多變數的遺傳演算法
1. 關於多變數遺傳演算法的二進制碼排序問題
最左邊的位是最高位。數的位排列從左到右,對應的值從高到低。可是在機器的數字電路上,數的高低位可以從左到右進行排列,也可以從右到左進行排列。
2. 遺傳演算法的優缺點
優點:
1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。
另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。
2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。
3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。
另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。
4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。
5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。
缺點:
1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。
2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。
3、遺傳演算法效率通常低於其他傳統的優化方法。
4、遺傳演算法容易出現過早收斂的問題。
(2)多變數的遺傳演算法擴展閱讀
遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。
函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。
為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。
3. 請問多變數遺傳演算法的Matlab程序還有嗎
Matlab本身就集成了遺傳演算法,留有介面可以進行二次開發。
遺傳演算法可以求解多個變數,比如200多個變數都可以。
4. 如何用遺傳演算法實現多變數的最優化問題
將多個變數的數值編碼編排進去,進行組合。
5. 遺傳演算法-總結
最近在做遺傳演算法的項目,簡單記錄一下。
遺傳演算法是模擬自然界生物進化機制的一種演算法,在尋優過程中有用的保留無用的去除。包括3個基本的遺傳運算元:選擇(selection)、交叉(crossover)和變異(mutation)。遺傳操作的效果與上述3個遺傳運算元所取的操作概率、編碼方法、群體大小、初始群體,以及適應度函數的設定密切相關。
1、種群初始化
popsize 種群大小,一般為20-100,太小會降低群體的多樣性,導致早熟;較大會影響運行效率;迭代次數一般100-500;交叉概率:0.4-0.99,太小會破壞群體的優良模式;變異概率:0.001-0.1,太大搜索趨於隨機。編碼包括實數編碼和二進制編碼,可以參考遺傳演算法的幾個經典問題,TSP、背包問題、車間調度問題。
2、選擇
目的是把優化個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代,我大部分採用了輪盤賭的方法。具體可參考 http://my.oschina.net/u/1412321/blog/192454 輪盤賭方法各個個體的選擇概率和其適應值成比例,個體適應值越大,被選擇的概率也越高,反之亦然。在實際問題中,經常需要最小值作為最優解,有以下幾種方法進行轉換
a、0-1之間的數據,可以用1-該數值,則最小值與最大值互換;
b、 求倒數;
c、求相反數;
以上幾種方法均可以將最大值變為最小值,最小值變為最大值,便於利用輪盤賭選擇最優個體,根據實際情況來確定。
3、交叉
交叉即將兩個父代個體的部分結構加以替換重組而生成新個體的操作,通過交叉,遺傳演算法的搜索能力得以飛躍提高。根據編碼方法的不同,可以有以下的演算法:
a、實值重組
離散重組、中間重組、線性重組、擴展線性重組
b、二進制交叉
單點交叉、多點交叉、均勻交叉、洗牌交叉、縮小代理交叉
4、變異
基本步驟:對群中所有個體以事先設定的變異概率判斷是否進行變異;對進行變異的個體隨機選擇變異位進行變異。根據編碼表示方法的不同,有實值變異和二進制變異
變異的目的:
a、使遺傳演算法具有局部的隨機搜索能力。當遺傳演算法通過交叉運算元已接近最優解鄰域時,利用變異運算元的這種局部搜索能力可以加速向最優解收斂。顯然該情況下變異概率應取較小值,否則接近最優解的積木塊會因為變異遭到破壞。
b、使遺傳演算法可維持多樣性,以防止未成熟收斂現象。此時收斂概率應取較大值。
變異概率一般取0.001-0.1。
5、終止條件
當最優個體的適應度達到給定的閾值,或者最優個體的適應度和群體適應度不再上升時,或者迭代次數達到預設的代數時,演算法終止。預設代數一般為100-500。
6、其它
多變數:將多個變數依次連接
多目標:一種方法是轉化為單目標,例如按大小進行排序,根據排序和進行選擇,可以參考 https://blog.csdn.net/paulfeng20171114/article/details/82454310
6. 如何用遺傳演算法實現多變數的最優化問題
是不是像求函數最值那樣子?建議你了解一下遺傳演算法的實數編碼,這個對於求函數最值很方便,不用像二進制那樣需要轉換。
簡單介紹一下思路:
最重要的是確定適應度函數,只要確定這個函數就很容易了,就用你不會編程,直接調用matlab的工具箱就行了。
1st.設置種群規模,並初始化種群p,並計算各個個體的適應度。
例如,20個個體,每個個體包含5個變數,x1,x2,x3,x4,x5.
如果你用matlab來編程的話,這個可以很容易實現,會用到random('unif',a,b)這個函數吧。
例如x1的取值范圍是[0,1],那麼x1=random('unif',0,1).
2nd.採用輪盤賭選出可以產生後代的父本,p_parents。
額,輪盤賭的實質就是適應度大的被選出的概率大。這個不難,但說起來比較長,你可以自己去看一下。
3rd.雜交過程的思路隨機將p_parents中的個體隨機兩兩配對,然後隨機產生一個1到n的數(n為變數的個數),設為i,交換每對父本中i之後的變數值。交換以後的p_parents成為後代p_offspring.
這里變起來有點點復雜,不過只要耐心一點,編好配對過程和交換過程。
4th.變異過程,這個比較簡單,不過需要自己把握的較好。
基本的思路是設置一個概率,例如0.05,然後產生一個隨機數如果隨機數比0.05小那麼這個變數值就要產生微小的增加或減少。
這個變異過程要歷遍p_offspring所有的變數喔。
5th.將p和p_offspring合並起來,然後選出適應度大的,重新構成一個如原始種群規模相等的種群。
7. 遺傳演算法的基本原理
遺傳演算法的基本原理和方法
一、編碼
編碼:把一個問題的可行解從其解空間轉換到遺傳演算法的搜索空間的轉換方法。
解碼(解碼):遺傳演算法解空間向問題空間的轉換。
二進制編碼的缺點是漢明懸崖(Hamming Cliff),就是在某些相鄰整數的二進制代碼之間有很大的漢明距離,使得遺傳演算法的交叉和突變都難以跨越。
格雷碼(Gray Code):在相鄰整數之間漢明距離都為1。
(較好)有意義的積木塊編碼規則:所定編碼應當易於生成與所求問題相關的短距和低階的積木塊;最小字元集編碼規則,所定編碼應採用最小字元集以使問題得到自然的表示或描述。
二進制編碼比十進制編碼搜索能力強,但不能保持群體穩定性。
動態參數編碼(Dynamic Paremeter Coding):為了得到很高的精度,讓遺傳演算法從很粗糙的精度開始收斂,當遺傳演算法找到一個區域後,就將搜索現在在這個區域,重新編碼,重新啟動,重復這一過程,直到達到要求的精度為止。
編碼方法:
1、 二進制編碼方法
缺點:存在著連續函數離散化時的映射誤差。不能直接反映出所求問題的本身結構特徵,不便於開發針對問題的專門知識的遺傳運算運算元,很難滿足積木塊編碼原則
2、 格雷碼編碼:連續的兩個整數所對應的編碼之間僅僅只有一個碼位是不同的,其餘碼位都相同。
3、 浮點數編碼方法:個體的每個基因值用某一范圍內的某個浮點數來表示,個體的編碼長度等於其決策變數的位數。
4、 各參數級聯編碼:對含有多個變數的個體進行編碼的方法。通常將各個參數分別以某種編碼方法進行編碼,然後再將他們的編碼按照一定順序連接在一起就組成了表示全部參數的個體編碼。
5、 多參數交叉編碼:將各個參數中起主要作用的碼位集中在一起,這樣它們就不易於被遺傳運算元破壞掉。
評估編碼的三個規范:完備性、健全性、非冗餘性。
二、選擇
遺傳演算法中的選擇操作就是用來確定如何從父代群體中按某種方法選取那些個體遺傳到下一代群體中的一種遺傳運算,用來確定重組或交叉個體,以及被選個體將產生多少個子代個體。
常用的選擇運算元:
1、 輪盤賭選擇(Roulette Wheel Selection):是一種回放式隨機采樣方法。每個個體進入下一代的概率等於它的適應度值與整個種群中個體適應度值和的比例。選擇誤差較大。
2、 隨機競爭選擇(Stochastic Tournament):每次按輪盤賭選擇一對個體,然後讓這兩個個體進行競爭,適應度高的被選中,如此反復,直到選滿為止。
3、 最佳保留選擇:首先按輪盤賭選擇方法執行遺傳演算法的選擇操作,然後將當前群體中適應度最高的個體結構完整地復制到下一代群體中。
4、 無回放隨機選擇(也叫期望值選擇Excepted Value Selection):根據每個個體在下一代群體中的生存期望來進行隨機選擇運算。方法如下
(1) 計算群體中每個個體在下一代群體中的生存期望數目N。
(2) 若某一個體被選中參與交叉運算,則它在下一代中的生存期望數目減去0.5,若某一個體未被選中參與交叉運算,則它在下一代中的生存期望數目減去1.0。
(3) 隨著選擇過程的進行,若某一個體的生存期望數目小於0時,則該個體就不再有機會被選中。
5、 確定式選擇:按照一種確定的方式來進行選擇操作。具體操作過程如下:
(1) 計算群體中各個個體在下一代群體中的期望生存數目N。
(2) 用N的整數部分確定各個對應個體在下一代群體中的生存數目。
(3) 用N的小數部分對個體進行降序排列,順序取前M個個體加入到下一代群體中。至此可完全確定出下一代群體中M個個體。
6、無回放余數隨機選擇:可確保適應度比平均適應度大的一些個體能夠被遺傳到下一代群體中,因而選擇誤差比較小。
7、均勻排序:對群體中的所有個體按期適應度大小進行排序,基於這個排序來分配各個個體被選中的概率。
8、最佳保存策略:當前群體中適應度最高的個體不參與交叉運算和變異運算,而是用它來代替掉本代群體中經過交叉、變異等操作後所產生的適應度最低的個體。
9、隨機聯賽選擇:每次選取幾個個體中適應度最高的一個個體遺傳到下一代群體中。
10、排擠選擇:新生成的子代將代替或排擠相似的舊父代個體,提高群體的多樣性。
三、交叉
遺傳演算法的交叉操作,是指對兩個相互配對的染色體按某種方式相互交換其部分基因,從而形成兩個新的個體。
適用於二進制編碼個體或浮點數編碼個體的交叉運算元:
1、單點交叉(One-pointCrossover):指在個體編碼串中只隨機設置一個交叉點,然後再該點相互交換兩個配對個體的部分染色體。
2、兩點交叉與多點交叉:
(1) 兩點交叉(Two-pointCrossover):在個體編碼串中隨機設置了兩個交叉點,然後再進行部分基因交換。
(2) 多點交叉(Multi-pointCrossover)
3、均勻交叉(也稱一致交叉,UniformCrossover):兩個配對個體的每個基因座上的基因都以相同的交叉概率進行交換,從而形成兩個新個體。
4、算術交叉(ArithmeticCrossover):由兩個個體的線性組合而產生出兩個新的個體。該操作對象一般是由浮點數編碼表示的個體。
四、變異
遺傳演算法中的變異運算,是指將個體染色體編碼串中的某些基因座上的基因值用該基因座上的其它等位基因來替換,從而形成以給新的個體。
以下變異運算元適用於二進制編碼和浮點數編碼的個體:
1、基本位變異(SimpleMutation):對個體編碼串中以變異概率、隨機指定的某一位或某幾位僅因座上的值做變異運算。
2、均勻變異(UniformMutation):分別用符合某一范圍內均勻分布的隨機數,以某一較小的概率來替換個體編碼串中各個基因座上的原有基因值。(特別適用於在演算法的初級運行階段)
3、邊界變異(BoundaryMutation):隨機的取基因座上的兩個對應邊界基因值之一去替代原有基因值。特別適用於最優點位於或接近於可行解的邊界時的一類問題。
4、非均勻變異:對原有的基因值做一隨機擾動,以擾動後的結果作為變異後的新基因值。對每個基因座都以相同的概率進行變異運算之後,相當於整個解向量在解空間中作了一次輕微的變動。
5、高斯近似變異:進行變異操作時用符號均值為P的平均值,方差為P2的正態分布的一個隨機數來替換原有的基因值。
8. c語言遺傳演算法編碼多個變數怎麼編碼
採用位域表示方法,可以節省存儲,又能方便訪問和操作。
structbs{
unsignedv0:3;
unsignedv1:3;
unsignedv2:3;
......
unsignedv31:3;
}data;
每個變數只需要三個bit,32個變數需要:32*3/8=12個位元組,效率非常高。這里v0~v31也可以取更有意義的名字。
9. 遺傳演算法的主要步驟
為了使用遺傳演算法來解決優化問題,准備工作分為以下四步[56,57,61]。
7.4.1 確定問題的潛在解的遺傳表示方案
在基本的遺傳演算法中,表示方案是把問題的搜索空間中每個可能的點表示為確定長度的特徵串(通常是二進制串)。表示方案的確定需要選擇串長l和字母表規模k。在染色體串和問題的搜索空間中的點之間選擇映射有時容易實現,有時又非常困難。選擇一個便於遺傳演算法求解問題的表示方案經常需要對問題有深入的了解。
7.4.2 確定適應值的度量
適應值度量為群體中每個可能的確定長度的特徵串指定一個適應值,它經常是問題本身所具有的。適應值度量必須有能力計算搜索空間中每個確定長度的特徵串的適應值。
7.4.3 確定控制該演算法的參數和變數
控制遺傳演算法的主要參數有群體規模Pop-Size、演算法執行的最大代數N-Gen、交叉概率Pc、變異概率Pm和選擇策略R等參數。
(1)群體規模Pop-Size。群體規模影響到遺傳演算法的最終性能和效率。當規模太小時,由於群體對大部分超平面只給出了不充分的樣本量,所以得到的結果一般不佳。大的群體更有希望包含出自大量超平面的代表,從而可以阻止過早收斂到局部最優解;然而群體越大,每一代需要的計算量也就越多,這有可能導致一個無法接受的慢收斂率。
(2)交叉率Pc。交叉率控制交叉運算元應用的頻率,在每代新的群體中,有Pc·Pop-Size個串實行交叉。交叉率越高,群體中串的更新就越快。如果交叉率過高,相對選擇能夠產生的改進而言,高性能的串被破壞得更快。如果交叉率過低,搜索會由於太小的探查率而可能停滯不前。
(3)變異率Pm。變異是增加群體多樣性的搜索運算元,每次選擇之後,新的群體中的每個串的每一位以相等的變異率進行隨機改變。對於M進制串,就是相應的位從1變為0或0變為1。從而每代大約發生Pm·Pop-Size·L次變異,其中L為串長。一個低水平的變異率足以防止整個群體中任一給定位保持永遠收斂到單一的值。高水平的變異率產生的實質是隨機搜索。
比起選擇和交叉,變異在遺傳演算法中是次要的,它在恢復群體中失去的多樣性方面具有潛在的作用。例如,在遺傳演算法執行的開始階段,串中一個特定位上的值1可能與好的性能緊密聯系,也就是說從搜索空間中某些初始隨機點開始,在那個位上的值1可能一致地產生適應性度量好的值。因為越好的適應值與串中那個位上的值1相聯系,復製作用就越會使群體的遺傳多樣性損失。當達到一定程度時,值0會從整個群體中的那個位上消失,然而全局最優解可能在串中那個位上是0。一旦搜索范圍縮小到實際包含全局最優解的那部分搜索空間,在那個位上的值0就可能正好是達到全局最優解所需的。這僅僅是一種說明搜索空間是非線性的方式,這種情形不是假定的,因為實際上所有我們感興趣的問題都是非線性的。變異作用提供了一個恢復遺傳多樣性的損失的方法。
(4)選擇策略R。有兩種選擇策略。一是利用純選擇,即當前群體中每個點復制的次數比與點的性能值成比例。二是利用最優選擇,即首先執行純選擇,且具有最好性能的點總是保留到下一代。在缺少最優選擇的情況下,由於采樣誤差、交叉和變異,最好性能的點可能會丟失。
通過指定各個參數Pop-Size、Pc、Pm和R的值,可以表示一個特定的遺傳演算法。
7.4.4 確定指定結果的方法和停止運行的准則
當遺傳的代數達到最大允許代數時,就可以停止演算法的執行,並指定執行中得到的最好結果作為演算法的結果。
基本的遺傳演算法
1)隨機產生一個由固定長度字元串組成的初始群體。
2)對於字元串群體,迭代地執行下述步驟,直到選擇標准被滿足為止。
①計算群體中的每個個體字元串的適應值;
②實施下列三種操作(至少前兩種)來產生新的群體,操作對象的選取基於與適應度成比例的概率。
選擇:把現有的個體串按適應值復制到新的群體中。
交叉:通過遺傳重組隨機選擇兩個現有的子串進行遺傳重組,產生兩個新的串。
變異:將現有串中某一位的字元隨機變異產生一個新串。
3)把在後代中出現的最好適應值的個體串指定為遺傳演算法運行的結果。這一結果可以是問題的解(或近似解)。
基本的遺傳演算法流程圖如圖7-1所示。