當前位置:首頁 » 操作系統 » a星演算法最友

a星演算法最友

發布時間: 2022-12-24 18:50:43

❶ A星搜索演算法

A星演算法是定義了一個函數f,公式為:
f = g + h
其中g函數代表目前為止從出發地到達該節點的成本,h函數是預估的當前節點到到目的地的成本,即
g(path) = path cost
h(path) = h(s) = estimated distance to goal
朝著使函數f具有最小值的路徑拓展,該演算法可以找到消耗最小消耗的路徑

注意A星演算法並不是總能找到最優解,能否找到最優解依賴於h函數,條件是

❷ 深度優先搜索和廣度優先搜索、A星演算法三種演算法的區別和聯系

1、何謂啟發式搜索演算法
在說它之前先提提狀態空間搜索.狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程.通俗點說,就是 在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦).由於求解問題的過程中分枝有很多,定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間.問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果.這個尋找的過程就是狀態空間搜索.
常用的狀態空間搜索有深度優先和廣度優先.廣度優先是從初始狀態一層一層向下找,直到找到目標為止.深度優先是按照一定的順序前查找完一個分支,再查找另一個分支,以至找到目標為止.這兩種演算法在數據結構書中都有描述,可以參看這些書得到更詳細的解釋.
前面說的廣度和深度優先搜索有一個很大的缺陷就是他們都是在一個給定的狀態空間中窮舉.這在狀態空間不大的情況下是很合適的演算法,可是當狀態空間十分大,且不預測的情況下就不可取了.他的效率實在太低,甚至不可完成.在這里就要用到啟發式搜索了.
啟發式搜索就是在狀態空間中的搜索對每一個搜索的位置進行評估,得到最好的位置,再從這個位置進行搜索直到目標.這樣可以省略大量無畏的搜索路徑,提 到了效率.在啟發式搜索中,對位置的估價是十分重要的.採用了不同的估價可以有不同的效果.我們先看看估價是如何表示的.
啟發中的估價是用估價函數表示的,如:
f(n) = g(n) + h(n)
其中f(n) 是節點n的估價函數,g(n)實在狀態空間中從初始節點到n節點的實際代價,h(n)是從n到目標節點最佳路徑的估計代價.在這里主要是h(n)體現了搜 索的啟發信息,因為g(n)是已知的.如果說詳細點,g(n)代表了搜索的廣度的優先趨勢.但是當h(n) >> g(n)時,可以省略g(n),而提高效率.這些就深了,不懂也不影響啦!我們繼續看看何謂A*演算法.
2、初識A*演算法
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等.當然A*也是.這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的 策略不同.象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去.這種搜索的結果很明顯,由於舍棄了 其他的節點,可能也把最好的節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳.最好優先就聰明多了,他在搜索時,便沒有舍棄節點 (除非該節點是死節點),在每一步的估價中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」.這樣可以有效的防止「最佳節點」的丟失.那麼 A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最好優先的演算法.只不過要加上一些約束條件罷了.由於在一些問題求解時,我們希望能夠求解出狀態空 間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性.A* 演算法是一個可採納的最好優先演算法.A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值.由於這個f'(n)其實是無法預先知道 的,所以我們用前面的估價函數f(n)做近似.g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)

❸ a星演算法找不到路徑是會遍歷全圖么

C語言的A星叫A*演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。 如在一張dota地圖上,英雄從一個地方走動到地圖上另一個點,它選擇最優路線的演算法。

綠點是開始點,紅點是目的地,黑色區域是不可通過區域。 通過A*演算法,黃色線段就是找到的最優路線。

其實用漫水演算法也能找這路線啊。這A星演算法優點在於處理速度快,並不是像漫水一樣,各個方向都在尋找。

❹ 人工智慧 A*演算法原理

A 演算法是啟發式演算法重要的一種,主要是用於在兩點之間選擇一個最優路徑,而A 的實現也是通過一個估值函數

上圖中這個熊到樹葉的 曼哈頓距離 就是藍色線所表示的距離,這其中不考慮障礙物,假如上圖每一個方格長度為1,那麼此時的熊的曼哈頓距離就為9.
起點(X1,Y1),終點(X2,Y2),H=|X2-X1|+|Y2-Y1|
我們也可以通過幾何坐標點來算出曼哈頓距離,還是以上圖為例,左下角為(0,0)點,熊的位置為(1,4),樹葉的位置為(7,1),那麼H=|7-1|+|1-4|=9。

還是以上圖為例,比如剛開始熊位置我們會加入到CLOSE列表中,而熊四周它可以移動到的點位我們會加入到OPEN列表中,並對熊四周的8個節點進行F=G+H這樣的估值運算,然後在這8個節點中選中一個F值為最小的節點,然後把再把這個節點從OPEN列表中刪除,加入到Close列表中,從接著在對這個節點的四周8個節點進行一個估值運算,再接著依次運算,這樣說大家可能不是太理解,我會在下邊做詳細解釋。

從起點到終點,我們通過A星演算法來找出最優路徑

我們把每一個方格的長度定義為1,那從起始點到5位置的代價就是1,到3的代價為1.41,定義好了我們接著看上圖,接著運算

第一步我們會把起始點四周的點加入OPEN列表中然後進行一個估值運算,運算結果如上圖,這其中大家看到一個小箭頭都指向了起點,這個箭頭就是指向父節點,而open列表的G值都是根據這個進行計算的,意思就是我從上一個父節點運行到此處時所需要的總代價,如果指向不一樣可能G值就不一樣,上圖中我們經過計算發現1點F值是7.41是最小的,那我們就選中這個點,並把1點從OPEN列表中刪除,加入到CLOSE列表中,但是我們在往下運算的時候發現1點的四周,2點,3點和起始點這三個要怎麼處理,首先起始點已經加入到了CLOSE,他就不需要再進行這種運算,這就是CLOSE列表的作用,而2點和3點我們也可以對他進行運算,2點的運算,我們從1移動到2點的時候,他需要的代價也就是G值會變成2.41,而H值是不會變的F=2.41+7=9.41,這個值我們發現大於原來的的F值,那我們就不能對他進行改變(把父節點指向1,把F值改為9.41,因為我們一直追求的是F值最小化),3點也同理。

在對1點四周進行運算後整個OPEN列表中有兩個點2點和3點的F值都是7.41,此時我們系統就可能隨機選擇一個點然後進行下一步運算,現在我們選中的是3點,然後對3點的四周進行運算,結果是四周的OPEN點位如果把父節點指向3點值時F值都比原來的大,所以不發生改變。我們在看整個OPEN列表中,也就2點的7.41值是最小的,那我們就選中2點接著運算。

我們在上一部運算中選中的是1點,上圖沒有把2點加入OPEN列表,因為有障礙物的阻擋從1點他移動不到2點,所以沒有把2點加入到OPEN列表中,整個OPEN列表中3的F=8是最小的,我們就選中3,我們對3點四周進行運算是我們發現4點經過計算G=1+1=2,F=2+6=8所以此時4點要進行改變,F變為8並把箭頭指向3點(就是把4點的父節點變為3),如下圖

我們就按照這種方法一直進行運算,最後 的運算結果如下圖

而我們通過目標點位根據箭頭(父節點),一步一步向前尋找最後我們發現了一條指向起點的路徑,這個就是我們所需要的最優路徑。 如下圖的白色選中區域

但是我們還要注意幾點

最優路徑有2個

這是我對A*演算法的一些理解,有些地方可能有BUG,歡迎大家指出,共同學習。

❺ 深度優先搜索和廣度優先搜索、A星演算法三種演算法的區別和聯系

在說它之前先提提狀態空間搜索。狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程。通俗點說,就是 在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦)。由於求解問題的過程中分枝有很多,主要是求解過程中求解條件的不確 定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間。問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果。 這個尋找的過程就是狀態空間搜索。 常用的狀態空間搜索有深度優先和廣度優先。廣度優先是從初始狀態一層一層向下找,直到找到目標為止。深度優先是按照一定的順序前查找完一個分支,再查找另一個分支,以至找到目標為止。這兩種演算法在數據結構書中都有描述,可以參看這些書得到更詳細的解釋。 前面說的廣度和深度優先搜索有一個很大的缺陷就是他們都是在一個給定的狀態空間中窮舉。這在狀態空間不大的情況下是很合適的演算法,可是當狀態空間十分大,且不預測的情況下就不可取了。他的效率實在太低,甚至不可完成。在這里就要用到啟發式搜索了。 啟發中的估價是用估價函數表示的,如: f(n) = g(n) + h(n) 其中f(n) 是節點n的估價函數,g(n)實在狀態空間中從初始節點到n節點的實際代價,h(n)是從n到目標節點最佳路徑的估計代價。在這里主要是h(n)體現了搜 索的啟發信息,因為g(n)是已知的。如果說詳細點,g(n)代表了搜索的廣度的優先趨勢。但是當h(n) >> g(n)時,可以省略g(n),而提高效率。這些就深了,不懂也不影響啦!我們繼續看看何謂A*演算法。 2、初識A*演算法 啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的 策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了 其他的節點,可能也把最好的節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點 (除非該節點是死節點),在每一步的估價中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼 A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空 間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A* 演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為: f'(n) = g'(n) + h'(n) 這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道 的,所以我們用前面的估價函數f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別 的重要)。可以證明應用這樣的估價函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈。你懂了嗎?肯定沒 懂。接著看。 舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是。當然它是一種最臭的A*演算法。 再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除 的節點就越多,估價函數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由 於實時性的問題,h(n)的信息越多,它的計算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這 里就有一個平衡的問題。可難了,這就看你的了! 好了我的話也說得差不多了,我想你肯定是一頭的霧水了,其實這是寫給懂A*演算法的同志看的。哈哈。你還是找一本人工智慧的書仔細看看吧!我這幾百字是不足以將A*演算法講清楚的。只是起到拋磚引玉的作用希望大家熱情參與嗎。

❻ 什麼是A搜索演算法

A*搜索演算法,俗稱A星演算法,作為啟發式搜索演算法中的一種,這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。

❼ A星尋路演算法和Unity自帶的尋路相比有什麼優勢

並沒一種尋路適合所有場合,選擇都是基於需求而定的。

1. A* 演算法與貪婪演算法不一樣,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。
A*是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。
與啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。
使用的地方:
a. 策略游戲的策略搜索
b. 方塊格子游戲中的格子尋路

2. Unity 自帶的導航網格系統
Unity 內置了NavMesh導航網格系統,一般來說導航網格演算法大多是「拐角點演算法」。
效率是比較高的,但是不保證最優解演算法。
使用的地方:
a.游戲場景的怪物尋路
b.動態規避障礙

❽ A星尋路演算法和Unity自帶的尋路相比有什麼優勢

在理解Navigation的時候,首先要明確兩個知識點:

AStar:AStar是路點尋路演算法中的一種,同時AStar不屬於貪婪演算法,貪婪演算法適合動態規劃,尋找局部最優解,不保證最優解。AStar是靜態網格中求解最短路最有效的方法。也是耗時的演算法,不宜尋路頻繁的場合。一般來說適合需求精確的場合。

性能和內存佔用率都還行,和啟發式的搜索一樣,能夠根據改變網格密度、網格耗散來進行調整精確度。

A Star一般使用場景:

  • 策略游戲的策略搜索

  • 方塊格子游戲中的格子尋路

Navigation:網格尋路演算法,嚴格意義上它屬於」拐角點演算法」,效率是比較高的,但是不保證最優解演算法。Navigation相對來說消耗內存更大,性能的話還不錯。

Navigation一般使用場景:

  • 游戲場景的怪物尋路

  • 動態規避障礙

它們二者事件的實現方式和原理都不同。


AStar的話,

熱點內容
tomcat下載linux 發布:2025-05-11 07:47:06 瀏覽:791
phpcookie設置時間 發布:2025-05-11 07:36:15 瀏覽:110
固態硬碟需要緩存嗎 發布:2025-05-11 07:29:09 瀏覽:605
松江換門密碼鎖哪裡有 發布:2025-05-11 07:23:21 瀏覽:326
自動配置代理什麼意思 發布:2025-05-11 07:16:51 瀏覽:993
notepad編寫php 發布:2025-05-11 07:10:50 瀏覽:864
茄子快傳的文件夾 發布:2025-05-11 07:04:30 瀏覽:734
手機指紋密碼如何更換 發布:2025-05-11 07:02:22 瀏覽:123
java存儲資料庫 發布:2025-05-11 07:01:33 瀏覽:177
辦理ca的初始密碼是多少 發布:2025-05-11 06:54:55 瀏覽:425