linux線程消息
㈠ linux怎麼查看線程阻塞原因
linux查看線程阻塞原因:pthread_join一般主線程來調用,用來等待子線程退出,因為是等待,所以是阻塞的,一般主線程會依次join所有它創建的子線程。
1)執行top命令,或使用-H選項(顯示所有線程),找到相關的高CPU的PID。
2)生成thread mp 快照(kill -3 PID)。
3)將top命令輸出PID轉換為HEX格式(16進制)。
4)在thread mp data中搜索nid=<Hex PID>。
5)分析受影響的thread和stack trace,精確定位代碼。
特點:
Linux,全稱GNU/Linux,是一套免費使用和自由傳播的類Unix操作系統,是一個基於POSIX的多用戶、多任務、支持多線程和多CPU的操作系統。伴隨著互聯網的發展,Linux得到了來自全世界軟體愛好者、組織、公司的支持。
它除了在伺服器方面保持著強勁的發展勢頭以外,在個人電腦、嵌入式系統上都有著長足的進步。使用者不僅可以直觀地獲取該操作系統的實現機制,而且可以根據自身的需要來修改完善Linux,使其最大化地適應用戶的需要。
Linux不僅系統性能穩定,而且是開源軟體。其核心防火牆組件性能高效、配置簡單,保證了系統的安全。在很多企業網路中,為了追求速度和安全,Linux不僅僅是被網路運維人員當作伺服器使用,甚至當作網路防火牆,這是Linux的一大亮點。
Linux具有開放源碼、沒有版權、技術社區用戶多等特點,開放源碼使得用戶可以自由裁剪,靈活性高,功能強大,成本低。尤其系統中內嵌網路協議棧,經過適當的配置就可實現路由器的功能。這些特點使得Linux成為開發路由交換設備的理想開發平台。
㈡ Linux中如何獲取正在運行的線程的狀態信息
在命令行下輸入 ps aux
㈢ Linux 線程同步有哪些方法
一、互斥鎖(mutex)
1.
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t
mutex
=
PTHREAD_MUTEX_INITIALIZER;
動態分配:int
pthread_mutex_init(pthread_mutex_t
*mutex,
const
pthread_mutex_attr_t
*mutexattr);
2.
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int
pthread_mutex_lock(pthread_mutex
*mutex);
int
pthread_mutex_trylock(pthread_mutex_t
*mutex);
3.
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int
pthread_mutex_unlock(pthread_mutex_t
*mutex);
4.
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int
pthread_mutex_destroy(pthread_mutex
*mutex);
二、條件變數(cond)
1.
初始化條件變數。
靜態態初始化,pthread_cond_t
cond
=
PTHREAD_COND_INITIALIER;
動態初始化,int
pthread_cond_init(pthread_cond_t
*cond,
pthread_condattr_t
*cond_attr);
2.
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int
pthread_cond_wait(pthread_cond_t
*cond,
pthread_mutex_t
*mutex);
int
pthread_cond_timewait(pthread_cond_t
*cond,pthread_mutex
*mutex,const
timespec
*abstime);
3.
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int
pthread_cond_signal(pthread_cond_t
*cond);
int
pthread_cond_broadcast(pthread_cond_t
*cond);
//解除所有線程的阻塞
4.
清除條件變數。無線程等待,否則返回EBUSY
int
pthread_cond_destroy(pthread_cond_t
*cond);
三、信號量(sem)
1.
信號量初始化。
int
sem_init
(sem_t
*sem
,
int
pshared,
unsigned
int
value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux
只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
2.
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int
sem_wait(sem_t
*sem);
3.
釋放信號量。信號量值加1。並通知其他等待線程。
int
sem_post(sem_t
*sem);
4.
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int
sem_destroy(sem_t
*sem);
㈣ Linux - 進程間通信與線程通信方式
每個進程的用戶地址空間都是獨立的,一般而言是不能互相訪問的,但內核空間是每個進程都共享的,所以進程之間要通信必須通過內核。
上面命令行里的「|」豎線就是一個管道,它的功能是將前一個命令(ps auxf)的輸出,作為後一個命令(grep mysql)的輸入,從這功能描述,可以看出管道傳輸數據是單向的,如果想相互通信,我們需要創建兩個管道才行。
同時,我們得知上面這種管道是沒有名字,所以「|」表示的管道稱為匿名管道,用完了就銷毀。
管道還有另外一個類型是命名管道,也被叫做 FIFO,因為數據是先進先出的傳輸方式。
在使用命名管道前,先需要通過 mkfifo 命令來創建,並且指定管道名字
myPipe 就是這個管道的名稱,基於 Linux 一切皆文件的理念,所以管道也是以文件的方式存在,我們可以用 ls 看一下,這個文件的類型是 p,也就是 pipe(管道) 的意思:
你操作了後,你會發現命令執行後就停在這了,這是因為管道里的內容沒有被讀取,只有當管道里的數據被讀完後,命令才可以正常退出。
於是,我們執行另外一個命令來讀取這個管道里的數據:
可以看到,管道里的內容被讀取出來了,並列印在了終端上,另外一方面,echo 那個命令也正常退出了。
我們可以看出,管道這種通信方式效率低,不適合進程間頻繁地交換數據。當然,它的好處,自然就是簡單,同時也我們很容易得知管道里的數據已經被另一個進程讀取了。
前面說到管道的通信方式是效率低的,因此管道不適合進程間頻繁地交換數據。
對於這個問題,消息隊列的通信模式就可以解決。比如,A 進程要給 B 進程發送消息,A 進程把數據放在對應的消息隊列後就可以正常返回了,B 進程需要的時候再去讀取數據就可以了。同理,B 進程要給 A 進程發送消息也是如此。
再來,消息隊列是保存在內核中的消息鏈表,在發送數據時,會分成一個一個獨立的數據單元,也就是消息體(數據塊),消息體是用戶自定義的數據類型,消息的發送方和接收方要約定好消息體的數據類型,所以每個消息體都是固定大小的存儲塊,不像管道是無格式的位元組流數據。如果進程從消息隊列中讀取了消息體,內核就會把這個消息體刪除。
消息隊列生命周期隨內核,如果沒有釋放消息隊列或者沒有關閉操作系統,消息隊列會一直存在,而前面提到的匿名管道的生命周期,是隨進程的創建而建立,隨進程的結束而銷毀。
消息這種模型,兩個進程之間的通信就像平時發郵件一樣,你來一封,我回一封,可以頻繁溝通了。
但郵件的通信方式存在不足的地方有兩點,一是通信不及時,二是附件也有大小限制,這同樣也是消息隊列通信不足的點。
消息隊列不適合比較大數據的傳輸,因為在內核中每個消息體都有一個最大長度的限制,同時所有隊列所包含的全部消息體的總長度也是有上限。在 Linux 內核中,會有兩個宏定義 MSGMAX 和 MSGMNB,它們以位元組為單位,分別定義了一條消息的最大長度和一個隊列的最大長度。
消息隊列通信過程中,存在用戶態與內核態之間的數據拷貝開銷,因為進程寫入數據到內核中的消息隊列時,會發生從用戶態拷貝數據到內核態的過程,同理另一進程讀取內核中的消息數據時,會發生從內核態拷貝數據到用戶態的過程。
消息隊列的讀取和寫入的過程,都會有發生用戶態與內核態之間的消息拷貝過程。那共享內存的方式,就很好的解決了這一問題。
現代操作系統,對於內存管理,採用的是虛擬內存技術,也就是每個進程都有自己獨立的虛擬內存空間,不同進程的虛擬內存映射到不同的物理內存中。所以,即使進程 A 和 進程 B 的虛擬地址是一樣的,其實訪問的是不同的物理內存地址,對於數據的增刪查改互不影響。
用了共享內存通信方式,帶來新的問題,那就是如果多個進程同時修改同一個共享內存,很有可能就沖突了。例如兩個進程都同時寫一個地址,那先寫的那個進程會發現內容被別人覆蓋了。
為了防止多進程競爭共享資源,而造成的數據錯亂,所以需要保護機制,使得共享的資源,在任意時刻只能被一個進程訪問。正好,信號量就實現了這一保護機制。
信號量其實是一個整型的計數器,主要用於實現進程間的互斥與同步,而不是用於緩存進程間通信的數據。
信號量表示資源的數量,控制信號量的方式有兩種原子操作:
P 操作是用在進入共享資源之前,V 操作是用在離開共享資源之後,這兩個操作是必須成對出現的。
接下來,舉個例子,如果要使得兩個進程互斥訪問共享內存,我們可以初始化信號量為 1。
具體的過程如下:
可以發現,信號初始化為 1,就代表著是互斥信號量,它可以保證共享內存在任何時刻只有一個進程在訪問,這就很好的保護了共享內存。
另外,在多進程里,每個進程並不一定是順序執行的,它們基本是以各自獨立的、不可預知的速度向前推進,但有時候我們又希望多個進程能密切合作,以實現一個共同的任務。
例如,進程 A 是負責生產數據,而進程 B 是負責讀取數據,這兩個進程是相互合作、相互依賴的,進程 A 必須先生產了數據,進程 B 才能讀取到數據,所以執行是有前後順序的。
那麼這時候,就可以用信號量來實現多進程同步的方式,我們可以初始化信號量為 0。
具體過程:
可以發現,信號初始化為 0,就代表著是同步信號量,它可以保證進程 A 應在進程 B 之前執行。
跨機器進程間通信方式
同個進程下的線程之間都是共享進程的資源,只要是共享變數都可以做到線程間通信,比如全局變數,所以對於線程間關注的不是通信方式,而是關注多線程競爭共享資源的問題,信號量也同樣可以在線程間實現互斥與同步:
㈤ Linux中進程和線程的對比與區別
線程和進程是另一對有意義的概念,主要區別和聯系如下:
進程是操作系統進行資源分配的基本單位,擁有完整的進程空間。進行系統資源分配的時候,除了CPU資源之外,不會給線程分配獨立的資源,線程所需要的資源需要共享。
線程是進程的一部分,如果沒有進行顯示的線程分配,可以認為進程是單線程的;如果進程中建立了線程,則可認為系統是多線程的。
多線程和多進程是兩種不同的概念。多線程與多進程有不同的資源共享方式。
進程有進程式控制制塊PCB,系統通過PCB對進程進行調度。進程有線程式控制制塊TCP,但TCB所表示的狀態比PCB要少的多。
㈥ linux 線程統計信息
Linux下的/proc目錄查看具體的線程統計數據,在目錄 /proc/PID/stat下面可以找到關於線程的絕大部分詳細信息,可惜這個文件的客戶體驗太差,居然是一大堆以空格分割的純數據,汗-_-…….無奈之下只好手動寫了個簡單的腳本,利用shell+awk弄出個小工具來簡單檢測線程狀態,先上效果圖:
awk是一個非常強大的文本處理工具,可以把它看作一門小的腳本語言。其實完成這個小工具可以還用其他的工具實現,但awk的以「行」為單位的處理方式在這個特殊的數據格式中很有幫助。/proc/pid/stat中的數據是以空格作為分隔符隔離開每個數據的,所以awk在這里大有用武之地。
㈦ Linux多線程同步之消息隊列有何特點
消息隊列是消息的鏈表,存放在內核中並有消息隊列標示符標示。
msgget用於創建一個新隊列或打開一個現存的隊列。msgsnd將新消息加入到消息隊列中;每個
消息包括一個long型的type;和消息緩存;msgrcv用於從隊列中取出消息;取消息很智能,不一定先進先出
①msgget,創建一個新隊列或打開一個現有隊列
#include
int msgget ( key_t key, int flag );
//成功返回消息隊列ID;錯誤返回-1
②msgsnd: 發送消息
#include
int msgsnd( int msgid, const void* ptr, size_t nbytes, int flag )
//成功返回0,錯誤返回-1
a:
flag可以指定為IPC_NOWAIT;
若消息隊列已滿,則msgsnd立即出錯返回EABAIN;
若沒指定IPC_NOWAIT; msgsnd會阻塞,直到消息隊列有空間為止
③msgrcv: 讀取消息:
ssize_t msgrcv( int msgid, void* ptr, size_t nbytes, long type, int flag );
a. type == 0; 返回消息隊列中第一個消息,先進先出
b. type > 0
返回消息隊列中類型為tpye的第一個消息
c. type < 0
返回消息隊列中類型 <=
|type| 的數據;若這種消息有若干個,則取類型值最小的消息
消息隊列創建步驟:
#define
MSG_FILE "."
struct msgtype {
long mtype;
char buffer[BUFFER+1];
};
if((key=ftok(MSG_FILE,'a'))==-1)
{
fprintf(stderr,"Creat Key Error:%s\n", strerror(errno));
exit
(1);
}
if((msgid=msgget(key, IPC_CREAT | 0666/*PERM*/))==-1)
{
fprintf(stderr,"Creat Message
Error:%s\n", strerror(errno));
exit
(1);
}
㈧ Linux 的多線程編程中,如何給線程發信號
不管是在進程還是線程,很多時候我們都會使用一些定時器之類的功能,這里就定時器在多線程的使用說一下。首先在linux編程中定時器函數有alarm()和setitimer(),alarm()可以提供一個基於秒的定時功能,而setitimer可以提供一個基於微妙的定時功能。
alarm()原型:
#include <unistd.h>
unsigned int alarm(unsigned int seconds);
這個函數在使用上很簡單,第一次調用這個函數的時候是設置定時器的初值,下一次調用是重新設置這個值,並會返回上一次定時的剩餘時間。
setitimer()原型:
#include <sys/time.h>
int setitimer(int which, const struct itimerval *value,struct itimerval *ovalue);
這個函數使用起來稍微有點說法,首先是第一個參數which的值,這個參數設置timer的計時策略,which有三種狀態分別是:
ITIMER_REAL:使用系統時間來計數,時間為0時發出SIGALRM信號,這種定時能夠得到一個精準的定時,當然這個定時是相對的,因為到了微秒級別我們的處理器本身就不夠精確。
ITIMER_VIRTUAL:使用進程時間也就是進程分配到的時間片的時間來計數,時間為0是發出SIGVTALRM信號,這種定時顯然不夠准確,因為系統給進程分配時間片不由我們控制。
ITIMER_PROF:上面兩種情況都能夠觸發
第二個參數參數value涉及到兩個結構體:
struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */
};
struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};
在結構體itimerval中it_value是定時器當前的值,it_interval是當it_value的為0後重新填充的值。而timeval結構體中的兩個變數就簡單了一個是秒一個是微秒。
上面是這兩個定時函數的說明,這個函數使用本不是很難,可以說是很簡單,但是碰到具體的應用的時候可能就遇到問題了,在多進程編程中使用一般不會碰到什麼問題,這里說的這些問題主要體現在多線程編程中。比如下面這個程序:
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
void sig_handler(int signo)
{
alarm(2);
printf("alarm signal\n");
}
void *pthread_func()
{
alarm(2);
while(1)
{
pause();
}
}
int main(int argc, char **argv)
{
pthread_t tid;
int retval;
signal(SIGALRM, sig_handler);
if((retval = pthread_create(&tid, NULL, pthread_func, NULL)) < 0)
{
perror("pthread_create");
exit(-1);
}
while(1)
{
printf("main thread\n");
sleep(10);
}
return 0;
}
這個程序的理想結果是:
main thread
alarm signal
alarm signal
alarm signal
alarm signal
alarm signal
main thread
可事實上並不是這樣的,它的結果是:
main pthread
alarm signal
main pthread
alarm signal
main pthread
㈨ linux 多線程信號處理總結
APUE的說法:每個線程都有自己的信號屏蔽字,但是信號的處理是進程中所有的線程共享的,這意味著盡管單個線程可以阻止某些信號,但當線程修改了與某個信號相關的處理行為後,所有的線程都共享這個處理行為的改變。這樣如果一個線程選擇忽略某個信號,而其他線程可以恢復信號的默認處理行為,或者為信號設置一個新的處理程序,從而可以撤銷上述線程的信號選擇。
進程中的信號是送到單個線程的,如果信號與硬體故障或者計時器超時有關,該型號就被發送到引起該事件的線程中去,而其他的信號則被發送到任意一個線程。
sigprocmask的行為在多線程的進程中沒有定義,線程必須使用pthread_sigmask
總結:一個信號可以被沒屏蔽它的任何一個線程處理,但是在一個進程內只有一個多個線程共用的處理函數。......
轉自: http://blog.chinaunix.net/uid-12274566-id-3050955.html