常值。
4、採用迭代方法, 可能只能得到局部的最優解,而無法得到全局的最優解 。
六、細節問題
1、K值怎麼定?
答:分幾類主要取決於個人的經驗與感覺,通常的做法是多嘗試幾個K值,看分成幾類的結果更好解釋,更符合分析目的等。或者可以把各種K值算出的 E 做比較,取最小的 E 的K值。
2、初始的K個質心怎麼選?
答:最常用的方法是隨機選,初始質心的選取對最終聚類結果有影響,因此演算法一定要多執行幾次,哪個結果更reasonable,就用哪個結果。 當然也有一些優化的方法,第一種是選擇彼此距離最遠的點,具體來說就是先選第一個點,然後選離第一個點最遠的當第二個點,然後選第三個點,第三個點到第一、第二兩點的距離之和最小,以此類推。第二種是先根據其他聚類演算法(如層次聚類)得到聚類結果,從結果中每個分類選一個點。
3、關於離群值?
答:離群值就是遠離整體的,非常異常、非常特殊的數據點,在聚類之前應該將這些「極大」「極小」之類的離群數據都去掉,否則會對於聚類的結果有影響。但是,離群值往往自身就很有分析的價值,可以把離群值單獨作為一類來分析。
4、單位要一致!
答:比如X的單位是米,Y也是米,那麼距離算出來的單位還是米,是有意義的。但是如果X是米,Y是噸,用距離公式計算就會出現「米的平方」加上「噸的平方」再開平方,最後算出的東西沒有數學意義,這就有問題了。
5、標准化
答:如果數據中X整體都比較小,比如都是1到10之間的數,Y很大,比如都是1000以上的數,那麼,在計算距離的時候Y起到的作用就比X大很多,X對於距離的影響幾乎可以忽略,這也有問題。因此,如果K-Means聚類中選擇歐幾里德距離計算距離,數據集又出現了上面所述的情況,就一定要進行數據的標准化(normalization),即將數據按比例縮放,使之落入一個小的特定區間。
D. k-means聚類演算法的java代碼實現文本聚類
K-MEANS演算法:
k-means 演算法接受輸入量 k ;然後將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」(引力中心)來進行計算的。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
具體如下:
輸入:k, data[n];
(1) 選擇k個初始中心點,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 對於data[0]….data[n], 分別與c[0]…c[n-1]比較,假定與c[i]差值最少,就標記為i;
(3) 對於所有標記為i點,重新計算c[i]=/標記為i的個數;
(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值。
演算法實現起來應該很容易,就不幫你編寫代碼了。
E. 聚類演算法,K-means演算法的Java代碼實現
有郵箱嗎~我發給你
F. k-means演算法怎麼為對稱矩陣進行聚類
幾種典型的聚類融合演算法:
1.基於超圖劃分的聚類融合演算法
(1)Cluster-based Similarity Partitioning Algorithm(GSPA)
(2)Hyper Graph-Partitioning Algorithm(HGPA)
(3)Meta-Clustering Algorithm(MCLA)
2.基於關聯矩陣的聚類融合演算法
Voting-K-Means演算法。
3.基於投票策略的聚類融合演算法
w-vote是一種典型的基於加權投票的聚類融合演算法。
同時還有基於互信息的聚類融合演算法和基於有限混合模型的聚類融合演算法。
二、基於關聯矩陣的聚類融合演算法——Voting-K-Means演算法
Voting-K-Means演算法是一種基於關聯矩陣的聚類融合演算法,關聯矩陣的每一行和每一列代表一個數據點,關聯矩陣的元素表示數據集中數據點對共同出現在同一個簇中的概率。
演算法過程:
1.在一個數據集上得到若干個聚類成員;
2.依次掃描這些聚類成員,如果數據點i和j在某個聚類成員中被劃分到同一個簇中,那麼就在關聯矩陣對應的位置計數加1;關聯矩陣中的元素值越大,說明該元素對應的兩個數據點被劃分到同一個簇中的概率越大;
3.得到關聯矩陣之後,Voting-K-Means演算法依次檢查關聯矩陣中的每個元素,如果它的值大於演算法預先設定的閥值,就把這個元素對應的兩個數據點劃分到同一個簇中。
Voting-K-Means演算法的優缺點:
Voting-K-Means演算法不需要設置任何參數,在聚類融合的過程中可以自動地的選擇簇的個數 並且可以處理任意形狀的簇。因為Voting-K-Means演算法在聚類融合過程中是根據兩個數據點共同出現在同一個簇中的可能性大小對它們進行劃分的,所以只要兩個數據點距離足夠近,它們就會被劃分到一個簇中。
Voting-K-Means演算法的缺點是時間復雜度較高,它的時間復雜度是O(n^2);需要較多的聚類成員,如果聚類成員達不到一定規模,那麼關聯矩陣就不能准確反映出兩個數據點出現在同一個簇的概率。
package clustering;import java.io.FileWriter;import weka.clusterers.ClusterEvaluation;import weka.clusterers.SimpleKMeans;import weka.core.DistanceFunction;import weka.core.EuclideanDistance;import weka.core.Instances;import weka.core.converters.ConverterUtils.DataSource;import weka.filters.unsupervised.attribute.Remove;public class Votingkmeans2 extends SimpleKMeans { /** 生成的序列號 */ private static final long serialVersionUID = 1557181390469997876L; /** 劃分的簇數 */ private int m_NumClusters; /** 每個劃分的簇中的實例的數量 */ public int[] m_ClusterSizes; /** 使用的距離函數,這里是歐幾里德距離 */ protected DistanceFunction m_DistanceFunction = new EuclideanDistance(); /** 實例的簇號賦值 */ protected int[] m_Assignments; /** 設定聚類成員融合閥值 */ private final static double THREASOD = 0.5; /** 生成一個聚類器 */ public void buildClusterer(Instances data) throws Exception{ final int numinst = data.numInstances(); // 數據集的大小 double [][]association = new double[numinst][numinst]; // 定義並初始化一個關聯矩陣 int numIteration = 40; // 設置生成的聚類成員數 final int k = (int)Math.sqrt(numinst); // 設置K-Means聚類演算法參數——簇數 for(int i = 0; i < numIteration; i++) { if(data.classIndex() == -1) data.setClassIndex(data.numAttributes() - 1); // 索引是從0開始 String[] filteroption = new String[2]; filteroption[0] = "-R"; filteroption[1] = String.valueOf(data.classIndex() + 1);// 索引是從1開始 Remove remove = new Remove(); remove.setOptions(filteroption); remove.setInputFormat(data); /* 使用過濾器模式生成新的數據集;新數據集是去掉類標簽之後的數據集 */ Instances newdata = weka.filters.Filter.useFilter(data, remove); /* 生成一個K-Means聚類器 */ SimpleKMeans sm = new SimpleKMeans(); sm.setNumClusters(k); sm.setPreserveInstancesOrder(true); // 保持數據集實例的原始順序 sm.setSeed(i); // 通過設置不同的種子,設置不同的簇初始中心點,從而得到不同的聚類結果 sm.buildClusterer(newdata); int[] assigm = sm.getAssignments(); // 得到數據集各個實例的賦值 /* 建立關聯矩陣 */ for(int j = 0; j < numinst; j++) { for(int m = j; m < numinst; m++) { if(assigm[j] == assigm[m]) { association[j][m] = association[j][m] + 1.0 / numIteration ; } } } } System.out.println(); /* 將生成的關聯矩陣寫入.txt文件(註:生成的txt文本文件在e:/result.txt中) */ FileWriter fw = new FileWriter("e://result.txt"); for(int j = 0; j < numinst; j++) { for(int m = j; m < numinst; m++) { //由於關聯矩陣是對稱的,為了改進演算法的效率,只計算矩陣的上三角 String number = String.format("%8.2f", association[j][m]); fw.write(number); } fw.write("\n"); } /* 處理關聯矩陣,分別考慮了兩種情況 :1.關聯矩陣中某個元素對應的兩個數據點已經被劃分到了不同的簇中 * 2.兩個數據點中有一個或者兩個都沒有被劃分到某個簇中。 */ int[] flag = new int[numinst]; int[] flagk = new int[k]; int[] finallabel = new int[numinst]; for(int m = 0; m < numinst; m++) { for(int n = m; n < numinst; n++) { if(association[m][n] > THREASOD) { if(flag[m] == 0 && flag[n] == 0) { // 兩個數據點都沒有被劃分到某個簇中, int i = 0; // 將他們劃分到同一個簇中即可 while (i < k && flagk[i] == 1) i = i + 1; finallabel[m] = i; finallabel[n] = i; flag[m] = 1; flag[n] = 1; flagk[i] = 1; } else if (flag[m] == 0 && flag[n] == 1) { // 兩個數據點中有一個沒有被劃分到某個簇中, finallabel[m] = finallabel[n]; // 將他們劃分到同一個簇中即可 flag[m] = 1; } else if (flag[m] == 1 && flag[n] == 0) { finallabel[n] = finallabel[m]; flag[n] = 1; } else if (flag[m] == 1 && flag[n] == 1 && finallabel[m] != finallabel[n]) { // 兩個數據點已被劃分到了不同的簇中, flagk[finallabel[n]] = 0; // 將它們所在的簇合並 int temp = finallabel[n]; for(int i = 0; i < numinst; i++) { if(finallabel[i] == temp) finallabel[i] = finallabel[m]; } } } } } m_Assignments = new int[numinst]; System.out.println("基於關聯矩陣的聚類融合演算法——Voting-K-Means演算法的最終聚類結果"); for(int i = 0; i < numinst; i++) { m_Assignments[i] = finallabel[i]; System.out.print(finallabel[i] + " "); if((i+1) % 50 == 0) System.out.println(); } for(int i = 0; i < k; i++) { if(flagk[i] == 1) m_NumClusters++; } } /** * return a string describing this clusterer * * @return a description of the clusterer as a string */ public String toString() { return "Voting-KMeans\n"; } public static void main(String []args) { try {String filename="e://weka-data//iris.arff"; Instances data = DataSource.read(filename); Votingkmeans2 vk = new Votingkmeans2(); vk.buildClusterer(data); /* 要生成Voting-K-Means的聚類評估結果包括准確率等需要覆蓋重寫toString()方法; * 因為沒有覆蓋重寫,所以這里生產的評估結果沒有具體內容。 */ ClusterEvaluation eval = new ClusterEvaluation(); eval.setClusterer(vk); eval.evaluateClusterer(new Instances(data)); System.out.println(eval.clusterResultsToString()); } catch (Exception e) { e.printStackTrace(); }}}
分析代碼時注意:得到的類成員變數m_Assignments就是最終Voting-K-Means聚類結果;由於是採用了開源機器學習軟體Weka中實現的SimpleKMeans聚類演算法,初始時要指定簇的個數,這里是數據集大小開根號向下取整;指定的閥值為0.5,即當關聯矩陣元素的值大於閥值時,才對該元素對應的兩個數據點進行融合,劃分到一個簇中,考慮兩種情況,代碼注釋已有,這里不再詳述。但聚類融合的實驗結果並不理想,鶯尾花數據集irsi.arff是數據挖掘實驗中最常用的數據集,原數據集共有三個類;但本實驗進行四十個聚類成員的融合,其最終聚類結果劃分成兩個簇;其原因可能有兩個:一是演算法本身的問題,需要使用其他更加優化的聚類融合演算法;二是實現上的問題,主要就在聚類結果的融合上,需要進行一步對照關聯矩陣進行邏輯上的分析,找出代碼中的問題。關聯矩陣文本文件http://download.csdn.net/detail/lhkaikai/7294323
---------------------
本文來自 Turingkk 的CSDN 博客 ,全文地址請點擊:https://blog.csdn.net/lhkaikai/article/details/25004823?utm_source=
G. 利用java演算法進行聚類,聚類的結果存儲在哪
K-MEANS演算法: k-means 演算法接受輸入量 k ;然後將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較校聚類相似度是利用各聚類中對象的均值所獲得一個「中心對象」
H. 數據挖掘干貨總結(四)--聚類演算法
本文共計2680字,預計閱讀時長七分鍾
聚類演算法
一 、 本質
將數據劃分到不同的類里,使相似的數據在同一類里,不相似的數據在不同類里
二 、 分類演算法用來解決什麼問題
文本聚類、圖像聚類和商品聚類,便於發現規律,以解決數據稀疏問題
三 、 聚類演算法基礎知識
1. 層次聚類 vs 非層次聚類
– 不同類之間有無包含關系
2. 硬聚類 vs 軟聚類
– 硬聚類:每個對象只屬於一個類
– 軟聚類:每個對象以某個概率屬於每個類
3. 用向量表示對象
– 每個對象用一個向量表示,可以視為高維空間的一個點
– 所有對象形成數據空間(矩陣)
– 相似度計算:Cosine、點積、質心距離
4. 用矩陣列出對象之間的距離、相似度
5. 用字典保存上述矩陣(節省空間)
D={(1,1):0,(1,2):2,(1,3):6...(5,5):0}
6. 評價方法
– 內部評價法(Internal Evalution):
• 沒有外部標准,非監督式
• 同類是否相似,跨類是否相異
DB值越小聚類效果越好,反之,越不好
– 外部評價法(External Evalution):
• 准確度(accuracy): (C11+C22) / (C11 + C12 + C21 + C22)
• 精度(Precision): C11 / (C11 + C21 )
• 召回(Recall): C11 / (C11 + C12 )
• F值(F-measure):
β表示對精度P的重視程度,越大越重視,默認設置為1,即變成了F值,F較高時則能說明聚類效果較好。
四 、 有哪些聚類演算法
主要分為 層次化聚類演算法 , 劃分式聚類演算法 , 基於密度的聚類演算法 , 基於網格的聚類演算法 , 基於模型的聚類演算法等 。
4.1 層次化聚類演算法
又稱樹聚類演算法,透過一種層次架構方式,反復將數據進行分裂或聚合。典型的有BIRCH演算法,CURE演算法,CHAMELEON演算法,Sequence data rough clustering演算法,Between groups average演算法,Furthest neighbor演算法,Neares neighbor演算法等。
凝聚型層次聚類 :
先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。
演算法流程:
1. 將每個對象看作一類,計算兩兩之間的最小距離;
2. 將距離最小的兩個類合並成一個新類;
3. 重新計算新類與所有類之間的距離;
4. 重復2、3,直到所有類最後合並成一類。
特點:
1. 演算法簡單
2. 層次用於概念聚類(生成概念、文檔層次樹)
3. 聚類對象的兩種表示法都適用
4. 處理大小不同的簇
5. 簇選取步驟在樹狀圖生成之後
4.2 劃分式聚類演算法
預先指定聚類數目或聚類中心,反復迭代逐步降低目標函數誤差值直至收斂,得到最終結果。K-means,K-modes-Huang,K-means-CP,MDS_CLUSTER, Feature weighted fuzzy clustering,CLARANS等
經典K-means:
演算法流程:
1. 隨機地選擇k個對象,每個對象初始地代表了一個簇的中心;
2. 對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;
3. 重新計算每個簇的平均值,更新為新的簇中心;
4. 不斷重復2、3,直到准則函數收斂。
特點:
1.K的選擇
2.中心點的選擇
– 隨機
– 多輪隨機:選擇最小的WCSS
3.優點
– 演算法簡單、有效
– 時間復雜度:O(nkt)
4.缺點
– 不適於處理球面數據
– 密度、大小不同的聚類,受K的限制,難於發現自然的聚類
4.3 基於模型的聚類演算法
為每簇假定了一個模型,尋找數據對給定模型的最佳擬合,同一」類「的數據屬於同一種概率分布,即假設數據是根據潛在的概率分布生成的。主要有基於統計學模型的方法和基於神經網路模型的方法,尤其以基於概率模型的方法居多。一個基於模型的演算法可能通過構建反應數據點空間分布的密度函數來定位聚類。基於模型的聚類試圖優化給定的數據和某些數據模型之間的適應性。
SOM 神經網路演算法 :
該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
1. 網路初始化,對輸出層每個節點權重賦初值;
2. 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
3. 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
4. 提供新樣本、進行訓練;
5. 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
4.4 基於密度聚類演算法
只要鄰近區域的密度(對象或數據點的數目)超過某個閾值,就繼續聚類,擅於解決不規則形狀的聚類問題,廣泛應用於空間信息處理,SGC,GCHL,DBSCAN演算法、OPTICS演算法、DENCLUE演算法。
DBSCAN:
對於集中區域效果較好,為了發現任意形狀的簇,這類方法將簇看做是數據空間中被低密度區域分割開的稠密對象區域;一種基於高密度連通區域的基於密度的聚類方法,該演算法將具有足夠高密度的區域劃分為簇,並在具有雜訊的空間數據中發現任意形狀的簇。
4.5 基於網格的聚類演算法
基於網格的方法把對象空間量化為有限數目的單元,形成一個網格結構。所有的聚類操作都在這個網格結構(即量化空間)上進行。這種方法的主要優點是它的處理 速度很快,其處理速度獨立於數據對象的數目,只與量化空間中每一維的單元數目有關。但這種演算法效率的提高是以聚類結果的精確性為代價的。經常與基於密度的演算法結合使用。代表演算法有STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法等。
I. 用JAVA實現錄入一個txt文檔,並且將文檔轉換成矩陣或數組,得到文本距離用以使用K-MEANS演算法進行聚類分析
您好,詮釋imgW img.getWidth();
imgH = img.getHeight();
INT [] RGBData =新的int [imgW * imgH];
img.getRGB(RGBData,imgW,0,0,imgW,imgH);
TMP =(255 << 24)| 0x00444444;
(INT I = 0;我RGBData.length,我+ +)
{
RGBData [I] = tmp目錄;
}
圖片o_Img = Image.createRGBImage(RGBData,imgW,imgH, TRUE);得到處理後的圖像
現在用圖片半透明的,未經測試。
J. 請教Louvain演算法的Java程序(程序小白完全看不懂,希望大神詳解)
Louvain演算法主要針對文獻[1]的一種實現,它是一種基於模塊度的圖演算法模型,與普通的基於模塊度和模塊度增益不同的是,該演算法速度很快,而且對一些點多邊少的圖,進行聚類效果特別明顯,本文用的畫圖工具是Gephi,從畫圖的效果來說,提升是很明顯的。
文本沒有權威,僅是個人工作中的一點總結與思考,能力與時間有限,理解不免有些淺薄,僅做參考。也可能有理解偏差或錯誤,如有發現,希望不吝指教,多謝!
由於演算法中的公式太多,不方便用markdown編輯,所以就將編排好的文檔轉成圖片,如需完整的文檔請點擊這里下載。