當前位置:首頁 » 操作系統 » 最廉價演算法

最廉價演算法

發布時間: 2022-12-27 18:37:19

Ⅰ 最短路徑 | 深入淺出Dijkstra演算法(一)

上次我們介紹了神奇的只有 五行的 Floyd-Warshall 最短路演算法 ,它可以方便的求得 任意兩點的最短路徑, 這稱為 「多源最短路」。

這次來介紹 指定一個點(源點)到其餘各個頂點的最短路徑, 也叫做 「單源最短路徑」。 例如求下圖中的 1 號頂點到 2、3、4、5、6 號頂點的最短路徑。

與 Floyd-Warshall 演算法一樣,這里仍然 使用二維數組 e 來存儲頂點之間邊的關系, 初始值如下。

我們還需要用 一個一維數組 dis 來存儲 1 號頂點到其餘各個頂點的初始路程, 我們可以稱 dis 數組為 「距離表」, 如下。

我們將此時 dis 數組中的值稱為 最短路的「估計值」。

既然是 求 1 號頂點到其餘各個頂點的最短路程, 那就 先找一個離 1 號頂點最近的頂點。

通過數組 dis 可知當前離 1 號頂點最近是 2 號頂點。 當選擇了 2 號頂點後,dis[2]的值就已經從「估計值」變為了「確定值」, 即 1 號頂點到 2 號頂點的最短路程就是當前 dis[2]值。

為什麼呢?你想啊, 目前離 1 號頂點最近的是 2 號頂點,並且這個圖所有的邊都是正數,那麼肯定不可能通過第三個頂點中轉,使得 1 號頂點到 2 號頂點的路程進一步縮短了。 因此 1 號頂點到其它頂點的路程肯定沒有 1 號到 2 號頂點短,對吧 O(∩_∩)O~

既然選了 2 號頂點,接下來再來看 2 號頂點 有哪些 出邊 呢。有 2->3 和 2->4 這兩條邊。

先討論 通過 2->3 這條邊能否讓 1 號頂點到 3 號頂點的路程變短。 也就是說現在來比較 dis[3] dis[2]+e[2][3] 的大小。其中 dis[3]表示 1 號頂點到 3 號頂點的路程,dis[2]+e[2][3]中 dis[2]表示 1 號頂點到 2 號頂點的路程,e[2][3]表示 2->3 這條邊。所以 dis[2]+e[2][3]就表示從 1 號頂點先到 2 號頂點,再通過 2->3 這條邊,到達 3 號頂點的路程。

我們發現 dis[3]=12,dis[2]+e[2][3]=1+9=10,dis[3]>dis[2]+e[2][3],因此 dis[3]要更新為 10。這個過程有個專業術語叫做 「鬆弛」 。即 1 號頂點到 3 號頂點的路程即 dis[3],通過 2->3 這條邊 鬆弛成功。 這便是 Dijkstra 演算法的主要思想: 通過 「邊」 來鬆弛 1 號頂點到其餘各個頂點的路程。

同理通過 2->4(e[2][4]),可以將 dis[4]的值從 ∞ 鬆弛為 4(dis[4]初始為 ∞,dis[2]+e[2][4]=1+3=4,dis[4]>dis[2]+e[2][4],因此 dis[4]要更新為 4)。

剛才我們對 2 號頂點所有的出邊進行了鬆弛。鬆弛完畢之後 dis 數組為:

接下來,繼續在剩下的 3、4、5 和 6 號頂點中,選出離 1 號頂點最近的頂點。通過上面更新過 dis 數組,當前離 1 號頂點最近是 4 號頂點。此時,dis[4]的值已經從「估計值」變為了「確定值」。下面繼續對 4 號頂點的所有出邊(4->3,4->5 和 4->6)用剛才的方法進行鬆弛。鬆弛完畢之後 dis 數組為:

繼續在剩下的 3、5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 3 號頂點。此時,dis[3]的值已經從「估計值」變為了「確定值」。對 3 號頂點的所有出邊(3->5)進行鬆弛。鬆弛完畢之後 dis 數組為:

繼續在剩下的 5 和 6 號頂點中,選出離 1 號頂點最近的頂點,這次選擇 5 號頂點。此時,dis[5]的值已經從「估計值」變為了「確定值」。對5號頂點的所有出邊(5->4)進行鬆弛。鬆弛完畢之後 dis 數組為:

最後對 6 號頂點的所有出邊進行鬆弛。因為這個例子中 6 號頂點沒有出邊,因此不用處理。 到此,dis 數組中所有的值都已經從「估計值」變為了「確定值」。

最終 dis 數組如下,這便是 1 號頂點到其餘各個頂點的最短路徑。

OK,現在來總結一下剛才的演算法。 Dijkstra演算法的基本思想是:每次找到離源點(上面例子的源點就是 1 號頂點)最近的一個頂點,然後以該頂點為中心進行擴展,最終得到源點到其餘所有點的最短路徑。

基本步驟如下:

在 博客 中看到兩個比較有趣的問題,也是在學習Dijkstra時,可能會有疑問的問題。

當我們看到上面這個圖的時候,憑借多年對平面幾何的學習,會發現在「三角形ABC」中,滿足不了 構成三角形的條件(任意兩邊之和大於第三邊)。 納尼,那為什麼圖中能那樣子畫?

還是「三角形ABC」,以A為起點,B為終點,如果按照平面幾何的知識, 「兩點之間線段最短」, 那麼,A到B的最短距離就應該是6(線段AB),但是,實際上A到B的最短距離卻是3+2=5。這又怎麼解釋?

其實,之所以會有上面的疑問,是因為 對邊的權值和邊的長度這兩個概念的混淆, 。之所以這樣畫,也只是為了方便理解(每個人寫草稿的方式不同,你完全可以用別的方式表示,只要便於你理解即可)。

PS:數組實現鄰接表可能較難理解,可以看一下 這里

參考資料:

Dijkstra演算法是一種基於貪心策略的演算法。每次新擴展一個路程最短的點,更新與其相鄰的點的路程。當所有邊權都為正時,由於不會存在一個路程更短的沒擴展過的點,所以這個點的路程永遠不會再被改變,因而保證了演算法的正確性。

根據這個原理, 用Dijkstra演算法求最短路徑的圖不能有負權邊, 因為擴展到負權邊的時候會產生更短的路徑,有可能破壞了已經更新的點路徑不會發生改變的性質。

那麼,有沒有可以求帶負權邊的指定頂點到其餘各個頂點的最短路徑演算法(即「單源最短路徑」問題)呢?答案是有的, Bellman-Ford演算法 就是一種。(我們已經知道了 Floyd-Warshall 可以解決「多源最短路」問題,也要求圖的邊權均為正)

通過 鄰接矩陣 的Dijkstra時間復雜度是 。其中每次找到離 1 號頂點最近的頂點的時間復雜度是 O(N),這里我們可以用 優先隊列(堆) 來優化,使得這一部分的時間復雜度降低到 。這個我們將在後面討論。

Ⅱ 最短路徑法與節約法的區別

最短路徑法與節約法的區別:含義不同,計算不同。

一、含義不同:在這里啟發式指的是一個在一個搜尋樹的節點上定義的函數h(n),用於評估從此節點到目標節點最便宜的路徑。啟發式通常用於資訊充分的搜尋演算法,例如最好優先貪婪演算法與a*。

路徑指的是實現查找的方法或演算法,而樹是把演算法變化成可見的結構圖。可以理解成樹是文章的結構,路徑是完成一篇作文的語句。

二、計算不同:最好優先貪婪演算法會為啟發式函數選擇最低代價的節點;a*則會為g(n)+h(n)選擇最低代價的節點,此g(n)是從起始節點到目前節點的路徑的確實代價。

最短路徑是一個路徑,最小樹是一個樹(支撐樹),雖然二者都是要求覆蓋每一個節點,但是路徑和樹究竟不同,後者分叉前者不分叉。

SPFA演算法

可以用於存在負數邊權的圖,這與dijkstra演算法是不同的。與Dijkstra演算法與Bellman-ford演算法都不同,SPFA的演算法時間效率是不穩定的,即它對於不同的圖所需要的時間有很大的差別。

在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度僅為O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為Bellman-ford演算法,其時間復雜度為O(VE)。

Ⅲ 數據挖掘裡面最簡單的演算法是什麼

鄙人認為k-means演算法不怎麼難,不論是一維的還是二維的,用c或c++實現都不十分復雜,這方面的代碼也很多。

演算法描述:
K均值聚類演算法:
給定類的個數K,將N個對象分到K個類中去,
使得類內對象之間的相似性最大,而類之間的相似性最小。

基本演算法的步驟:
輸入:k, data[n];
(1) 選擇k個初始中心點,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 對於data[0]….data[n], 分別與c[0]…c[n-1]比較,假定與c[i]差值最少,就標記為i;
(3) 對於所有標記為i點,重新計算c[i]={ 所有標記為i的data[j]之和}/標記為i的個數;
(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值或者前後兩次的中心不再發生變化。

Ⅳ 風靡全球的十大演算法

作者 | George Dvorsky

編譯 | 深度學習這件小事

1 排序演算法

所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。排序演算法,就是如何使得記錄按照要求排列的方法。排序演算法在很多領域得到相當地重視,尤其是在大量數據的處理方面。一個優秀的演算法可以節省大量的資源。

穩定的

冒泡排序(bubble sort) — O(n^2) 雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2) 插入排序(insertion sort)— O(n^2) 桶排序(bucket sort)— O(n); 需要 O(k) 額外空間 計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間 合並排序(merge sort)— O(nlog n);需要 O(n) 額外空間 原地合並排序— O(n^2) 二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間;需要 O(n) 額外空間 鴿巢排序(Pigeonhole sort)— O(n+k); 需要 O(k) 額外空間 基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間 Gnome 排序— O(n^2) 圖書館排序— O(nlog n) withhigh probability,需要(1+ε)n額外空間

不穩定的

選擇排序(selection sort)— O(n^2) 希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本 組合排序— O(nlog n) 堆排序(heapsort)— O(nlog n) 平滑排序— O(nlog n) 快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況;對於大的、亂數列表一般相信是最快的已知排序 Introsort—O(nlog n) Patience sorting— O(nlog n+k) 最壞情況時間,需要額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence)

不實用的

Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。 Stupid sort— O(n^3); 遞歸版本需要 O(n^2)額外存儲器 珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體 Pancake sorting— O(n),但需要特別的硬體 stooge sort——O(n^2.7)很漂亮但是很耗時

2 傅立葉變換與快速傅立葉變換

傅立葉是一位法國數學家和物理學家,原名是JeanBaptiste Joseph Fourier(1768-1830), Fourier於1807年在法國科學學會上發表了一篇論文,論文里描述運用正弦曲線來描述溫度分布,論文里有個在當時具有爭議性的決斷:任何連續周期信號都可以由一組適當的正弦曲線組合而成。當時審查這個論文拉格朗日堅決反對此論文的發表,而後在近50年的時間里,拉格朗日堅持認為傅立葉的方法無法表示帶有稜角的信號,如在方波中出現非連續變化斜率。直到拉格朗日死後15年這個論文才被發表出來。誰是對的呢?拉格朗日是對的:正弦曲線無法組合成一個帶有稜角的信號。但是,我們可以用正弦曲線來非常逼近地表示它,逼近到兩種表示方法不存在能量差別,基於此,傅立葉是對的。為什麼我們要用正弦曲線來代替原來的曲線呢?如我們也還可以用方波或三角波來代替呀,分解信號的方法是無窮多的,但分解信號的目的是為了更加簡單地處理原來的信號。用正餘弦來表示原信號會更加簡單,因為正餘弦擁有原信號所不具有的性質:正弦曲線保真度。一個正餘弦曲線信號輸入後,輸出的仍是正餘弦曲線,只有幅度和相位可能發生變化,但是頻率和波的形狀仍是一樣的。且只有正餘弦曲線才擁有這樣的性質,正因如此我們才不用方波或三角波來表示。

3 Dijkstra 演算法

Dijkstra演算法是典型的演算法。Dijkstra演算法是很有代表性的演算法。Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表的方式,這里均採用永久和臨時標號的方式。注意該演算法要求圖中不存在負權邊。

4 RSA演算法變換

RSA是目前最有影響力的公鑰加密演算法,它能夠抵抗到目前為止已知的絕大多數密碼攻擊,已被ISO推薦為公鑰數據加密標准。今天只有短的RSA鑰匙才可能被強力方式解破。到2008年為止,世界上還沒有任何可靠的攻擊RSA演算法的方式。只要其鑰匙的長度足夠長,用RSA加密的信息實際上是不能被解破的。但在分布式計算和量子計算機理論日趨成熟的今天,RSA加密安全性受到了挑戰。

5 安全哈希演算法

一種對輸入信息(例如消息)進行摘要的演算法。摘要過程能夠完成下列特點:不同的輸入信息絕對不會具有相同的指紋:相近輸入信息經過摘要之後的輸出信息具有較大的差異,同時計算上很難生產一個與給定輸入具有相同指紋的輸入。(即不可逆)。

6 整數因式分解

這是在計算機領域被大量使用的數學演算法,沒有這個演算法,信息加密會更不安全。該演算法定義了一系列步驟,得到將一合數分解為更小因子的質數分解式。這被認為是一種FNP問題,它是NP分類問題的延伸,極其難以解決。許多加密協議(如RSA演算法)都基於這樣一個原理:對大的合數作因式分解是非常困難的。如果一個演算法能夠快速地對任意整數進行因式分解,RSA的公鑰加密體系就會失去其安全性。量子計算的誕生使我們能夠更容易地解決這類問題,同時它也打開了一個全新的領域,使得我們能夠利用量子世界中的特性來保證系統安全。

7 鏈接分析

鏈接分析,源於對Web結構中超鏈接的多維分析。當前其應用主要體現在網路信息檢索、網路計量學、數據挖掘、Web結構建模等方山。作為Google的核心技術之一,鏈接分析演算法應用已經顯現出j驚人的商業價值。

8 比例積分微分演算法

你是否曾經用過飛機、汽車、衛星服務或手機網路?你是否曾經在工廠工作或是看見過機器人?如果回答是肯定的,那麼你應該已經見識過這個演算法了。大體上,這個演算法使用一種控制迴路反饋機制,將期望輸出信號和實際輸出信號之間的錯誤最小化。無論何處,只要你需要進行信號處理,或者你需要一套電子系統,用來自動化控制機械、液壓或熱力系統,這個演算法都會有用武之地。可以這樣說,如果沒有這個演算法,現代文明將不復存在。

9 數據壓縮演算法

在現今的電子信息技術領域,正發生著一場有長遠影響的數字化革命。由於數字化的多媒體信息尤其是數字視頻、音頻信號的數據量特別龐大,如果不對其進行有效的壓縮就難以得到實際的應用。因此,數據壓縮技術已成為當今數字通信、廣播、存儲和多媒體娛樂中的一項關鍵的共性技術。

10 隨機數生成

在統計學的不同技術中需要使用隨機數,比如在從統計總體中抽取有代表性的樣本的時候,或者在將實驗動物分配到不同的試驗組的過程中,或者在進行蒙特卡羅模擬法計算的時候等等。

Ⅳ 打折打到最便宜的是幾折 打1折 2折 怎麼算

某寶上打0.1折都有,都是商家弄虛假的
打幾折就是相當於乘零點幾。比如九折就是乘0.9,六折就是乘以0.6,8.5折就是乘0.85
例如100元的衣服打9折就是90元,6折就是60元,8.5折就是85元

Ⅵ 圖論中常見的最短路徑演算法有幾種都是什麼

主要是有三種、、
第一種是最直接的貪心dijkstra演算法、、可以利用堆數據結構進行優化、、缺點就是不能求有負權的最短路與判斷負環、、
第二種是bellman-ford演算法、、根據鬆弛操作的性質是可以來判斷負環的、、時間復雜度是O(nm)的、、
第三種是SPFA演算法、、把他單獨拿出來作為一種演算法並不是非常好的、、他的實質應該是上面的bellman-ford演算法的隊列優化時間復雜度更低、O(KE)、K的值約等於2、、

Ⅶ 376-298最簡便的演算法怎麼算

簡便運算,就是利用運算定律或者是運算性質,巧用特殊數之間的特性進行巧算
利用運算定律。利用加法的交換律和結合律,乘法的交換律、結合律和分配律,可以使計算簡便。
376-298
= 376-300+2
= 76+2
= 78

Ⅷ 為什麼說Transformer的注意力機制是相對廉價的注意力機制相對更對於RNN系列及CNN系列演算法有何優勢

基於注意力機制的構造與基於RNN的不同,基於RNN的是在時間步上串聯(在每個time step只能輸入一個token),而基於注意力機制的是類似於桶狀結構(一起將數據輸入到模型中去)

Ⅸ 物流成本最低的演算法有哪些

一些物流企業只注意到運輸、存儲、配送等單要素發生的成本,實際上要對各要素綜合控制,才能實現物流總成本的最小化。
物流總成本是由運輸、存儲保管、流通加工、包裝、裝卸、配送等要素的成本構成。
當各成本同時為最小時總成本也最小。但由於「效益悖反」規律,各成本一般不可能同時為最小,必須對各個環節匯總進行協調和整合,加強物流各個環節的成本控制。
運輸成本在物流總成本中占很大比例,從歐洲發達國家來看,一般也佔到1/3以上,因此運輸合理化也是降低物流成本的一個重要方法。
運輸成本在很大程度取決於運輸量(以及存儲量)和運輸方式,根據物流總成本最小化原則來確定相應的運輸量(由存儲量確定運輸量),運輸量既定時,運輸方式成為影響運輸成本的主要因素。

Ⅹ 冒泡排序法和快速排序比較的演算法

打你屁股,這么簡單的問題都不認真研究一下。

冒泡排序是最慢的排序,時間復雜度是 O(n^2)。

快速排序是最快的排序。關於快速排序,我推薦你看看《代碼之美》第二章:我編寫過的最漂亮的代碼。作者所說的最漂亮,就是指效率最高的。

--------------------------------摘自《代碼之美》---------------

當我撰寫關於分治(divide-and-conquer)演算法的論文時,我發現C.A.R. Hoare的Quicksort演算法(「Quicksort」,Computer Journal 5)無疑是各種Quicksort演算法的鼻祖。這是一種解決基本問題的漂亮演算法,可以用優雅的代碼實現。我很喜歡這個演算法,但我總是無法弄明白演算法中最內層的循環。我曾經花兩天的時間來調試一個使用了這個循環的復雜程序,並且幾年以來,當我需要完成類似的任務時,我會很小心地復制這段代碼。雖然這段代碼能夠解決我所遇到的問題,但我卻並沒有真正地理解它。
我後來從Nico Lomuto那裡學到了一種優雅的劃分(partitioning)模式,並且最終編寫出了我能夠理解,甚至能夠證明的Quicksort演算法。William Strunk Jr.針對英語所提出的「良好的寫作風格即為簡練」這條經驗同樣適用於代碼的編寫,因此我遵循了他的建議,「省略不必要的字詞」(來自《The Elements of Style》一書)。我最終將大約40行左右的代碼縮減為十幾行的代碼。因此,如果要回答「你曾編寫過的最漂亮代碼是什麼?」這個問題,那麼我的答案就是:在我編寫的《Programming Pearls, Second Edition》(Addison-Wesley)一書中給出的Quichsort演算法。在示例2-1中給出了用C語言編寫的Quicksort函數。我們在接下來的章節中將進一步地研究和改善這個函數。
【示例】 2-1 Quicksort函數
void quicksort(int l, int u)
{ int i, m;
if (l >= u) return; 10
swap(l, randint(l, u));
m = l;
for (i = l+1; i <= u; i++)
if (x[i] < x[l])
swap(++m, i);
swap(l, m);
quicksort(l, m-1);
quicksort(m+1, u);
}
如果函數的調用形式是quicksort(0, n-1),那麼這段代碼將對一個全局數組x[n]進行排序。函數的兩個參數分別是將要進行排序的子數組的下標:l是較低的下標,而u是較高的下標。函數調用swap(i,j)將會交換x[i]與x[j]這兩個元素。第一次交換操作將會按照均勻分布的方式在l和u之間隨機地選擇一個劃分元素。
在《Programming Pearls》一書中包含了對Quicksort演算法的詳細推導以及正確性證明。在本章的剩餘內容中,我將假設讀者熟悉在《Programming Pearls》中所給出的Quicksort演算法以及在大多數初級演算法教科書中所給出的Quicksort演算法。
如果你把問題改為「在你編寫那些廣為應用的代碼中,哪一段代碼是最漂亮的?」我的答案還是Quicksort演算法。在我和M. D. McIlroy一起編寫的一篇文章("Engineering a sort function," Software-Practice and Experience, Vol. 23, No. 11)中指出了在原來Unix qsort函數中的一個嚴重的性能問題。隨後,我們開始用C語言編寫一個新排序函數庫,並且考慮了許多不同的演算法,包括合並排序(Merge Sort)和堆排序(Heap Sort)等演算法。在比較了Quicksort的幾種實現方案後,我們著手創建自己的Quicksort演算法。在這篇文章中描述了我們如何設計出一個比這個演算法的其他實現要更為清晰,速度更快以及更為健壯的新函數——部分原因是由於這個函數的代碼更為短小。Gordon Bell的名言被證明是正確的:「在計算機系統中,那些最廉價,速度最快以及最為可靠的組件是不存在的。」現在,這個函數已經被使用了10多年的時間,並且沒有出現任何故障。
考慮到通過縮減代碼量所得到的好處,我最後以第三種方式來問自己在本章之初提出的問題。「你沒有編寫過的最漂亮代碼是什麼?」。我如何使用非常少的代碼來實現大量的功能?答案還是和Quicksort有關,特別是對這個演算法的性能分析。我將在下一節給出詳細介紹。
2.2 事倍功半
Quicksort是一種優雅的演算法,這一點有助於對這個演算法進行細致的分析。大約在1980年左右,我與Tony Hoare曾經討論過Quicksort演算法的歷史。他告訴我,當他最初開發出Quicksort時,他認為這種演算法太簡單了,不值得發表,而且直到能夠分析出這種演算法的預期運行時間之後,他才寫出了經典的「Quicksoft」論文。
我們很容易看出,在最壞的情況下,Quicksort可能需要n2的時間來對數組元素進行排序。而在最優的情況下,它將選擇中值作為劃分元素,因此只需nlgn次的比較就可以完成對數組的排序。那麼,對於n個不同值的隨機數組來說,這個演算法平均將進行多少次比較?
Hoare對於這個問題的分析非常漂亮,但不幸的是,其中所使用的數學知識超出了大多數程序員的理解范圍。當我為本科生講授Quicksort演算法時,許多學生即使在費了很大的努力之後,還是無法理解其中的證明過程,這令我非常沮喪。下面,我們將從Hoare的程序開
11
始討論,並且最後將給出一個與他的證明很接近的分析。
我們的任務是對示例2-1中的Quicksort代碼進行修改,以分析在對元素值均不相同的數組進行排序時平均需要進行多少次比較。我們還將努力通過最短的代碼、最短運行時間以及最小存儲空間來得到最深的理解。
為了確定平均比較的次數,我們首先對程序進行修改以統計次數。因此,在內部循環進行比較之前,我們將增加變數comps的值(參見示例2-2)。
【示例2-2】 修改Quicksort的內部循環以統計比較次數。
for (i = l+1; i <= u; i++) {
comps++;
if (x[i] < x[l])
swap(++m, i);
}
如果用一個值n來運行程序,我們將會看到在程序的運行過程中總共進行了多少次比較。如果重復用n來運行程序,並且用統計的方法來分析結果,我們將得到Quicksort在對n個元素進行排序時平均使用了1.4 nlgn次的比較。
在理解程序的行為上,這是一種不錯的方法。通過十三行的代碼和一些實驗可以反應出許多問題。這里,我們引用作家Blaise Pascal和T. S. Eliot的話,「如果我有更多的時間,那麼我給你寫的信就會更短。」現在,我們有充足的時間,因此就讓我們來對代碼進行修改,並且努力編寫出更短(同時更好)的程序。
我們要做的事情就是提高這個演算法的速度,並且盡量增加統計的精確度以及對程序的理解。由於內部循環總是會執行u-l次比較,因此我們可以通過在循環外部增加一個簡單的操作來統計比較次數,這就可以使程序運行得更快一些。在示例2-3的Quicksort演算法中給出了這個修改。
【示例2-3】 Quicksort的內部循環,將遞增操作移到循環的外部
comps += u-l;
for (i = l+1; i <= u; i++)
if (x[i] < x[l])
swap(++m, i);
這個程序會對一個數組進行排序,同時統計比較的次數。不過,如果我們的目標只是統計比較的次數,那麼就不需要對數組進行實際地排序。在示例2-4中去掉了對元素進行排序的「實際操作」,而只是保留了程序中各種函數調用的「框架」。
【示例2-4】將Quicksort演算法的框架縮減為只進行統計
void quickcount(int l, int u)
{ int m;
if (l >= u) return;
m = randint(l, u);
comps += u-l;
quickcount(l, m-1);
quickcount(m+1, u);
}
12
這個程序能夠實現我們的需求,因為Quichsort在選擇劃分元素時採用的是「隨機」方式,並且我們假設所有的元素都是不相等的。現在,這個新程序的運行時間與n成正比,並且相對於示例2-3需要的存儲空間與n成正比來說,現在所需的存儲空間縮減為遞歸堆棧的大小,即存儲空間的平均大小與lgn成正比。
雖然在實際的程序中,數組的下標(l和u)是非常重要的,但在這個框架版本中並不重要。因此,我們可以用一個表示子數組大小的整數(n)來替代這兩個下標(參見示例2-5)
【示例2-5】 在Quicksort代碼框架中使用一個表示子數組大小的參數
void qc(int n)
{ int m;
if (n <= 1) return;
m = randint(1, n);
comps += n-1;
qc(m-1);
qc(n-m);
}
現在,我們可以很自然地把這個過程整理為一個統計比較次數的函數,這個函數將返回在隨機Quicksort演算法中的比較次數。在示例2-6中給出了這個函數。
【示例2-6】 將Quicksort框架實現為一個函數
int cc(int n)
{ int m;
if (n <= 1) return 0;
m = randint(1, n);
return n-1 + cc(m-1) + cc(n-m);
}
在示例2-4、示例2-5和示例2-6中解決的都是相同的基本問題,並且所需的都是相同的運行時間和存儲空間。在後面的每個示例都對這些函數的形式進行了改進,從而比這些函數更為清晰和簡潔。
在定義發明家的矛盾(inventor's paradox)(How To Solve It, Princeton University Press)時,George Póllya指出「計劃越宏大,成功的可能性就越大。」現在,我們就來研究在分析Quicksort時的矛盾。到目前為止,我們遇到的問題是,「當Quicksort對大小為n的數組進行一次排序時,需要進行多少次比較?」我們現在將對這個問題進行擴展,「對於大小為n的隨機數組來說,Quichsort演算法平均需要進行多少次的比較?」我們通過對示例2-6進行擴展以引出示例2-7。
【示例2-7】 偽碼:Quicksort的平均比較次數
float c(int n)
if (n <= 1) return 0
sum = 0
for (m = 1; m <= n; m++)
sum += n-1 + c(m-1) + c(n-m)
return sum/n
如果在輸入的數組中最多隻有一個元素,那麼Quichsort將不會進行比較,如示例2-6
13
中所示。對於更大的n,這段代碼將考慮每個劃分值m(從第一個元素到最後一個,每個都是等可能的)並且確定在這個元素的位置上進行劃分的運行開銷。然後,這段代碼將統計這些開銷的總和(這樣就遞歸地解決了一個大小為m-1的問題和一個大小為n-m的問題),然後將總和除以n得到平均值並返回這個結果。
如果我們能夠計算這個數值,那麼將使我們實驗的功能更加強大。我們現在無需對一個n值運行多次來估計平均值,而只需一個簡單的實驗便可以得到真實的平均值。不幸的是,實現這個功能是要付出代價的:這個程序的運行時間正比於3n(如果是自行參考(self-referential)的,那麼用本章中給出的技術來分析運行時間將是一個很有趣的練習)。
示例2-7中的代碼需要一定的時間開銷,因為它重復計算了中間結果。當在程序中出現這種情況時,我們通常會使用動態編程來存儲中間結果,從而避免重復計算。因此,我們將定義一個表t[N+1],其中在t[n]中存儲c[n],並且按照升序來計算它的值。我們將用N來表示n的最大值,也就是進行排序的數組的大小。在示例2-8中給出了修改後的代碼。
【示例2-8】 在Quicksort中使用動態編程來計算
t[0] = 0
for (n = 1; n <= N; n++)
sum = 0
for (i = 1; i <= n; i++)
sum += n-1 + t[i-1] + t[n-i]
t[n] = sum/n
這個程序只對示例2-7進行了細微的修改,即用t[n]來替換c(n)。它的運行時間將正比於N2,並且所需的存儲空間正比於N。這個程序的優點之一就是:在程序執行結束時,數組t中將包含數組中從元素0到元素N的真實平均值(而不是樣本均值的估計)。我們可以對這些值進行分析,從而生成在Quichsort演算法中統計比較次數的計算公式。
我們現在來對程序做進一步的簡化。第一步就是把n-1移到循環的外面,如示例2-9所示。
【示例2-9】 在Quicksort中把代碼移到循環外面來計算
t[0] = 0
for (n = 1; n <= N; n++)
sum = 0
for (i = 1; i <= n; i++)
sum += t[i-1] + t[n-i]
t[n] = n-1 + sum/n
現在將利用對稱性來對循環做進一步的調整。例如,當n為4時,內部循環計算總和為:
t[0]+t[3] + t[1]+t[2] + t[2]+t[1] + t[3]+t[0]
在上面這些組對中,第一個元素增加而第二個元素減少。因此,我們可以把總和改寫為:
2 * (t[0] + t[1] + t[2] + t[3])
我們可以利用這種對稱性來得到示例2-10中的Quicksort。
【示例2-10】 在Quichsort中利用了對稱性來計算
t[0] = 0
14
for (n = 1; n <= N; n++)
sum = 0
for (i = 0; i < n; i++)
sum += 2 * t[i]
t[n] = n-1 + sum/n
然而,在這段代碼的運行時間中同樣存在著浪費,因為它重復地計算了相同的總和。此時,我們不是把前面所有的元素加在一起,而是在循環外部初始化總和並且加上下一個元素,如示例2-11所示。
【示例2-11】 在Quicksort中刪除了內部循環來計算
sum = 0; t[0] = 0
for (n = 1; n <= N; n++)
sum += 2*t[n-1]
t[n] = n-1 + sum/n
這個小程序確實很有用。程序的運行時間與N成正比,對於每個從1到N的整數,程序將生成一張Quicksort的估計運行時間表。
我們可以很容易地把示例2-11用表格來實現,其中的值可以立即用於進一步的分析。在2-1給出了最初的結果行。
表2-1 示例2-11中實現的表格輸出
N Sum t[n]
0 0 0
1 0 0
2 0 1
3 2 2.667
4 7.333 4.833
5 17 7.4
6 31.8 10.3
7 52.4 13.486
8 79.371 16.921
這張表中的第一行數字是用代碼中的三個常量來進行初始化的。下一行(輸出的第三行)的數值是通過以下公式來計算的:
A3 = A2+1 B3 = B2 + 2*C2 C3 = A2-1 + B3/A3
把這些(相應的)公式記錄下來就使得這張表格變得完整了。這張表格是「我曾經編寫的最漂亮代碼」的很好的證據,即使用少量的代碼完成大量的工作。
但是,如果我們不需要所有的值,那麼情況將會是什麼樣?如果我們更希望通過這種來方式分析一部分數值(例如,在20到232之間所有2的指數值)呢?雖然在示例2-11中構建了完整的表格t,但它只需要使用表格中的最新值。因此,我們可以用變數t的定長空間來替代table t[]的線性空間,如示例2-12所示。
【示例2-12】 Quicksoft 計算——最終版本
sum = 0; t = 0
15
for (n = 1; n <= N; n++)
sum += 2*t
t = n-1 + sum/n
然後,我們可以插入一行代碼來測試n的適應性,並且在必要時輸出這些結果。
這個程序是我們漫長學習旅途的終點。通過本章所採用的方式,我們可以證明Alan Perlis的經驗是正確的:「簡單性並不是在復雜性之前,而是在復雜性之後」 ("Epigrams on Programming," Sigplan Notices, Vol. 17, Issue 9)。

熱點內容
pythonsae 發布:2025-05-10 21:59:30 瀏覽:962
rdp演算法 發布:2025-05-10 21:46:40 瀏覽:917
c語言求素數的方法 發布:2025-05-10 21:46:39 瀏覽:764
戰地5配置最低怎麼設置 發布:2025-05-10 21:44:12 瀏覽:674
microsoftsql2012 發布:2025-05-10 21:43:33 瀏覽:428
電腦買個游戲伺服器 發布:2025-05-10 21:25:15 瀏覽:241
機櫃存儲空間 發布:2025-05-10 21:25:07 瀏覽:267
安卓手機如何修改首屏 發布:2025-05-10 21:17:59 瀏覽:959
緩存關聯替換 發布:2025-05-10 20:56:34 瀏覽:618
開源項目源碼 發布:2025-05-10 20:56:24 瀏覽:36