當前位置:首頁 » 操作系統 » linux信號機制

linux信號機制

發布時間: 2022-12-21 13:45:45

linux軟中斷通信

我驗證下阿...一不小心就fork多了..
剛開始我把kill的參數弄反了,信號和pid位置弄錯了,調了半個小時,很郁悶..

你只是忽略了一點...,我也給忽略了。。。後來才想起來

你按下ctrl+C的時候,另外兩個fork出來的進程,他們也會接到SIGINT。。。就退出了。。所以你要先在子進程裡面忽略這個SIGINT信號,用signal(SIGINT,SIG_IGN)就OK了....
程序如下...

有解釋,你可以自己看看...

#include"stdio.h"
#include"unistd.h"
#include"signal.h"
#include"sys/types.h"
#include"stdlib.h"

int k=0;
pid_t child1=0,child2=0;

void func_main(int sig);
void func_child1(int sig);
void func_child2(int sig);

int main()
{
while((child1=fork())==-1);
if(child1==0)
{
printf("child1 OK\n");
signal(SIGINT,SIG_IGN);
signal(SIGUSR1,func_child1);
sleep(60);
}

else if(child1 >0)
{
while((child2=fork())==-1);
if(child2==0)
{
printf("child 2 OK\n");
signal(SIGINT,SIG_IGN);//你按下ctrl+C,子進程也會接受到ctrl的信號...所以,子進程忽略
//所提子進程要忽略掉這個SIGINT信號
signal(SIGUSR2,func_child2);
sleep(60); //這里為了驗證,如果進程沒退出,40妙之後自動會退出的
//不然就得手動在終端裡面kill掉這個進程了...
//有時候成了僵屍進程需要kill -9 才能殺死
}

else if(child2 >0)
{
signal(SIGINT,func_main);
printf("children forked OK...\n");
wait(0);

printf("child return...\n");

sleep(100);
return 0;
}
}

}

void func_main(int sig)
{
k++;
printf("to send signal\n");
//printf("child1=%d,child2=%d\n",child1,child2);
//if(k==1)
kill(child1,SIGUSR1);
//if(k==2) 加上這句,再按一次ctrl C,子進程2才會退出
就是你想要的效果了
kill(child2,SIGUSR2);
signal(SIGINT,SIG_DFL); //這里恢復ctrl+C的效果
//子進程退出之後,我們再按一次ctrl+C,當前的父進程就會像平常一樣,退出。

}

void func_child1(int sig)
{
printf("child1 is killed by parent!\n");
exit(0);
}

void func_child2(int sig)
{
printf("child2 is killed by parent!\n");
exit(0);
}

Ⅱ linux信號與系統調用的關系

  • 首先,一句話總結它們之間的區別: 字面上相似,但是本質上存在巨大的差別!請看詳細解答...Linux信號(signal) 機制 signal,又簡稱為信號(軟中斷信號)用來通知進程發生了非同步事件。 原理: 一個進程收到一個信號與處理器收到一個中斷請求可...

Ⅲ Linux信號量機制實現讀者寫者問題

生產者/消費者問題在windows2000下的實現

一、問題描述

生產者-消費者問題是一個經典的進程同步問題,該問題最早由Dijkstra提出,用以演示他提出的信號量機制。本作業要求設計在同一個進程地址空間內執行的兩個線程。生產者線程生產物品,然後將物品放置在一個空緩沖區中供消費者線程消費。消費者線程從緩沖區中獲得物品,然後釋放緩沖區。當生產者線程生產物品時,如果沒有空緩沖區可用,那麼生產者線程必須等待消費者線程釋放出一個空緩沖區。當消費者線程消費物品時,如果沒有滿的緩沖區,那麼消費者線程將被阻塞,直到新的物品被生產出來。

二、實現代碼

#include <windows.h>
#include <iostream>

const unsigned short SIZE_OF_BUFFER = 10; //緩沖區長度
unsigned short ProctID = 0; //產品號
unsigned short ConsumeID = 0; //將被消耗的產品號
unsigned short in = 0; //產品進緩沖區時的緩沖區下標
unsigned short out = 0; //產品出緩沖區時的緩沖區下標

int g_buffer[SIZE_OF_BUFFER]; //緩沖區是個循環隊列
bool g_continue = true; //控製程序結束
HANDLE g_hMutex; //用於線程間的互斥
HANDLE g_hFullSemaphore; //當緩沖區滿時迫使生產者等待
HANDLE g_hEmptySemaphore; //當緩沖區空時迫使消費者等待

DWORD WINAPI Procer(LPVOID); //生產者線程
DWORD WINAPI Consumer(LPVOID); //消費者線程

int main()
{
//創建各個互斥信號
g_hMutex = CreateMutex(NULL,FALSE,NULL);
g_hEmptySemaphore = CreateSemaphore(NULL,0,SIZE_OF_BUFFER-1,NULL);

//調整下面的數值,可以發現,當生產者個數多於消費者個數時,
//生產速度快,生產者經常等待消費者;反之,消費者經常等待
const unsigned short PRODUCERS_COUNT = 3; //生產者的個數
const unsigned short CONSUMERS_COUNT = 1; //消費者的個數

//總的線程數
const unsigned short THREADS_COUNT = PRODUCERS_COUNT+CONSUMERS_COUNT;

DWORD procerID[CONSUMERS_COUNT]; //生產者線程的標識符
DWORD consumerID[THREADS_COUNT]; //消費者線程的標識符

//創建生產者線程
for (int i=0;i<PRODUCERS_COUNT;++i){
hThreads[i]=CreateThread(NULL,0,Procer,NULL,0,&procerID[i]);
if (hThreads[i]==NULL) return -1;
}
//創建消費者線程
for (int i=0;i<CONSUMERS_COUNT;++i){
hThreads[PRODUCERS_COUNT+i]=CreateThread(NULL,0,Consumer,NULL,0,&consumerID[i]);
if (hThreads[i]==NULL) return -1;
}

while(g_continue){
if(getchar()){ //按回車後終止程序運行
g_continue = false;
}
}

return 0;
}

//生產一個產品。簡單模擬了一下,僅輸出新產品的ID號
void Proce()
{
std::cerr << "Procing " << ++ProctID << " ... ";
std::cerr << "Succeed" << std::endl;
}

//把新生產的產品放入緩沖區
void Append()
{
std::cerr << "Appending a proct ... ";
g_buffer[in] = ProctID;
in = (in+1)%SIZE_OF_BUFFER;
std::cerr << "Succeed" << std::endl;

//輸出緩沖區當前的狀態
for (int i=0;i<SIZE_OF_BUFFER;++i){
std::cout << i <<": " << g_buffer[i];
if (i==in) std::cout << " <-- 生產";
if (i==out) std::cout << " <-- 消費";
std::cout << std::endl;
}
}

//從緩沖區中取出一個產品
void Take()
{
std::cerr << "Taking a proct ... ";
ConsumeID = g_buffer[out];
out = (out+1)%SIZE_OF_BUFFER;
std::cerr << "Succeed" << std::endl;

//輸出緩沖區當前的狀態
for (int i=0;i<SIZE_OF_BUFFER;++i){
std::cout << i <<": " << g_buffer[i];
if (i==in) std::cout << " <-- 生產";
if (i==out) std::cout << " <-- 消費";
std::cout << std::endl;
}
}

//消耗一個產品
void Consume()
{
std::cerr << "Consuming " << ConsumeID << " ... ";
std::cerr << "Succeed" << std::endl;
}

//生產者
DWORD WINAPI Procer(LPVOID lpPara)
{
while(g_continue){
WaitForSingleObject(g_hFullSemaphore,INFINITE);
WaitForSingleObject(g_hMutex,INFINITE);
Proce();
Append();
Sleep(1500);
ReleaseMutex(g_hMutex);
ReleaseSemaphore(g_hEmptySemaphore,1,NULL);
}
return 0;
}

//消費者
DWORD WINAPI Consumer(LPVOID lpPara)
{
while(g_continue){
WaitForSingleObject(g_hEmptySemaphore,INFINITE);
WaitForSingleObject(g_hMutex,INFINITE);
Take();
Consume();
Sleep(1500);
ReleaseMutex(g_hMutex);
ReleaseSemaphore(g_hFullSemaphore,1,NULL);
}
return 0;
}

Ⅳ linux系統上信號發送和信號接收講解

用於進程間通信,通信機制由操作系統保證,比較穩定。

在linux中可以通過kill -l查看所有信號的類型。

kill -信號類型 進程ID

int kill(pid_t pid, int sig);
入參pid :
pid > 0: 發送信號給指定的進程。
pid = 0: 發送信號給 與調用kill函數進程屬於同一進程組的所有進程。
pid < 0: 取|pid|發給對應進程組。
pid = -1:發送給進程有許可權發送的系統中所有進程。
sig :信號類型。
返回值 :成功:0;失敗:-1 (ID非法,信號非法,普通用戶殺init進程等權級問題),設置errno
以OpenHarmony源碼為例,應用ANR後,AbilityManagerService會通知應用mp堆棧信息,就是通過信號量做的。

頭文件位置 :
include <signal.h>
函數解釋 :
typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);
當接收到指定的信號signum時,就會跳轉到參數handler指定的函數執行。其中handler的入參是信號值。

函數原型

signum參數指出要捕獲的信號類型,act參數指定新的信號處理方式,oldact參數輸出先前信號的處理方式(如果不為NULL的話)。
sigaction結構體

sa_handler 信號處理函數
sa_mask 在處理該信號時可以暫時將sa_mask 指定的信號集擱置
sa_flags 指定一組修改信號行為的標志。 它由以下零個或多個的按位或組成
   SA_RESETHAND:當調用信號處理函數時,將信號的處理函數重置為預設值SIG_DFL
   SA_RESTART:如果信號中斷了進程的某個系統調用,則系統自動啟動該系統調用
   SA_NODEFER :一般情況下, 當信號處理函數運行時,內核將阻塞該給定信號。但是如果設置了 SA_NODEFER標記, 那麼在該信號處理函數運行時,內核將不會阻塞該信號
sa_restorer 是一個替代的信號處理程序,當設置SA_SIGINFO時才會用它。
相關函數
int sigemptyset( sigset_t *set);
sigemptyset()用來將參數set信號集初始化並清空。
執行成功則返回0,如果有錯誤則返回-1。
完整示例

Ⅳ Linux 進程間通信方式有哪些

進程間通信(IPC,Interprocess
communication)是一組編程介面,讓程序員能夠協調不同的進程,使之能在一個操作系統里同時運行,並相互傳遞、交換信息。這使得一個程序能夠在同一時間里處理許多用戶的要求。因為即使只有一個用戶發出要求,也可能導致一個操作系統中多個進程的運行,進程之間必須互相通話。IPC介面就提供了這種可能性。每個IPC方法均有它自己的優點和局限性,一般,對於單個程序而言使用所有的IPC方法是不常見的。
1、無名管道通信
無名管道(pipe):管道是一種半雙工的通信方式,數據只能單向流動,而且只能在具有親緣關系的進程間使用,進程的親緣關系通常是指父子進程關系。
2、高級管道通信
高級管道(popen):將另一個程序當做一個新的進程在當前程序進程中啟動,則它算是當前程序的子進程,這種方式我們稱為高級管道方式。
3、有名管道通信
有名管道(named pipe):有名管道也是半雙工的通信方式,但是它允許無親緣關系進程間的通信。
4、消息隊列通信
消息隊列(message
queue):消息隊列是由消息的鏈表,存放在內核中並由消息隊列標識符標識,消息隊列克服了信號傳遞信息少、管道只能承載無格式位元組流以及緩沖區大小受限等缺點。
5、信號量通信
信號量(semophore):信號量是一個計數器,可以用來控制多個進程對共享資源的訪問,它常作為一種鎖機制,防止某進程正在訪問共享資源時,其他進程訪問該資源。因此,主要作為進程間以及同一進程內不同線程之間的同步手段。
6、信號
信號(sinal):信號是一種比較復雜的通信方式,用於通知接收進程某個事件已經發生。
7、共享內存通信
共享內存(shared
memory):共享內存就是映射一段能被其他進程所訪問的內存,這段共享內存由一個進程創建,但多個進程都可以訪問。共享內存是最快的IPC方式,它是針對其他進程間通信方式運行效率低而專門設計的。它往往與其他通信機制,如信號量,配合使用,來實現進程間的同步和通信。
8、套接字通信
套接字(socket):套接字也是一種進程間通信機制,與其他通信機制不同的是,它可用於不同機器間的進程通信。

Ⅵ Linux信號量

信號量是包含一個非負整數型的變數,並且帶有兩個原子操作wait和signal。Wait還可以被稱為down、P或lock,signal還可以被稱為up、V、unlock或post。在UNIX的API中(POSIX標准)用的是wait和post。

對於wait操作,如果信號量的非負整形變數S大於0,wait就將其減1,如果S等於0,wait就將調用線程阻塞;對於post操作,如果有線程在信號量上阻塞(此時S等於0),post就會解除對某個等待線程的阻塞,使其從wait中返回,如果沒有線程阻塞在信號量上,post就將S加1.

由此可見,S可以被理解為一種資源的數量,信號量即是通過控制這種資源的分配來實現互斥和同步的。如果把S設為1,那麼信號量即可使多線程並發運行。另外,信號量不僅允許使用者申請和釋放資源,而且還允許使用者創造資源,這就賦予了信號量實現同步的功能。可見信號量的功能要比互斥量豐富許多。

POSIX信號量是一個sem_t類型的變數,但POSIX有兩種信號量的實現機制: 無名信號量 命名信號量 。無名信號量只可以在共享內存的情況下,比如實現進程中各個線程之間的互斥和同步,因此無名信號量也被稱作基於內存的信號量;命名信號量通常用於不共享內存的情況下,比如進程間通信。

同時,在創建信號量時,根據信號量取值的不同,POSIX信號量還可以分為:

下面是POSIX信號量函數介面:

信號量的函數都以sem_開頭,線程中使用的基本信號函數有4個,他們都聲明在頭文件semaphore.h中,該頭文件定義了用於信號量操作的sem_t類型:

【sem_init函數】:

該函數用於創建信號量,原型如下:

該函數初始化由sem指向的信號對象,設置它的共享選項,並給它一個初始的整數值。pshared控制信號量的類型,如果其值為0,就表示信號量是當前進程的局部信號量,否則信號量就可以在多個進程間共享,value為sem的初始值。

該函數調用成功返回0,失敗返回-1。

【sem_destroy函數】:

該函數用於對用完的信號量進行清理,其原型如下:

成功返回0,失敗返回-1。

【sem_wait函數】:

該函數用於以原子操作的方式將信號量的值減1。原子操作就是,如果兩個線程企圖同時給一個信號量加1或減1,它們之間不會互相干擾。其原型如下:

sem指向的對象是sem_init調用初始化的信號量。調用成功返回0,失敗返回-1。

sem_trywait()則是sem_wait()的非阻塞版本,當條件不滿足時(信號量為0時),該函數直接返回EAGAIN錯誤而不會阻塞等待。

sem_timedwait()功能與sem_wait()類似,只是在指定的abs_timeout時間內等待,超過時間則直接返回ETIMEDOUT錯誤。

【sem_post函數】:

該函數用於以原子操作的方式將信號量的值加1,其原型如下:

與sem_wait一樣,sem指向的對象是由sem_init調用初始化的信號量。調用成功時返回0,失敗返回-1。

【sem_getvalue函數】:

該函數返回當前信號量的值,通過restrict輸出參數返回。如果當前信號量已經上鎖(即同步對象不可用),那麼返回值為0,或為負數,其絕對值就是等待該信號量解鎖的線程數。

【實例1】:

【實例2】:

之所以稱為命名信號量,是因為它有一個名字、一個用戶ID、一個組ID和許可權。這些是提供給不共享內存的那些進程使用命名信號量的介面。命名信號量的名字是一個遵守路徑名構造規則的字元串。

【sem_open函數】:

該函數用於創建或打開一個命名信號量,其原型如下:

參數name是一個標識信號量的字元串。參數oflag用來確定是創建信號量還是連接已有的信號量。

oflag的參數可以為0,O_CREAT或O_EXCL:如果為0,表示打開一個已存在的信號量;如果為O_CREAT,表示如果信號量不存在就創建一個信號量,如果存在則打開被返回,此時mode和value都需要指定;如果為O_CREAT|O_EXCL,表示如果信號量存在則返回錯誤。

mode參數用於創建信號量時指定信號量的許可權位,和open函數一樣,包括:S_IRUSR、S_IWUSR、S_IRGRP、S_IWGRP、S_IROTH、S_IWOTH。

value表示創建信號量時,信號量的初始值。

【sem_close函數】:

該函數用於關閉命名信號量:

單個程序可以用sem_close函數關閉命名信號量,但是這樣做並不能將信號量從系統中刪除,因為命名信號量在單個程序執行之外是具有持久性的。當進程調用_exit、exit、exec或從main返回時,進程打開的命名信號量同樣會被關閉。

【sem_unlink函數】:

sem_unlink函數用於在所有進程關閉了命名信號量之後,將信號量從系統中刪除:

【信號量操作函數】:

與無名信號量一樣,操作信號量的函數如下:

命名信號量是隨內核持續的。當命名信號量創建後,即使當前沒有進程打開某個信號量,它的值依然保持,直到內核重新自舉或調用sem_unlink()刪除該信號量。

無名信號量的持續性要根據信號量在內存中的位置確定:

很多時候信號量、互斥量和條件變數都可以在某種應用中使用,那這三者的差異有哪些呢?下面列出了這三者之間的差異:

Ⅶ linux中的信號怎麼理解

linux的常用信號量BUS與SEGV二者都是錯誤信號,BUS表示匯流排錯誤,SEGV表示段錯誤,程序崩潰的時候99%都是這兩個錯誤導致的。進程可以捕獲和封鎖這兩類錯誤。內核對二者的默認處理是memorympWINCH窗口改變信號(WINdownCHanged)。例如虛擬終端的行數發生變化時將發送WINCH信號,絕大多數文本編輯器都能捕獲WINCH信號自動進行重新配置。內核的默認處理是忽略該信號,並且不進行內存轉儲。進程可以捕獲或者封鎖該信號KILL 殺死/刪除進程,編號為9STOP 掛起/暫停正在執行的進程,直到收到CONT為止KILLSTOP都不能夠被捕獲、封鎖或者忽略,默認處理都不會產生內存轉儲。CONT 取消掛起,繼續執行進程TSTP 是STOP信號的「軟」版本,即在用戶輸入Ctrl+Z時由終端驅動程序發送的信號。捕獲到該信號的進程通常清除它們的狀態,如何給自己發送一個STOP信號。TSTP的默認處理不會導致內存轉儲。INT 中斷信號,編號為2當用戶輸入Ctrl+C時由終端驅動程序發送INT信號INT信號是終止當前操作的請求,簡單程序捕獲到INT信號時應該退出,擁有命令行或者輸入模式的那些程序應該停止他們正在做的事情,清除狀態,並等待用戶再次輸入。TERM 軟體終止信號,編號為15TERM是請求徹底終止某項操作的信號,它期望進程清楚自己的狀態並退出QUIT 退出信號,編號為3與TERM類似,不同之處在於QUIT信號的默認處理是內存轉儲,而TERM信號的默認處理沒有內存轉儲。HUP 掛起信號,編號為1,有兩種解釋:守護進程理解HUP為重新設置的請求,如果守護進程能夠不用重新啟動就能夠重新讀取它自己的配置文件並調整自己以適應變化的話,那麼HUP信號通常可以用來觸發這種行為HUP信號有時有終端驅動程序生成,試圖用來清除(也就是終止)跟某個特定終端相連接的那些進程。例如當一個終端會話結束時,或者當一個Modem的連接不經意的斷開時,就可能出現這種情況。如果需要某些進程在會話結束之後繼續運行,那麼在CShell中設法讓這些進程變成後台程序,ksh或者bash中可以用nohup來模擬這種行為。++++++++++++++++++++++++++++++++++++++++++++++++++++++++++進程的四種狀態runnable(可運行狀態)只要有CPU時間,進程就可以執行。一旦進程執行了不能立即完成的系統調用,Linux會把進程轉入睡眠狀態sleeping(睡眠狀態)進程在等待某些事件發生(如終端輸入、網路連接)zombie(僵化狀態)進程已經執行完畢並試圖消亡,但是狀態沒有收集完stopped(停止狀態)進程被掛起,不允許執行。進程收到STOP或者TSTP信號即進入停止狀態,可以用CONT信號來重新啟動

Ⅷ Linux進程間通信

linux下進程間通信的幾種主要手段簡介:

一般文件的I/O函數都可以用於管道,如close、read、write等等。

實例1:用於shell

管道可用於輸入輸出重定向,它將一個命令的輸出直接定向到另一個命令的輸入。比如,當在某個shell程序(Bourne shell或C shell等)鍵入who│wc -l後,相應shell程序將創建who以及wc兩個進程和這兩個進程間的管道。

實例二:用於具有親緣關系的進程間通信

管道的主要局限性正體現在它的特點上:

有名管道的創建

小結:

管道常用於兩個方面:(1)在shell中時常會用到管道(作為輸入輸入的重定向),在這種應用方式下,管道的創建對於用戶來說是透明的;(2)用於具有親緣關系的進程間通信,用戶自己創建管道,並完成讀寫操作。

FIFO可以說是管道的推廣,克服了管道無名字的限制,使得無親緣關系的進程同樣可以採用先進先出的通信機制進行通信。

管道和FIFO的數據是位元組流,應用程序之間必須事先確定特定的傳輸"協議",採用傳播具有特定意義的消息。

要靈活應用管道及FIFO,理解它們的讀寫規則是關鍵。

信號生命周期

信號是進程間通信機制中唯一的非同步通信機制,可以看作是非同步通知,通知接收信號的進程有哪些事情發生了。信號機制經過POSIX實時擴展後,功能更加強大,除了基本通知功能外,還可以傳遞附加信息。

可以從兩個不同的分類角度對信號進行分類:(1)可靠性方面:可靠信號與不可靠信號;(2)與時間的關繫上:實時信號與非實時信號。

(1) 可靠信號與不可靠信號

不可靠信號 :Linux下的不可靠信號問題主要指的是信號可能丟失。

可靠信號 :信號值位於SIGRTMIN和SIGRTMAX之間的信號都是可靠信號,可靠信號克服了信號可能丟失的問題。Linux在支持新版本的信號安裝函數sigation()以及信號發送函數sigqueue()的同時,仍然支持早期的signal()信號安裝函數,支持信號發送函數kill()。

對於目前linux的兩個信號安裝函數:signal()及sigaction()來說,它們都不能把SIGRTMIN以前的信號變成可靠信號(都不支持排隊,仍有可能丟失,仍然是不可靠信號),而且對SIGRTMIN以後的信號都支持排隊。這兩個函數的最大區別在於,經過sigaction安裝的信號都能傳遞信息給信號處理函數(對所有信號這一點都成立),而經過signal安裝的信號卻不能向信號處理函數傳遞信息。對於信號發送函數來說也是一樣的。

(2) 實時信號與非實時信號

前32種信號已經有了預定義值,每個信號有了確定的用途及含義,並且每種信號都有各自的預設動作。如按鍵盤的CTRL ^C時,會產生SIGINT信號,對該信號的默認反應就是進程終止。後32個信號表示實時信號,等同於前面闡述的可靠信號。這保證了發送的多個實時信號都被接收。實時信號是POSIX標準的一部分,可用於應用進程。非實時信號都不支持排隊,都是不可靠信號;實時信號都支持排隊,都是可靠信號。

發送信號的主要函數有:kill()、raise()、 sigqueue()、alarm()、setitimer()以及abort()。

調用成功返回 0;否則,返回 -1。

sigqueue()是比較新的發送信號系統調用,主要是針對實時信號提出的(當然也支持前32種),支持信號帶有參數,與函數sigaction()配合使用。

sigqueue的第一個參數是指定接收信號的進程ID,第二個參數確定即將發送的信號,第三個參數是一個聯合數據結構union sigval,指定了信號傳遞的參數,即通常所說的4位元組值。

sigqueue()比kill()傳遞了更多的附加信息,但sigqueue()只能向一個進程發送信號。sigqueue()比kill()傳遞了更多的附加信息,但sigqueue()只能向一個進程發送信號。

inux主要有兩個函數實現信號的安裝: signal() sigaction() 。其中signal()在可靠信號系統調用的基礎上實現, 是庫函數。它只有兩個參數,不支持信號傳遞信息,主要是用於前32種非實時信號的安裝;而sigaction()是較新的函數(由兩個系統調用實現:sys_signal以及sys_rt_sigaction),有三個參數,支持信號傳遞信息,主要用來與 sigqueue() 系統調用配合使用,當然,sigaction()同樣支持非實時信號的安裝。sigaction()優於signal()主要體現在支持信號帶有參數。

消息隊列就是一個消息的鏈表。可以把消息看作一個記錄,具有特定的格式以及特定的優先順序。對消息隊列有寫許可權的進程可以向中按照一定的規則添加新消息;對消息隊列有讀許可權的進程則可以從消息隊列中讀走消息。消息隊列是隨內核持續的

消息隊列的內核持續性要求每個消息隊列都在系統范圍內對應唯一的鍵值,所以,要獲得一個消息隊列的描述字,只需提供該消息隊列的鍵值即可;

消息隊列與管道以及有名管道相比,具有更大的靈活性,首先,它提供有格式位元組流,有利於減少開發人員的工作量;其次,消息具有類型,在實際應用中,可作為優先順序使用。這兩點是管道以及有名管道所不能比的。同樣,消息隊列可以在幾個進程間復用,而不管這幾個進程是否具有親緣關系,這一點與有名管道很相似;但消息隊列是隨內核持續的,與有名管道(隨進程持續)相比,生命力更強,應用空間更大。

信號燈與其他進程間通信方式不大相同,它主要提供對進程間共享資源訪問控制機制。相當於內存中的標志,進程可以根據它判定是否能夠訪問某些共享資源,同時,進程也可以修改該標志。除了用於訪問控制外,還可用於進程同步。信號燈有以下兩種類型:

int semop(int semid, struct sembuf *sops, unsigned nsops); semid是信號燈集ID,sops指向數組的每一個sembuf結構都刻畫一個在特定信號燈上的操作。

int semctl(int semid,int semnum,int cmd,union semun arg)
該系統調用實現對信號燈的各種控制操作,參數semid指定信號燈集,參數cmd指定具體的操作類型;參數semnum指定對哪個信號燈操作,只對幾個特殊的cmd操作有意義;arg用於設置或返回信號燈信息。

進程間需要共享的數據被放在一個叫做IPC共享內存區域的地方,所有需要訪問該共享區域的進程都要把該共享區域映射到本進程的地址空間中去。系統V共享內存通過shmget獲得或創建一個IPC共享內存區域,並返回相應的標識符。內核在保證shmget獲得或創建一個共享內存區,初始化該共享內存區相應的shmid_kernel結構注同時,還將在特殊文件系統shm中,創建並打開一個同名文件,並在內存中建立起該文件的相應dentry及inode結構,新打開的文件不屬於任何一個進程(任何進程都可以訪問該共享內存區)。所有這一切都是系統調用shmget完成的。

shmget()用來獲得共享內存區域的ID,如果不存在指定的共享區域就創建相應的區域。shmat()把共享內存區域映射到調用進程的地址空間中去,這樣,進程就可以方便地對共享區域進行訪問操作。shmdt()調用用來解除進程對共享內存區域的映射。shmctl實現對共享內存區域的控制操作。這里我們不對這些系統調用作具體的介紹,讀者可參考相應的手冊頁面,後面的範例中將給出它們的調用方法。

註:shmget的內部實現包含了許多重要的系統V共享內存機制;shmat在把共享內存區域映射到進程空間時,並不真正改變進程的頁表。當進程第一次訪問內存映射區域訪問時,會因為沒有物理頁表的分配而導致一個缺頁異常,然後內核再根據相應的存儲管理機制為共享內存映射區域分配相應的頁表。

Ⅸ linux系統的進程間通信有哪幾種方式

一、方式

1、管道(Pipe)及有名管道( mkpipe):

管道可用於具有親緣關系進程間的通信,有名管道克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;

2、信號(Signal):

信號是比較復雜的通信方式,用於通知接受進程有某種事件發生,除了用於進程間通信外,進程還可以發送信號給進程本身。

linux除了支持Unix早期信號語義函數sigal外,還支持語義符合Posix.1標準的信號函數sigaction。

實際上,該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外介面,用sigaction函數重新實現了signal函數。

3、消息隊列(Message):

消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠許可權的進程可以向隊列中添加消息,被賦予讀許可權的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式位元組流以及緩沖區大小受限等缺點。

4、共享內存:

使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針對其他通信機制運行效率較低而設計的。往往與其它通信機制,如信號量結合使用,來達到進程間的同步及互斥。

5、信號量(semaphore):

主要作為進程間以及同一進程不同線程之間的同步手段。

6、套介面(Socket):

更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix系統上:Linux和System V的變種都支持套接字。

二、概念

進程間通信概念:

IPC—-InterProcess Communication

每個進程各自有不同的用戶地址空間,任何一個進程的全局變數在另一個進程中都看不到所以進程之間要交換數據必須通過內核。

在內核中開辟一塊緩沖區,進程1把數據從用戶空間拷到內核緩沖區,進程2再從內核緩沖區把數據讀走,內核提供的這種機制稱為進程間通信。

(9)linux信號機制擴展閱讀

1)無名管道:

管道是半雙工的,數據只能向一個方向流動;需要雙方通信時,需要建立起兩個管道;只能用於父子進程或者兄弟進程之間(具有親緣關系的進程)。

管道對於管道兩端的進程而言,就是一個文件,但它不是普通的文件,它不屬於某種文件系統,構成兩進程間通信的一個媒介。

數據的讀出和寫入:一個進程向管道中寫的內容被管道另一端的進程讀出。寫入的內容每次都添加在管道緩沖區的末尾,並且每次都是從緩沖區的頭部讀出數據。

2)有名管道:

不同於管道之處在於它提供一個路徑名與之關聯,以FIFO的文件形式存在於文件系統中。這樣,即使與FIFO的創建進程不存在親緣關系的進程,只要可以訪問該路徑,就能夠彼此通過FIFO相互通信(能夠訪問該路徑的進程以及FIFO的創建進程之間)。

因此,通過FIFO不相關的進程也能交換數據。值得注意的是,FIFO嚴格遵循先進先出(first in first out),對管道及FIFO的讀總是從開始處返回數據,對它們的寫則把數據添加到末尾。它們不支持諸如lseek()等文件定位操作。



Ⅹ linux signal 11 是什麼意思

通過kill -l 可以查看信號列表,11 是段錯誤
$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1
36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5
40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9
44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13
48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13
52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9
56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5
60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1
64) SIGRTMAX

熱點內容
kindeditor上傳圖片絕對路徑 發布:2025-05-14 01:06:27 瀏覽:275
廣數g96編程實例 發布:2025-05-14 01:01:56 瀏覽:911
安卓手機如何做一個小程序 發布:2025-05-14 01:01:51 瀏覽:968
linux怎麼訪問外網 發布:2025-05-14 01:00:24 瀏覽:952
玩dnf什麼配置不卡卡 發布:2025-05-14 00:57:02 瀏覽:806
android優秀項目源碼 發布:2025-05-14 00:54:58 瀏覽:205
dell伺服器怎麼裝系統 發布:2025-05-14 00:50:52 瀏覽:593
csgo怎麼進日本伺服器 發布:2025-05-14 00:39:18 瀏覽:747
ip查伺服器商家 發布:2025-05-14 00:33:37 瀏覽:212
雲伺服器布 發布:2025-05-14 00:27:55 瀏覽:78