當前位置:首頁 » 操作系統 » 分背包演算法

分背包演算法

發布時間: 2022-10-20 10:51:52

『壹』 急,分全拿出來了,演算法中的背包問題的貪心演算法

#include <stdio.h>
#include <iostream.h>

#define MAXWEIGHT 20
#define n 3

float pw[n]={0},x[n]={0};
int w[n]={0},p[n]={0};

void sort(int p[],int w[])
{
int temp1,temp2;
float temp;
int i,j;
for(i=0;i<n;i++)
{
pw[i]=float(p[i])/w[i];
}

for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(pw[i]<pw[j])
{
temp=pw[i],pw[i]=pw[j],pw[j]=temp;
temp1=p[i],temp2=w[i];
p[i]=p[j],w[i]=w[j];
p[j]=temp1,w[j]=temp2;
}
}

}

}

void GreedyKnapsack(int p[],int w[])
{
int m=MAXWEIGHT,i;
for(i=0;i<n;i++) x[i]=0.0;
for(i=0;i<n;i++)
{
if(w[i]>m) break;
x[i]=1.0;
m=m-w[i];
}
if(i<n) x[i]=float(m)/w[i];

}

void main()
{
int i;
printf("請輸入每個物體的效益和重量:\n");
for(i=0;i<n;i++)
{
cin>>p[i]>>w[i];
}
for(i=0;i<n;i++)
{
printf("原物體%d的效益和重量分別為%d,%d:\n",i+1,p[i],w[i]);
}
sort(p,w);
printf("\n\n\n按效益值非遞增順序排列物體:\n");
for(i=0;i<n;i++)
{
printf("物體%d的效益和重量分別為%d,%d 效益值為:%f\n",(i+1),p[i],w[i],pw[i]);

}
GreedyKnapsack(p,w);
printf("\n\n\n最優解為:\n");
for(i=0;i<n;i++)
{
printf("第%d個物體要放%f:\n",i+1,x[i]);
}

}

這是正確的演算法

『貳』 用貪心演算法求解背包問題的最優解。

你這個是部分背包么?也就是說物品可以隨意分割?
那麼可以先算出單位重量物品的價值,然後只要從高價值到低價值放入就行了,按p[i]/w[i]降序排序,然後一件一件加,加滿為止!
貪心的思路是:加最少的重量得到更大的價值!
算出單位價值為{6,4,3,2,7,5,2}
加的順序即為5,1,6,2,3,4/7
如果重量不超過就全部都加,超過就加滿為止
不懂可問望採納!
推薦看dd_engi的背包九講,神級背包教程!在此膜拜dd_engi神牛~

『叄』 用分治法處理0-1背包的演算法

設有一個背包,可以放入的重量為s。現在n件物品,重量分別為w1,w2,…,wn,並假設wi(1≤i≤n)均為正整數
program kic;
const M=10;{物品的件數}
var
w:array [1..M] of integer;{W[i]—第i件物品的重量}
x,y,i:integer;{x,y—選中的物品的重量和及其件數}
f:boolean; }
function knap(s,n:integer):boolean;
begin
if s=0 then knap:=true
else if (s<0) or ((s>0) and (n<1))
{產生的不合理結果說明方案不可能存在}
then knap:=false
else begin
if knap(s-w[n],n-1)=true {選中物品n}
then begin
writeln('number:',n:4,' weight:',w[n]:4);
knap:=true;
end
else knap:=knap(s,n-1);
{在除物品n外的n-1件物品中遞歸選擇}
end;

end;
begin
fillchar(w,sizeof(w),0);{初始化}
write('object number=');{輸入選中的物品的件數}
repeat readln(y); until y<=M;
write('total weight=');{輸入選中物品的重量和}
readln(x);
for i:=1 to y do read(w[i]);{輸入每物品的重量}
f:=knap(x,y);{遞歸求解背包問題}
if not(f) then writeln('not find');
{若背包中放不下重量和為X的Y件物品,則輸出無解信息}
end.

『肆』 求動態規劃0-1背包演算法解釋

01背包問題
題目
有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使價值總和最大。

基本思路
這是最基礎的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。

用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態轉移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

這個方程非常重要,基本上所有跟背包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的背包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物 品放入容量為v的背包中」,價值為f[i-1][v];如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的背包中」,此時能獲得的最大價值就是f[i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

優化空間復雜度
以上方法的時間和空間復雜度均為O(VN),其中時間復雜度應該已經不能再優化了,但空間復雜度卻可以優化到O。

先考慮上面講的基本思路如何實現,肯定是有一個主循環i=1..N,每次算出來二維數組f[i][0..V]的所有值。那麼,如果只用一個數組 f[0..V],能不能保證第i次循環結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主循環中推f[v]時)能夠得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事實上,這要求在每次主循環中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]保存的是狀態 f[i-1][v-c[i]]的值。偽代碼如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當於我們的轉移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的循環順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的背包問題P02最簡捷的解決方案,故學習只用一維數組解01背包問題是十分必要的。

事實上,使用一維數組解01背包的程序在後面會被多次用到,所以這里抽象出一個處理一件01背包中的物品過程,以後的代碼中直接調用不加說明。

過程ZeroOnePack,表示處理一件01背包中的物品,兩個參數cost、weight分別表明這件物品的費用和價值。

procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意這個過程里的處理與前面給出的偽代碼有所不同。前面的示常式序寫成v=V..0是為了在程序中體現每個狀態都按照方程求解了,避免不必要的思維復雜度。而這里既然已經抽象成看作黑箱的過程了,就可以加入優化。費用為cost的物品不會影響狀態f[0..cost-1],這是顯然的。

有了這個過程以後,01背包問題的偽代碼就可以這樣寫:

for i=1..N
ZeroOnePack(c[i],w[i]);
初始化的細節問題
我們看到的求最優解的背包問題題目中,事實上有兩種不太相同的問法。有的題目要求「恰好裝滿背包」時的最優解,有的題目則並沒有要求必須把背包裝滿。一種區別這兩種問法的實現方法是在初始化的時候有所不同。

如果是第一種問法,要求恰好裝滿背包,那麼在初始化時除了f[0]為0其它f[1..V]均設為-∞,這樣就可以保證最終得到的f[N]是一種恰好裝滿背包的最優解。

如果並沒有要求必須把背包裝滿,而是只希望價格盡量大,初始化時應該將f[0..V]全部設為0。

為什麼呢?可以這樣理解:初始化的f數組事實上就是在沒有任何物品可以放入背包時的合法狀態。如果要求背包恰好裝滿,那麼此時只有容量為0的背包可能被價值為0的nothing「恰好裝滿」,其它容量的背包均沒有合法的解,屬於未定義的狀態,它們的值就都應該是-∞了。如果背包並非必須被裝滿,那麼 任何容量的背包都有一個合法解「什麼都不裝」,這個解的價值為0,所以初始時狀態的值也就全部為0了。

這個小技巧完全可以推廣到其它類型的背包問題,後面也就不再對進行狀態轉移之前的初始化進行講解。

一個常數優化
前面的偽代碼中有 for v=V..1,可以將這個循環的下限進行改進。

由於只需要最後f[v]的值,倒推前一個物品,其實只要知道f[v-w[n]]即可。以此類推,對以第j個背包,其實只需要知道到f[v-sum{w[j..n]}]即可,即代碼中的

for i=1..N
for v=V..0
可以改成

for i=1..n
bound=max{V-sum{w[i..n]},c[i]}
for v=V..bound
這對於V比較大時是有用的。

小結
01背包問題是最基本的背包問題,它包含了背包問題中設計狀態、方程的最基本思想,另外,別的類型的背包問題往往也可以轉換成01背包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間復雜度。

『伍』 背包問題的演算法

3.2 背包問題
背包問題有三種

1.部分背包問題

一個旅行者有一個最多能用m公斤的背包,現在有n種物品,它們的總重量分別是W1,W2,...,Wn,它們的總價值分別為C1,C2,...,Cn.求旅行者能獲得最大總價值。

解決問題的方法是貪心演算法:將C1/W1,C2/W2,...Cn/Wn,從大到小排序,不停地選擇價值與重量比最大的放人背包直到放滿為止.

2.0/1背包

一個旅行者有一個最多能用m公斤的背包,現在有n件物品,它們的重量分別是W1,W2,...,Wn,它們的價值分別為C1,C2,...,Cn.若每種物品只有一件求旅行者能獲得最大總價值。

<1>分析說明:

顯然這個題可用深度優先方法對每件物品進行枚舉(選或不選用0,1控制).

程序簡單,但是當n的值很大的時候不能滿足時間要求,時間復雜度為O(2n)。按遞歸的思想我們可以把問題分解為子問題,使用遞歸函數

設 f(i,x)表示前i件物品,總重量不超過x的最優價值

則 f(i,x)=max(f(i-1,x-W[i])+C[i],f(i-1,x))

f(n,m)即為最優解,邊界條件為f(0,x)=0 ,f(i,0)=0;

動態規劃方法(順推法)程序如下:

程序如下:

program knapsack02;
const maxm=200;maxn=30;
type ar=array[1..maxn] of integer;
var m,n,j,i:integer;
c,w:ar;
f:array[0..maxn,0..maxm] of integer;
function max(x,y:integer):integer;
begin
if x>y then max:=x else max:=y;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
for i:=1 to m do f(0,i):=0;
for i:=1 to n do f(i,0):=0;

for i:=1 to n do
for j:=1 to m do
begin
if j>=w[i] then f[i,j]:=max(f[i-1,j-w[i]]+c[i],f[i-1,j])
else f[i,j]:=f[i-1,j];
end;
writeln(f[n,m]);
end.

使用二維數組存儲各子問題時方便,但當maxm較大時如maxn=2000時不能定義二維數組f,怎麼辦,其實可以用一維數組,但是上述中j:=1 to m 要改為j:=m downto 1,為什麼?請大家自己解決。

3.完全背包問題

一個旅行者有一個最多能用m公斤的背包,現在有n種物品,每件的重量分別是W1,W2,...,Wn,

每件的價值分別為C1,C2,...,Cn.若的每種物品的件數足夠多.

求旅行者能獲得的最大總價值。

本問題的數學模型如下:

設 f(x)表示重量不超過x公斤的最大價值,

則 f(x)=max{f(x-w[i])+c[i]} 當x>=w[i] 1<=i<=n

程序如下:(順推法)

program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
f:array[0..maxm] of integer;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
f(0):=0;
for i:=1 to m do
for j:=1 to n do
begin
if i>=w[j] then t:=f[i-w[j]]+c[j];
if t>f[i] then f[i]:=t
end;
writeln(f[m]);
end.

『陸』 多個背包的問題,求演算法

先不管m;全裝進盒子里;需x個;再將每個盒子的武器數從小到大排好;就j:=1;用repeat至x-j+1=m;輸出j至m的武器總數。高加錯在哪知道了,xiexie!

『柒』 求演算法:假定我有M個背包,有N件重量不同的物品,如何分配到這M個包中且保證不超過每

假設你的N個物品的重量分別設為:X1、X2、X3...Xi(i=1、2、3...N)
所以總共你有Nx(X1+X2+X3+...Xi) 的重量
而且你又有M個背包,每個包承重量為0~W,
所以最大承重總共為MxW
則:MxW≥Nx(X1+X2+X3+...Xi)
MW/N≥X1+X2+X3+...Xi

『捌』 動態規劃背包問題與貪心演算法哪個更優

首先這兩個演算法是用來分別解決不同類型的背包問題的,不存在哪個更優的問題。
當一件背包物品可以分割的時候,使用貪心演算法,按物品的單位體積的價值排序,從大到小取即可。
當一件背包物品不可分割的時候,(因為不可分割,所以就算按物品的單位體積的價值大的先取也不一定是最優解)此時使用貪心是不對的,應使用動態規劃。

『玖』 背包問題的演算法

1)登上演算法
用登山演算法求解背包問題 function []=DengShan(n,G,P,W) %n是背包的個數,G是背包的總容量,P是價值向量,W是物體的重量向量 %n=3;G=20;P=[25,24,15];W2=[18,15,10];%輸入量 W2=W; [Y,I]=sort(-P./W2);W1=[];X=[];X1=[]; for i=1:length(I) W1(i)=W2(I(i)); end W=W1; for i=1:n X(i)=0; RES=G;%背包的剩餘容量 j=1; while W(j)<=RES X(j)=1; RES=RES-W(j); j=j+1; end X(j)=RES/W(j); end for i=1:length(I) X1(I(i))=X(i); end X=X1; disp('裝包的方法是');disp(X);disp(X.*W2);disp('總的價值是:');disp(P*X');

時間復雜度是非指數的

2)遞歸法
先看完全背包問題
一個旅行者有一個最多能用m公斤的背包,現在有n種物品,每件的重量分別是W1,W2,...,Wn,
每件的價值分別為C1,C2,...,Cn.若的每種物品的件數足夠多.
求旅行者能獲得的最大總價值。
本問題的數學模型如下:
設 f(x)表示重量不超過x公斤的最大價值,
則 f(x)=max{f(x-i)+c[i]} 當x>=w[i] 1<=i<=n
可使用遞歸法解決問題程序如下:
program knapsack04;
const maxm=200;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
function f(x:integer):integer;
var i,t,m:integer;
begin
if x=0 then f:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(x-i)+c[i];
if m>t then t:=m;
end;
f:=t;
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
writeln(f(m));
end.
說明:當m不大時,編程很簡單,但當m較大時,容易超時.
4.2 改進的遞歸法
改進的的遞歸法的思想還是以空間換時間,這只要將遞歸函數計算過程中的各個子函數的值保存起來,開辟一個
一維數組即可
程序如下:
program knapsack04;
const maxm=2000;maxn=30;
type ar=array[0..maxn] of integer;
var m,n,j,i,t:integer;
c,w:ar;
p:array[0..maxm] of integer;
function f(x:integer):integer;
var i,t,m:integer;
begin
if p[x]<>-1 then f:=p[x]
else
begin
if x=0 then p[x]:=0 else
begin
t:=-1;
for i:=1 to n do
begin
if x>=w[i] then m:=f(i-w[i])+c[i];
if m>t then t:=m;
end;
p[x]:=t;
end;
f:=p[x];
end;
end;
begin
readln(m,n);
for i:= 1 to n do
readln(w[i],c[i]);
fillchar(p,sizeof(p),-1);
writeln(f(m));
end.
3)貪婪演算法
改進的背包問題:給定一個超遞增序列和一個背包的容量,然後在超遞增序列中選(只能選一次)或不選每一個數值,使得選中的數值的和正好等於背包的容量。

代碼思路:從最大的元素開始遍歷超遞增序列中的每個元素,若背包還有大於或等於當前元素值的空間,則放入,然後繼續判斷下一個元素;若背包剩餘空間小於當前元素值,則判斷下一個元素
簡單模擬如下:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{/*產生超遞增序列*/
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{/*輸出當前的超遞增序列*/
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{/*背包問題求解*/
int i;
long r=value;
for(i=count-1;i>=0;i--)/*遍歷超遞增序列中的每個元素*/
{
if(r>=array[i])/*如果當前元素還可以放入背包,即背包剩餘空間還大於當前元素*/
{
r=r-array[i];
cankao[i]=1;
}
else/*背包剩餘空間小於當前元素值*/
cankao[i]=0;
}
}

void main()
{
long array[N];
int cankao[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)/*所有已經選中的元素之和*/
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}
貪婪演算法的另一種寫法,beibao函數是以前的代碼,用來比較兩種演算法:

#define K 10
#define N 10

#i nclude <stdlib.h>
#i nclude <conio.h>

void create(long array[],int n,int k)
{
int i,j;
array[0]=1;
for(i=1;i<n;i++)
{
long t=0;
for(j=0;j<i;j++)
t=t+array[j];
array[i]=t+random(k)+1;
}
}
void output(long array[],int n)
{
int i;
for(i=0;i<n;i++)
{
if(i%5==0)
printf("\n");
printf("%14ld",array[i]);
}
}

void beibao(long array[],int cankao[],long value,int count)
{
int i;
long r=value;
for(i=count-1;i>=0;i--)
{
if(r>=array[i])
{
r=r-array[i];
cankao[i]=1;
}
else
cankao[i]=0;
}
}

int beibao1(long array[],int cankao[],long value,int n)
{/*貪婪演算法*/
int i;
long value1=0;
for(i=n-1;i>=0;i--)/*先放大的物體,再考慮小的物體*/
if((value1+array[i])<=value)/*如果當前物體可以放入*/
{
cankao[i]=1;/*1表示放入*/
value1+=array[i];/*背包剩餘容量減少*/
}
else
cankao[i]=0;
if(value1==value)
return 1;
return 0;
}

void main()
{
long array[N];
int cankao[N]={0};
int cankao1[N]={0};
int i;
long value,value1=0;
clrscr();
create(array,N,K);
output(array,N);
printf("\nInput the value of beibao:\n");
scanf("%ld",&value);
beibao(array,cankao,value,N);
for(i=0;i<N;i++)
if(cankao[i]==1)
value1+=array[i];
if(value==value1)
{
printf("\nWe have got a solution,that is:\n");
for(i=0;i<N;i++)
if(cankao[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
printf("\nSecond method:\n");
if(beibao1(array,cankao1,value,N)==1)
{
for(i=0;i<N;i++)
if(cankao1[i]==1)
{
if(i%5==0)
printf("\n");
printf("%13ld",array[i]);
}
}
else
printf("\nSorry.We have not got a solution.\n");
}

4)動態規劃演算法

解決0/1背包問題的方法有多種,最常用的有貪婪法和動態規劃法。其中貪婪法無法得到問題的最優解,而動態規劃法都可以得到最優解,下面是用動態規劃法來解決0/1背包問題。

動態規劃演算法與分治法類似,其基本思想是將待求解問題分解成若干個子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃法求解的問題,經分解得到的子問題往往不是互相獨立的,若用分治法解這類問題,則分解得到的子問題數目太多,以至於最後解決原問題需要耗費過多的時間。動態規劃法又和貪婪演算法有些一樣,在動態規劃中,可將一個問題的解決方案視為一系列決策的結果。不同的是,在貪婪演算法中,每採用一次貪婪准則便做出一個不可撤回的決策,而在動態規劃中,還要考察每個最優決策序列中是否包含一個最優子序列。

0/1背包問題

在0 / 1背包問題中,需對容量為c 的背包進行裝載。從n 個物品中選取裝入背包的物品,每件物品i 的重量為wi ,價值為pi 。對於可行的背包裝載,背包中物品的總重量不能超過背包的容量,最佳裝載是指所裝入的物品價值最高,即p1*x1+p2*x1+...+pi*xi(其1<=i<=n,x取0或1,取1表示選取物品i) 取得最大值。
在該問題中需要決定x1 .. xn的值。假設按i = 1,2,...,n 的次序來確定xi 的值。如果置x1 = 0,則問題轉變為相對於其餘物品(即物品2,3,.,n),背包容量仍為c 的背包問題。若置x1 = 1,問題就變為關於最大背包容量為c-w1 的問題。現設r?{c,c-w1 } 為剩餘的背包容量。
在第一次決策之後,剩下的問題便是考慮背包容量為r 時的決策。不管x1 是0或是1,[x2 ,.,xn ] 必須是第一次決策之後的一個最優方案,如果不是,則會有一個更好的方案[y2,.,yn ],因而[x1,y2,.,yn ]是一個更好的方案。
假設n=3, w=[100,14,10], p=[20,18,15], c= 116。若設x1 = 1,則在本次決策之後,可用的背包容量為r= 116-100=16 。[x2,x3 ]=[0,1] 符合容量限制的條件,所得值為1 5,但因為[x2,x3 ]= [1,0] 同樣符合容量條件且所得值為1 8,因此[x2,x3 ] = [ 0,1] 並非最優策略。即x= [ 1,0,1] 可改進為x= [ 1,1,0 ]。若設x1 = 0,則對於剩下的兩種物品而言,容量限制條件為116。總之,如果子問題的結果[x2,x3 ]不是剩餘情況下的一個最優解,則[x1,x2,x3 ]也不會是總體的最優解。在此問題中,最優決策序列由最優決策子序列組成。假設f (i,y) 表示剩餘容量為y,剩餘物品為i,i + 1,...,n 時的最優解的值,即:利用最優序列由最優子序列構成的結論,可得到f 的遞歸式為:
當j>=wi時: f(i,j)=max{f(i+1,j),f(i+1,j-wi)+vi} ①式
當0<=j<wi時:f(i,j)=f(i+1,j) ②式
fn( 1 ,c) 是初始時背包問題的最優解。
以本題為例:若0≤y<1 0,則f ( 3 ,y) = 0;若y≥1 0,f ( 3 ,y) = 1 5。利用②式,可得f (2, y) = 0 ( 0≤y<10 );f(2,y)= 1 5(1 0≤y<1 4);f(2,y)= 1 8(1 4≤y<2 4)和f(2,y)= 3 3(y≥2 4)。因此最優解f ( 1 , 11 6 ) = m a x {f(2,11 6),f(2,11 6 - w1)+ p1} = m a x {f(2,11 6),f(2,1 6)+ 2 0 } = m a x { 3 3,3 8 } = 3 8。
現在計算xi 值,步驟如下:若f ( 1 ,c) =f ( 2 ,c),則x1 = 0,否則x1 = 1。接下來需從剩餘容量c-w1中尋求最優解,用f (2, c-w1) 表示最優解。依此類推,可得到所有的xi (i= 1.n) 值。
在該例中,可得出f ( 2 , 116 ) = 3 3≠f ( 1 , 11 6 ),所以x1 = 1。接著利用返回值3 8 -p1=18 計算x2 及x3,此時r = 11 6 -w1 = 1 6,又由f ( 2 , 1 6 ) = 1 8,得f ( 3 , 1 6 ) = 1 4≠f ( 2 , 1 6 ),因此x2 = 1,此時r= 1 6 -w2 = 2,所以f (3,2) =0,即得x3 = 0。

『拾』 解決0-1背包問題需要排序的有哪些演算法

用貪心演算法求解0-1背包問題的步驟是,首先計算每種物品單位重量的價值vi/wi;然後,將物品的vi/wi的大小進行降序進行排列,依貪心選擇策略,將盡可能多的單位重量價值最高的物品裝入背包。若將這種物品全部裝入背包後,背包內的物品總量未超過c,則選擇單位重量價值次高的物品並盡可能多地裝入背包。依此策略一直進行下去,直到背包裝滿為止。

熱點內容
分布式緩存部署步驟 發布:2025-05-14 13:24:51 瀏覽:610
php獲取上一月 發布:2025-05-14 13:22:52 瀏覽:89
購買雲伺服器並搭建自己網站 發布:2025-05-14 13:20:31 瀏覽:688
sqlserver建立視圖 發布:2025-05-14 13:11:56 瀏覽:484
搭建httpsgit伺服器搭建 發布:2025-05-14 13:09:47 瀏覽:255
新電腦拿回來我該怎麼配置 發布:2025-05-14 13:09:45 瀏覽:240
視頻伺服器新建ftp用戶 發布:2025-05-14 13:03:09 瀏覽:225
php花生 發布:2025-05-14 12:54:30 瀏覽:550
java人才 發布:2025-05-14 12:29:10 瀏覽:649
如何打開軟密碼 發布:2025-05-14 12:28:55 瀏覽:427