當前位置:首頁 » 操作系統 » 哈夫曼樹的演算法

哈夫曼樹的演算法

發布時間: 2022-10-03 07:39:28

『壹』 哈夫曼樹的空指針域怎麼計算

哈夫曼樹只有2度節點與0度節點,所以只有0度節點(即葉子)又空指針域,且葉子節點數的兩倍。假設他有N個節點,n個葉子,m個2度節點,則有N=2n-1,n=m-1;所以只要知道任意一個量都能計算出哈夫曼樹的空指針域,即2n。

50個葉子結點,51個空指針。因為是二叉鏈表,就是孩子兄弟表示法,不是一般的二叉樹那樣畫,要轉化一下。

在計算機數據處理中,霍夫曼編碼使用變長編碼表對源符號(如文件中的一個字母)進行編碼,其中變長編碼表是通過一種評估來源符號出現機率的方法得到的,出現機率高的字母使用較短的編碼。

(1)哈夫曼樹的演算法擴展閱讀:

假設有n個權值,則構造出的哈夫曼樹有n個葉子結點。 n個權值分別設為 w1、w2、…、wn,則哈夫曼樹的構造規則為:

(1) 將w1、w2、…,wn看成是有n 棵樹的森林(每棵樹僅有一個結點);

(2) 在森林中選出兩個根結點的權值最小的樹合並,作為一棵新樹的左、右子樹,且新樹的根結點權值為其左、右子樹根結點權值之和;

(3)從森林中刪除選取的兩棵樹,並將新樹加入森林;

(4)重復(2)、(3)步,直到森林中只剩一棵樹為止,該樹即為所求得的哈夫曼樹。

『貳』 哈夫曼樹演算法

題目的闡述:以N進制編碼方式對一個英文字串中的字元進行編碼,每個不同的字元其編碼不同.使得由新的編碼替代原串後總碼長最小,且輸入0,1,2,...,N-1構成的數字串後,依照該編碼方式可以正確的對譯出唯一的英文原串.如:N=3英文原串為ABBCBADDACE其對應的一種編碼方式為A:00B:01C:020D:021E:022原串對譯後的編碼為000101020010002102100020022其碼長為27若輸入編碼串0102002200則對應的英文原串為BCEA 分析: 假設英文原串中的字元存放於字元集S中,‖S‖=X,每個字元在字串中出現的概率為W[i],L[i]為字元i的編碼長.依題意得,對S集合中的不同字元進行N進制編碼後要求1)新字串的碼長最短WPL=∑W[i]*L[i]
(i∈1..X)使得在WPL是所有編碼方式中的最小值2)編碼無二義性任意一字元編碼都不為其它字元編碼的前綴 此題以哈夫曼樹來解答是非常適宜的.N為此哈夫曼樹的分叉數,S字元集里的元素即為此N叉哈夫曼樹的葉子,概率W[i]即為葉子結點的權重,從根結點到各葉子結點的路徑長即為該葉子結點的編碼長L[i].由哈夫曼樹的思想可以知道哈夫曼樹的建立是一步到位的貪心法,即權重越大的結點越靠近該樹的根,這樣,出現頻率越大的字元其編碼就越短.但具體應該怎樣建立起此N叉哈夫曼樹呢?我們首先以N=2為例:S={A,B,C,D}W=[3,1,2,1]首先從W中選出兩個最小權,1,1,將其刪去,並以2(即1+1)替代W=[3,2,2];再從新的W中取出兩個最小權,2,2,將其刪去,並以4(即2+2)替代W=[3,4];依此類推,直到W中只一個值時合並結束,此時W=[7]以上兩兩合並的過程即為二叉哈夫曼樹的建立過程,每一次的合並即是將兩棵子樹歸於一個根結點下,於是可以建立二叉樹如下: m0åæ1mmA0åæ1mmC0åæ1mmBD MIN-WPL=3*1+1*3+2*2+1*3=13 從某一根結點出發走向其左子樹標記為0,走向其右子樹標記為1,則可以得到以下編碼A,B,C,D對應的編碼為A:0B:110C:10D:111
N=3時又是怎樣一種情況呢?設S={A,B,C,D,E}W=[7,4,2,5,3}則按權重排序可得S={D,B,E,C,A}W=[7,5,4,3,2]那麼此哈夫曼樹的樹形應為怎樣呢?是以下的左圖,還是右圖,或是兩者均不是mmåâæåæmmllmåæåæCAåælllllmADBEDåæ
lmBåællEC 顯然,要帶權路徑長WPL最短,那麼,此樹的高度就應盡可能的小,由此可知將此樹建成豐滿N叉樹是最合理的,於是我們盡量使樹每一層都為N個分枝.對於這道題的情況,我們具體來分析.按照哈夫曼樹的思想,首先從W中取出權最小的三個值,即2,3,4,並以9(2+3+4)來代替,得到新的W=[9,7,5];再將這三個值合並成9+7+5=21這個結點.於是得到三叉哈夫曼樹如下:måâællmDBåâælllECAWPL=1*7+1*5+2*2+2*3+2*4=30以0..N-1依次標記每個根結點的N個分枝,則可以得到每個字元相對應的編碼:A:22B:1C:21D:0E:20我們發現對於這種情況恰巧每層均為N個分枝,但事實上並非所有的N叉哈夫曼樹都可得到每層N個分枝.例於當N=3,‖S‖=6時就不可能構成一棵每層都為三個分枝的三叉樹.如何來處理這種情況呢?最簡單的處理方式就是添加若干出現概率為0的空字元填補在N叉樹的最下一層,這些權為0的虛結點並無實際意義但卻非常方全便於這棵N叉樹的建立.空字元的添加個數add的計算如下:Y=‖S‖mod(n-1)add=0(Y=1)add=1(Y=0)add=N-Y(Y>1) 虛結點的加入使得權重最小的N-add個字元構成了距根結點最遠的分枝,使其它字元構成的N叉樹保持了豐滿的N叉結構.例:N=3S={A,B,C,D,E,F}W=[1,2,3,4,5,6}則y:=6mod(3-1)=0add=1於是構成N叉樹如下:­為虛結點¡åâællmFEåâællmDCåâæBA­WPL=1*6+1*5+2*4+2*3+3*2+3*1+3*0=33對應編碼為:A:221B:220C:21D:20E:1F:0

『叄』 什麼是哈夫曼演算法

有一種樹形結構叫哈夫曼樹,用哈夫曼樹的方法解編程題的演算法就叫哈夫曼演算法,其實也沒有哈夫曼演算法這個專有名詞了拉,你這么問我就這么跟你講把。它產生的代碼是
#include"stdio.h"
#include"stdlib.h"
#include"string.h"

typedef char ElemType;
typedef struct
{
ElemType elem;
unsigned int m_weight;
unsigned int parent,lchild,rchild;
}HTNode,*HuffmanTree;

typedef char** HuffmanCode;
typedef int Status;
typedef struct weight
{
char elem;
unsigned int m_weight;
}Weight; // save the information of the symbolizes;

void HuffmanCoding(HuffmanTree *,HuffmanCode *,Weight *,int);
void Select(HuffmanTree,int,int *,int *);
void OutputHuffmanCode(HuffmanTree,HuffmanCode,int);

Status main(void)
{
HuffmanTree HT;
HuffmanCode HC;
Weight *w;
char c; // the symbolizes;
int i,n; // the number of elements;
int wei; // the weight of a element;

printf("input the tatol number of the Huffman Tree:" );
scanf("%d",&n);
w=(Weight *)malloc(n*sizeof(Weight));
for(i=0;i<n;i++)
{
printf("input the element & its weight:");
scanf("%1s%d",&c,&wei);
w[i].elem=c;
w[i].m_weight=wei;
}

HuffmanCoding(&HT,&HC,w,n);
OutputHuffmanCode(HT,HC,n);
return 1;

}

void HuffmanCoding(HuffmanTree *HT,HuffmanCode *HC,Weight *w,int n)
{
int i,m,s1,s2,start,c,f;
char *cd;
HuffmanTree p;
if(n<=1)
return;

m=2*n-1;
(*HT)=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(i=1;i<=n;++i)
{
(*HT)[i].elem=w[i-1].elem;
(*HT)[i].m_weight=w[i-1].m_weight;
(*HT)[i].parent=(*HT)[i].lchild=(*HT)[i].rchild=0;
}

for(;i<=m;++i)
{
(*HT)[i].elem='0';
(*HT)[i].m_weight=(*HT)[i].parent=(*HT)[i].lchild=(*HT)[i].rchild=0;
}

for(i=n+1;i<=m;++i)
{
Select(*HT,i-1,&s1,&s2);
(*HT)[s1].parent=i;(*HT)[s2].parent=i;
(*HT)[i].lchild=s1;(*HT)[i].rchild=s2;
(*HT)[i].m_weight=(*HT)[s1].m_weight+(*HT)[s2].m_weight;
}

(*HC)=(HuffmanCode)malloc(n*sizeof(char*));
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;++i)
{
start=n-1;
for(c=i,f=(*HT)[i].parent;f!=0;c=f,f=(*HT)[f].parent)
{
if((*HT)[f].lchild==c) cd[--start]='0';
else cd[--start]='1';
}

(*HC)[i]=(char *)malloc((n-start)*sizeof(char));
strcpy((*HC)[i],&cd[start]);
}
}

void Select(HuffmanTree HT,int n,int *s1,int *s2)
{
int i;
(*s1)=(*s2)=0;
for(i=1;i<=n;i++)
{
if(HT[i].m_weight<HT[(*s2)].m_weight&&HT[i].parent==0&&(*s2)!=0)
{
if(HT[i].m_weight<HT[(*s1)].m_weight)
{
(*s2)=(*s1);
(*s1)=i;
}
else (*s2)=i;

}

if(((*s1)==0||(*s2)==0)&&HT[i].parent==0)
{
if((*s1)==0) (*s1)=i;
else if((*s2)==0)
{
if(HT[i].m_weight<HT[(*s1)].m_weight)
{
(*s2)=(*s1);
(*s1)=i;
}
else (*s2)=i;
} // end of else if
} // end of if
} // end of for

if((*s1)>(*s2))
{
i=(*s1);
(*s1)=(*s2);
(*s2)=i;
}
return;
}

void OutputHuffmanCode(HuffmanTree HT,HuffmanCode HC,int n)
{
int i;
printf("\nnumber---element---weight---huffman code\n");
for(i=1;i<=n;i++)
printf(" %d %c %d %s\n",i,HT[i].elem,HT[i].m_weight,HC[i]);
}

『肆』 哈夫曼樹演算法

題目的闡述:以N進制編碼方式對一個英文字串中的字元進行編碼,每個不同的字元其編碼不同.使得由新的編碼替代原串後總碼長最小,且輸入0,1,2,...,N-1構成的數字串後,依照該編碼方式可以正確的對譯出唯一的英文原串.如:N=3英文原串為ABBCBADDACE其對應的一種編碼方式為A:00B:01C:020D:021E:022原串對譯後的編碼為000101020010002102100020022其碼長為27若輸入編碼串0102002200則對應的英文原串為BCEA 分析: 假設英文原串中的字元存放於字元集S中,‖S‖=X,每個字元在字串中出現的概率為W[i],L[i]為字元i的編碼長.依題意得,對S集合中的不同字元進行N進制編碼後要求1)新字串的碼長最短WPL=∑W[i]*L[i] (i∈1..X)使得在WPL是所有編碼方式中的最小值2)編碼無二義性任意一字元編碼都不為其它字元編碼的前綴 此題以哈夫曼樹來解答是非常適宜的.N為此哈夫曼樹的分叉數,S字元集里的元素即為此N叉哈夫曼樹的葉子,概率W[i]即為葉子結點的權重,從根結點到各葉子結點的路徑長即為該葉子結點的編碼長L[i].由哈夫曼樹的思想可以知道哈夫曼樹的建立是一步到位的貪心法,即權重越大的結點越靠近該樹的根,這樣,出現頻率越大的字元其編碼就越短.但具體應該怎樣建立起此N叉哈夫曼樹呢?我們首先以N=2為例:S={A,B,C,D}W=[3,1,2,1]首先從W中選出兩個最小權,1,1,將其刪去,並以2(即1+1)替代W=[3,2,2];再從新的W中取出兩個最小權,2,2,將其刪去,並以4(即2+2)替代W=[3,4];依此類推,直到W中只一個值時合並結束,此時W=[7]以上兩兩合並的過程即為二叉哈夫曼樹的建立過程,每一次的合並即是將兩棵子樹歸於一個根結點下,於是可以建立二叉樹如下: m0�0�2�0�31mmA0�0�2�0�31mmC0�0�2�0�31mmBD MIN-WPL=3*1+1*3+2*2+1*3=13 從某一根結點出發走向其左子樹標記為0,走向其右子樹標記為1,則可以得到以下編碼A,B,C,D對應的編碼為A:0B:110C:10D:111 N=3時又是怎樣一種情況呢?設S={A,B,C,D,E}W=[7,4,2,5,3}則按權重排序可得S={D,B,E,C,A}W=[7,5,4,3,2]那麼此哈夫曼樹的樹形應為怎樣呢?是以下的左圖,還是右圖,或是兩者均不是mm�0�2�0�9�0�3�0�2�0�3mmllm�0�2�0�3�0�2�0�3CA�0�2�0�3lllllmADBED�0�2�0�3 lmB�0�2�0�3llEC 顯然,要帶權路徑長WPL最短,那麼,此樹的高度就應盡可能的小,由此可知將此樹建成豐滿N叉樹是最合理的,於是我們盡量使樹每一層都為N個分枝.對於這道題的情況,我們具體來分析.按照哈夫曼樹的思想,首先從W中取出權最小的三個值,即2,3,4,並以9(2+3+4)來代替,得到新的W=[9,7,5];再將這三個值合並成9+7+5=21這個結點.於是得到三叉哈夫曼樹如下:m�0�2�0�9�0�3llmDB�0�2�0�9�0�3lllECAWPL=1*7+1*5+2*2+2*3+2*4=30以0..N-1依次標記每個根結點的N個分枝,則可以得到每個字元相對應的編碼:A:22B:1C:21D:0E:20我們發現對於這種情況恰巧每層均為N個分枝,但事實上並非所有的N叉哈夫曼樹都可得到每層N個分枝.例於當N=3,‖S‖=6時就不可能構成一棵每層都為三個分枝的三叉樹.如何來處理這種情況呢?最簡單的處理方式就是添加若干出現概率為0的空字元填補在N叉樹的最下一層,這些權為0的虛結點並無實際意義但卻非常方全便於這棵N叉樹的建立.空字元的添加個數add的計算如下:Y=‖S‖mod(n-1)add=0(Y=1)add=1(Y=0)add=N-Y(Y>1) 虛結點的加入使得權重最小的N-add個字元構成了距根結點最遠的分枝,使其它字元構成的N叉樹保持了豐滿的N叉結構.例:N=3S={A,B,C,D,E,F}W=[1,2,3,4,5,6}則y:=6mod(3-1)=0add=1於是構成N叉樹如下:�0�2為虛結點�0�3�0�2�0�9�0�3llmFE�0�2�0�9�0�3llmDC�0�2�0�9�0�3BA�0�2WPL=1*6+1*5+2*4+2*3+3*2+3*1+3*0=33對應編碼為:A:221B:220C:21D:20E:1F:0

『伍』 哈夫曼樹解碼的演算法思路,語言描述即可

你講的是實現時的語言注釋,還是他的實現過程

『陸』 哈夫曼樹&帶權路徑計算

——即最短帶權路徑二叉樹,即最優二叉樹。將樹的節點值升序排序,由葉至根構建二叉樹,每次選兩個最小的節點連接,加法得到其父節點值。最終根節點權為0,向葉子節點依次遞增1。

eg:w={1,4,9,16,25,36,49,64,81,100}

最終哈夫曼樹:

最終帶權路徑長度:

WPL=2*100+2*81+3*64+3*36+3*49+4*25+5*16+6*9+7*1+7*4=1078

『柒』 哈夫曼樹的構造演算法

/*-------------------------------------------------------------------------
*Name:哈夫曼編碼源代碼。
*Date:2011.04.16
*Author:JeffreyHill+Jezze(解碼部分)
*在Win-TC下測試通過
*實現過程:著先通過HuffmanTree()函數構造哈夫曼樹,然後在主函數main()中
*自底向上開始(也就是從數組序號為零的結點開始)向上層層判斷,若在
*父結點左側,則置碼為0,若在右側,則置碼為1。最後輸出生成的編碼。
*------------------------------------------------------------------------*/
#include<stdio.h>
#include<stdlib.h>

#defineMAXBIT100
#defineMAXVALUE10000
#defineMAXLEAF30
#defineMAXNODEMAXLEAF*2-1

typedefstruct
{
intbit[MAXBIT];
intstart;
}HCodeType;/*編碼結構體*/
typedefstruct
{
intweight;
intparent;
intlchild;
intrchild;
intvalue;
}HNodeType;/*結點結構體*/

/*構造一顆哈夫曼樹*/
voidHuffmanTree(HNodeTypeHuffNode[MAXNODE],intn)
{
/*i、j:循環變數,m1、m2:構造哈夫曼樹不同過程中兩個最小權值結點的權值,
x1、x2:構造哈夫曼樹不同過程中兩個最小權值結點在數組中的序號。*/
inti,j,m1,m2,x1,x2;
/*初始化存放哈夫曼樹數組HuffNode[]中的結點*/
for(i=0;i<2*n-1;i++)
{
HuffNode[i].weight=0;//權值
HuffNode[i].parent=-1;
HuffNode[i].lchild=-1;
HuffNode[i].rchild=-1;
HuffNode[i].value=i;//實際值,可根據情況替換為字母
}/*endfor*/

/*輸入n個葉子結點的權值*/
for(i=0;i<n;i++)
{
printf("Pleaseinputweightofleafnode%d: ",i);
scanf("%d",&HuffNode[i].weight);
}/*endfor*/

/*循環構造Huffman樹*/
for(i=0;i<n-1;i++)
{
m1=m2=MAXVALUE;/*m1、m2中存放兩個無父結點且結點權值最小的兩個結點*/
x1=x2=0;
/*找出所有結點中權值最小、無父結點的兩個結點,並合並之為一顆二叉樹*/
for(j=0;j<n+i;j++)
{
if(HuffNode[j].weight<m1&&HuffNode[j].parent==-1)
{
m2=m1;
x2=x1;
m1=HuffNode[j].weight;
x1=j;
}
elseif(HuffNode[j].weight<m2&&HuffNode[j].parent==-1)
{
m2=HuffNode[j].weight;
x2=j;
}
}/*endfor*/
/*設置找到的兩個子結點x1、x2的父結點信息*/
HuffNode[x1].parent=n+i;
HuffNode[x2].parent=n+i;
HuffNode[n+i].weight=HuffNode[x1].weight+HuffNode[x2].weight;
HuffNode[n+i].lchild=x1;
HuffNode[n+i].rchild=x2;

printf("x1.weightandx2.weightinround%d:%d,%d ",i+1,HuffNode[x1].weight,HuffNode[x2].weight);/*用於測試*/
printf(" ");
}/*endfor*/
/*for(i=0;i<n+2;i++)
{
printf("Parents:%d,lchild:%d,rchild:%d,value:%d,weight:%d ",HuffNode[i].parent,HuffNode[i].lchild,HuffNode[i].rchild,HuffNode[i].value,HuffNode[i].weight);
}*///測試
}/*endHuffmanTree*/

//解碼
voiddecodeing(charstring[],HNodeTypeBuf[],intNum)
{
inti,tmp=0,code[1024];
intm=2*Num-1;
char*nump;
charnum[1024];
for(i=0;i<strlen(string);i++)
{
if(string[i]=='0')
num[i]=0;
else
num[i]=1;
}
i=0;
nump=&num[0];

while(nump<(&num[strlen(string)]))
{tmp=m-1;
while((Buf[tmp].lchild!=-1)&&(Buf[tmp].rchild!=-1))
{

if(*nump==0)
{
tmp=Buf[tmp].lchild;
}
elsetmp=Buf[tmp].rchild;
nump++;

}

printf("%d",Buf[tmp].value);
}


}


intmain(void)
{

HNodeTypeHuffNode[MAXNODE];/*定義一個結點結構體數組*/
HCodeTypeHuffCode[MAXLEAF],cd;/*定義一個編碼結構體數組,同時定義一個臨時變數來存放求解編碼時的信息*/
inti,j,c,p,n;
charpp[100];
printf("Pleaseinputn: ");
scanf("%d",&n);
HuffmanTree(HuffNode,n);


for(i=0;i<n;i++)
{
cd.start=n-1;
c=i;
p=HuffNode[c].parent;
while(p!=-1)/*父結點存在*/
{
if(HuffNode[p].lchild==c)
cd.bit[cd.start]=0;
else
cd.bit[cd.start]=1;
cd.start--;/*求編碼的低一位*/
c=p;
p=HuffNode[c].parent;/*設置下一循環條件*/
}/*endwhile*/

/*保存求出的每個葉結點的哈夫曼編碼和編碼的起始位*/
for(j=cd.start+1;j<n;j++)
{HuffCode[i].bit[j]=cd.bit[j];}
HuffCode[i].start=cd.start;
}/*endfor*/

/*輸出已保存好的所有存在編碼的哈夫曼編碼*/
for(i=0;i<n;i++)
{
printf("%d'sHuffmancodeis:",i);
for(j=HuffCode[i].start+1;j<n;j++)
{
printf("%d",HuffCode[i].bit[j]);
}
printf("start:%d",HuffCode[i].start);

printf(" ");

}
/*for(i=0;i<n;i++){
for(j=0;j<n;j++)
{
printf("%d",HuffCode[i].bit[j]);
}
printf(" ");
}*/
printf("Decoding?PleaseEntercode: ");
scanf("%s",&pp);
decodeing(pp,HuffNode,n);
getch();
return0;
}

http://www.cnblogs.com/Jezze/archive/2011/12/23/2299884.html

『捌』 請描述哈夫曼演算法,並用圖描述構造哈夫曼樹的過程。

1. 根據給定的n個權值{w1,w2,…wn}構成n棵二叉樹的集合F={T1,T2,..,Tn},其中每棵二叉樹Ti中只有一個帶權wi的根結點,左右子樹均空。
2. 在F中選擇兩棵根結點權值最小的樹作為左右子樹構造一棵新的二叉樹,且置新的二叉樹的根結點的權值為其左右子樹上根結點的權值之和。
3. 在F中刪除這兩棵樹,並將新的二叉樹加入F中。
4. 重復前兩步(2和3),直到F中只含有一棵樹為止。該樹即為哈夫曼樹
幫你貼過來了,網路
這東西實際用法是可以減少樹的訪問次數,因為他把頻率高的點放在比較靠近根節點的地方,頻率低的在下面,這樣訪問速度快。舉個例子,比如四個點,他們的使用頻率分別是1,2,3,4,然後構成的樹就是
4
0 3
0 2
0 1
補:打不出樹形結構...

熱點內容
汽車小組件怎麼弄到安卓桌面 發布:2025-05-16 13:51:12 瀏覽:218
linuxg編譯器下載 發布:2025-05-16 13:50:58 瀏覽:775
centosc編譯器 發布:2025-05-16 13:50:17 瀏覽:947
安卓手機如何變換桌面 發布:2025-05-16 13:39:33 瀏覽:514
sql存儲過程命令 發布:2025-05-16 13:17:54 瀏覽:145
用紙做解壓小玩具西瓜 發布:2025-05-16 13:04:09 瀏覽:935
區域網xp無法訪問win7 發布:2025-05-16 13:03:58 瀏覽:942
油卡如何修改密碼 發布:2025-05-16 13:00:35 瀏覽:901
安卓手機如何拼照片 發布:2025-05-16 12:58:23 瀏覽:374
深入淺出python 發布:2025-05-16 12:56:52 瀏覽:655