當前位置:首頁 » 操作系統 » 密碼演算法設計

密碼演算法設計

發布時間: 2023-01-29 15:02:42

❶ 畢業設計翻譯 關於密碼演算法

我最近也在研究這個東西
目前分組密碼所採用的整體結構可分為Feistel結構(如CAST-256、DEAL、DFC/E2等)、SP網路(如Safer+、Serpent等)及其他密碼結構(如Frog和HPC)。Feistel結構將明文分組分為左右對稱兩部分,根據 經驗公式,經過多輪循環得到運算結果;另一類演算法是基於SP網路結構設計,如圖1(b)所示。SP網路結構採用替代和置換的方法簡單有效地遵循了香農定理,替代操作通過S盒達到了混淆效果,置換操作通過P盒擴散效果;還有一類是基於不同代數群的混合運算設計的演算法,使用頻率比較低。Feistel結構最大的優點是容易保證加解密相似,這一點在實現中尤為重要,而SP網路比較難做到這一點,但是SP網路的擴散特性比較好。
我論文的部分內容,借你參考

❷ 科普:國產密碼演算法


密碼學(cryptography): 通過將信息編碼使其不可讀,從而達到安全性。

演算法 :取一個輸入文本,產生一個輸出文本。

加密演算法 :發送方進行加密的演算法。

解密演算法 :接收方進行解密的演算法。

對稱密鑰加密 (Symmetric Key Cryptography):加密與解密使用相同密鑰。

非對稱密鑰加密 (Asymmetric Key Cryptography):加密與解密使用不同密鑰。

密鑰對 :在非對稱加密技術中,有兩種密鑰,分為私鑰和公鑰,私鑰是密鑰對所有者持有,不可公布,公鑰是密鑰對持有者公布給他人的。

公鑰 :公鑰用來給數據加密,用公鑰加密的數據只能使用私鑰解密。

私鑰 :如上,用來解密公鑰加密的數據。

摘要 :對需要傳輸的文本,做一個HASH計算。

簽名 :使用私鑰對需要傳輸的文本的摘要進行加密,得到的密文即被稱為該次傳輸過程的簽名。

密碼協議是指兩個或兩個以上的參與者為了達到某種特定目的而採取的一系列步驟。規定了一系列有序執行的步驟,必須依次執行。必須有兩個或兩個以上的參與者,有明確的目的。參與者都必須了解、同意並遵循這些步驟。

常見的密碼協議包括IPSEC VPN 協議、SSL VPN 協議、密鑰交換協議等。

密碼是指描述密碼處理過程的一組運算規則或規程,一般是指基於復雜數學問題設計的一組運算,其基本原理基於數學難題、可證明計算、計算復雜度等。主要包括:對稱密碼、公鑰密碼、雜湊演算法、隨機數生成。

在對稱加密演算法中,加密使用的密鑰和解密使用的密鑰是相同的,加密和解密都是使用同一個密鑰,不區分公鑰和私鑰。

通信雙方採用相同的密鑰來加解密會話內容,即一段待加密內容,經過同一個密鑰的兩次對稱加密後,與原來的結果一樣,具有加解密速度快和安全強度高的優點。

國際演算法:DES、AES。

國產演算法:SM1、SM4、SM7。

非對稱加解密演算法又稱為 公鑰密碼 ,其密鑰是成對出現的。雙方通信時,首先要將密鑰對中的一個密鑰傳給對方,這個密鑰可以在不安全的信道中傳輸;傳輸數據時,先使用自己持有的密鑰做加密,對方用自己傳輸過去的密鑰解密。

國際演算法:RSA

國產演算法:SM2

優點:

密鑰分發數目與參與者數目相同,在有大量參與者的情況下易於密鑰管理。

支持數字簽名和不可否認性。

無需事先與對方建立關系,交換密鑰。

缺點:

速度相對較慢。

可能比同等強度的對稱密碼演算法慢10倍到100倍。

加密後,密文變長。

密碼雜湊演算法 :又稱為散列演算法或哈希函數,一種單向函數,要由散列函數輸出的結果,回推輸入的資料是什麼,是非常困難的。

散列函數的輸出結果,被稱為訊息摘要(message digest)或是 摘要(digest) ,也被稱為 數字指紋

雜湊函數用於驗證消息的完整性, 在數字簽名中,非對稱演算法對數據簽名的速度較慢,一般會先將消息進行雜湊運算,生成較短的固定長度的摘要值。然後對摘要值進行簽名,會大大提高計算效率 。

國際演算法:MD5、SHA1、SHA2、SHA3

國產演算法:SM3

2009年國家密碼管理局發布的《信息安全等級保護商用密碼技術實施要求》中明確規定,一、二、三、四級信息系統應使用商用密碼技術來實施等級保護的基本要求和應用要求,一到四級的密碼配用策略要求採用國家密碼管理部門批准使用的演算法。

2010年年底,國家密碼管理局公開了SM2、SM3等國產密碼演算法。

2011年2月28日,國家密碼管理局印發的【2011】145號文中明確指出,1024位RSA演算法正在面臨日益嚴重的安全威脅,並要求各相關企業在2012年6月30日前必須使用SM2密碼演算法

國家密碼管理局在《關於做好公鑰密碼演算法升級工作的函》中要求2011年7月1日以後建立並使用公鑰密碼的信息系統,應使用SM2演算法;已經建設完成的系統,應盡快進行系統升級,使用SM2演算法。

2014年底,國家密碼管理局啟動《重要信息系統密碼應用推進總體研究課題》,確定十三五密碼 科技 專項。

2017年11月底,國家密碼管理局下發了《政務雲密碼支撐方案及應用方案設計要點》。

2017年國家密碼管理局發布了42項金融和重要領域國產密碼應用試點任務。

2018年,中共中央辦公廳、國務院辦公廳印發《金融和重要領域密碼應用與創新發展工作規劃(2018-2022年)。

2018年,為指導當時即將啟動的商用密碼應用安全性評估試點工作,國家密碼管理局發布了密碼行業標准GM/T0054-2018《信息系統密碼應用 基本要求》。

2021年3月,國家市場監管總局、國家標准化管理委員會發布公告,正式發布國家標准GB/T39786-2021《信息安全技術信息系統密碼應用基本要求》,該標准於2021年10月1日起實施。

SM1 演算法是分組密碼演算法,分組長度為 128 位,密鑰長度都為 128 比特,演算法安全保密強度及相關軟硬體實現性能與AES相當,演算法不公開,僅以IP核的形式存在於晶元中。

演算法集成於加密晶元、智能 IC 卡、智能密碼鑰匙、加密卡、加密機等安全產品,廣泛應用於電子政務、電子商務及國民經濟的各個應用領域(包括政務通、警務通等重要領域)。

SM2橢圓曲線公鑰密碼演算法是我國自主設計的公鑰密碼演算法,是一種基於ECC演算法的 非對稱密鑰演算法, 其加密強度為256位,其安全性與目前使用的RSA1024相比具有明顯的優勢。

包括SM2-1橢圓曲線數字簽名演算法,SM2-2橢圓曲線密鑰交換協議,SM2-3橢圓曲線公鑰加密演算法,分別用於實現 數字簽名密鑰協商 數據加密 等功能。

SM3雜湊演算法是我國自主設計的密碼雜湊演算法,屬於哈希(摘要)演算法的一種,雜湊值為256位,安全性要遠高於MD5演算法和SHA-1演算法。

適用於商用密碼應用中的 數字簽名 驗證消息認證碼的生成與驗證 以及 隨機數 的生成,可滿足多種密碼應用的安全需求。

SM4 分組密碼演算法 是我國自主設計的分組對稱密碼演算法,SM4演算法與AES演算法具有相同的密鑰長度分組長度128比特,因此在安全性上高於3DES演算法。

用於實現數據的加密/解密運算,以保證數據和信息的機密性。軟體和硬體加密卡均可實現此演算法。


商用密碼技術框架包括 密碼資源、密碼支撐、密碼服務、密碼應用 等四個層次,以及提供管理服務的密碼管理基礎設施。

密碼資源層: 主要是提供基礎性的密碼演算法資源。

密碼支撐層: 主要提供密碼資源調用,由安全晶元、密碼模塊、智能IC卡、密碼卡、伺服器密碼機、簽名驗簽伺服器、IPSCE/SSL VPN 等商密產品組成。

密碼服務層: 提供密碼應用介面,分為對稱和公鑰密碼服務以及其他三大類。

密碼應用層: 調用密碼服務層提供的密碼應用程序介面,實現數據的加解密、數字簽名驗簽等服務。如應用 於 安全郵件、電子印章系統、安全公文傳輸、移動辦公平台、可信時間戳等系統。

密碼管理基礎設施: 獨立組件,為以上四層提供運維管理、信任管理、設備管理、密鑰管理等功能。


完整的PKI系統必須具有權威認證機構(CA)、數字證書庫、密鑰備份及恢復系統(KMC)、證書作廢系統(CRL)、應用介面(API)等基本構成部分,構建PKI也將圍繞著這五大系統來著手構建。

CA 系統:Ca系統整個PKI的核心,負責證書的簽發。CA首先產生自身的私鑰和公鑰(密鑰長度至少為1024位),然後生成數字證書,並且將數字證書傳輸給安全伺服器。、CA還負責為操作員、安全伺服器以及注冊機構伺服器生成數字證書。安全伺服器的數字證書和私鑰也需要傳輸給安全伺服器。

CA伺服器是整個結構中最為重要的部分,存有CA的私鑰以及發行證書的腳本文件,出於安全的考慮,應將CA伺服器與其他伺服器隔離,任何通信採用人工干預的方式,確保認證中心的安全。


(1)甲使用乙的公鑰對明文進行加密,生成密文信息。

(2)甲使用HASH演算法對明文進行HASH運算,生成數字指紋。

(3)甲使用自己的私鑰對數字指紋進行加密,生成數字簽名。

(4)甲將密文信息和數字簽名一起發送給乙。

(5)乙使用甲的公鑰對數字簽名進行解密,得到數字指紋。

(6)乙接收到甲的加密信息後,使用自己的私鑰對密文信息進行解密,得到最初的明文。

(7)乙使用HASH演算法對還原出的明文用與甲所使用的相同HASH演算法進行HASH運算,生成數字指紋。然後乙將生成的數字指紋與從甲得到的數字指紋進行比較,如果一致,乙接受明文;如果不一致,乙丟棄明文。


SSL 協議建立在可靠的傳輸協議(如 TCP)之上,為高層協議提供數據封裝,壓縮,加密等基本功能。

即可以協商加密演算法實現加密傳輸,防止數據防竊聽和修改,還可以實現對端設備身份驗證、在這個過程中,使用國密演算法進行加密、簽名證書進行身份驗證、加密證書用於密鑰交換

SSL協商過程:

(1)客戶端發出會話請求。

(2)服務端發送X.509證書(包含服務端的公鑰)。

(3)客戶端用已知Ca列表認證證書。

(4)客戶端生成隨機對稱密鑰,並利用服務端的公鑰進行加密。

(5)雙方協商完畢對稱密鑰,隨後用其加密會話期間的用戶最終數據。

利用SSL卸載技術及負載均衡機制,在保障通訊數據安全傳輸的同時,減少後台應用伺服器的性能消耗,並實現伺服器集群的冗餘高可用,大幅度提升整個業務應用系統的安全性和穩定性。此外,藉助多重性能優化技術更可縮短了業務訪問的響應等待時間,明顯提升用戶的業務體驗。


基於 數字證書 實現終端身份認證,給予密碼運算實現本地數據的加密存儲,數字證書硬體存儲和密碼運算由移動終端內置的密碼部件提供。

移動應用管理系統伺服器採用簽名證書對移動應用軟體安裝包進行簽名,移動應用管理系統客戶端對簽名信息進行驗簽,保障移動應用軟體安裝包的真實性和完整性。

移動辦公應用系統採用簽名證書對關鍵訪問請求進行簽名驗證。

採用加密證書對關鍵傳輸數據和業務操作指令,以及移動終端本地存儲的重要數據進行加密保護。

移動辦公系統使用商用密碼,基於數字證書認證系統,構建覆蓋移動終端、網路、移動政務應用的安全保障體系,實現政務移動終端安全、接入安全、傳輸安全和移動應用安全 。

❸ AES是什麼

AES是高級加密標准。
高級加密標准(英語:Advanced Encryption Standard,縮寫:AES),在密碼學中又稱Rijndael加密法,是美國聯邦政府採用的一種區塊加密標准。這個標准用來替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,高級加密標准由美國國家標准與技術研究院(NIST)於2001年11月26日發布於FIPS PUB 197,並在2002年5月26日成為有效的標准。2006年,高級加密標准已然成為對稱密鑰加密中最流行的演算法之一。

設計者
該演算法為比利時密碼學家Joan Daemen和Vincent Rijmen所設計,結合兩位作者的名字,以Rijndael之命名之,投稿高級加密標準的甄選流程。Rijdael的發音近於 "Rhinedoll,兩位設計者的名字,參考荷蘭語原發音可譯為尤安·達蒙、文森特·萊蒙。(Joan不能譯為女性化的名字「瓊」。另外,西歐的姓名很多是有相同拉丁文或希臘文源頭的,故譯成中文是可能相同)

加密標准
對稱密碼體制的發展趨勢將以分組密碼為重點。分組密碼演算法通常由密鑰擴展演算法和加密(解密)演算法兩部分組成。密鑰擴展演算法將b位元組用戶主密鑰擴展成r個子密鑰。加密演算法由一個密碼學上的弱函數f與r個子密鑰迭代r次組成。混亂和密鑰擴散是分組密碼演算法設計的基本原則。抵禦已知明文的差分和線性攻擊,可變長密鑰和分組是該體制的設計要點。
AES是美國國家標准技術研究所NIST旨在取代DES的21世紀的加密標准。
AES的基本要求是,採用對稱分組密碼體制,密鑰長度的最少支持為128、192、256,分組長度128位,演算法應易於各種硬體和軟體實現。1998年NIST開始AES第一輪分析、測試和徵集,共產生了15個候選演算法。1999年3月完成了第二輪AES2的分析、測試。2000年10月2日美國政府正式宣布選中比利時密碼學家Joan Daemen 和 Vincent Rijmen 提出的一種密碼演算法RIJNDAEL 作為 AES.
在應用方面,盡管DES在安全上是脆弱的,但由於快速DES晶元的大量生產,使得DES仍能暫時繼續使用,為提高安全強度,通常使用獨立密鑰的三級DES。但是DES遲早要被AES代替。流密碼體制較之分組密碼在理論上成熟且安全,但未被列入下一代加密標准。
AES加密數據塊分組長度必須為128比特,密鑰長度可以是128比特、192比特、256比特中的任意一個(如果數據塊及密鑰長度不足時,會補齊)。AES加密有很多輪的重復和變換。大致步驟如下:1、密鑰擴展(KeyExpansion),2、初始輪(Initial Round),3、重復輪(Rounds),每一輪又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey,4、最終輪(Final Round),最終輪沒有MixColumns。

❹ Rijndael加密法

密碼學中的高級加密標准(Advanced Encryption Standard,AES),又稱Rijndael加密法,是美國聯邦政府採用的一種區塊加密標准。這個標准用來替代原先的DES,已經被多方分析且廣為全世界所使用。經過五年的甄選流程,高級加密標准由美國國家標准與技術研究院 (NIST)於2001年11月26日發布於FIPS PUB 197,並在2002年5月26日成為有效的標准。2006年,高級加密標准已然成為對稱密鑰加密中最流行的演算法之一。

該演算法為比利時密碼學家Joan Daemen和Vincent Rijmen所設計,結合兩位作者的名字,以Rijndael之命名之,投稿高級加密標準的甄選流程。(Rijdael的發音近於 「Rhinedoll」)

AES 是一個新的可以用於保護電子數據的加密演算法。明確地說,AES 是一個迭代的、對稱密鑰分組的密碼,它可以使用128、192 和 256 位密鑰,並且用 128 位(16位元組)分組加密和解密數據。與公共密鑰密碼使用密鑰對不同,對稱密鑰密碼使用相同的密鑰加密和解密數據。通過分組密碼返回的加密數據的位數與輸入數據相同。迭代加密使用一個循環結構,在該循環中重復置換(permutations )和替換(substitutions)輸入數據。Figure 1 顯示了 AES 用192位密鑰對一個16位位元組數據塊進行加密和解密的情形。

對稱密碼體制的發展趨勢將以分組密碼為重點。分組密碼演算法通常由密鑰擴展演算法和加密(解密)演算法兩部分組成。密鑰擴展演算法將b位元組用戶主密鑰擴展成r個子密鑰。加密演算法由一個密碼學上的弱函數f與r個子密鑰迭代r次組成。混亂和密鑰擴散是分組密碼演算法設計的基本原則。抵禦已知明文的差分和線性攻擊,可變長密鑰和分組是該體制的設計要點。

AES是美國國家標准技術研究所NIST旨在取代DES的21世紀的加密標准。

AES的基本要求是,採用對稱分組密碼體制,密鑰長度的最少支持為128、192、256,分組長度128位,演算法應易於各種硬體和軟體實現。1998年NIST開始AES第一輪分析、測試和徵集,共產生了15個候選演算法。1999年3月完成了第二輪AES2的分析、測試。2000年10月2日美國政府正式宣布選中比利時密碼學家Joan Daemen 和 Vincent Rijmen 提出的一種密碼演算法RIJNDAEL 作為 AES.

AES加密數據塊大小最大是256bit,但是密鑰大小在理論上沒有上限。AES加密有很多輪的重復和變換。大致步驟如下:

1. 密鑰擴展(KeyExpansion)

2. 初始輪(Initial Round)

3. 重復輪(Rounds),每一輪又包括:SubBytes、ShiftRows、MixColumns、AddRoundKey

4. 最終輪(Final Round),最終輪沒有MixColumns。

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.KeyGenerator;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

import java.io.UnsupportedEncodingException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

public abstract class AesHelper {

    /**

    * 加密

    *

    * @param content 需要加密的內容

    * @param salt    加密密碼

    * @return

    */

    public static byte[] encrypt(String content, String salt) {

        try {

            SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

            random.setSeed(salt.getBytes());

            KeyGenerator kgen = KeyGenerator.getInstance("AES");

            kgen.init(128, random);

            SecretKey secretKey = kgen.generateKey();

            byte[] enCodeFormat = secretKey.getEncoded();

            SecretKeySpec key = new SecretKeySpec(enCodeFormat, "AES");

            Cipher cipher = Cipher.getInstance("AES");// 創建密碼器

            byte[] byteContent = content.getBytes("utf-8");

            cipher.init(Cipher.ENCRYPT_MODE, key);// 初始化

            byte[] result = cipher.doFinal(byteContent);

            return result; // 加密

        } catch (NoSuchAlgorithmException e) {

            e.printStackTrace();

        } catch (NoSuchPaddingException e) {

            e.printStackTrace();

        } catch (InvalidKeyException e) {

            e.printStackTrace();

        } catch (UnsupportedEncodingException e) {

            e.printStackTrace();

        } catch (IllegalBlockSizeException e) {

            e.printStackTrace();

        } catch (BadPaddingException e) {

            e.printStackTrace();

        }

        return null;

    }

    /**

    * 解密

    *

    * @param content 待解密內容

    * @param salt    解密密鑰

    * @return

    */

    public static byte[] decrypt(byte[] content, String salt) {

        try {

            KeyGenerator kgen = KeyGenerator.getInstance("AES");

            SecureRandom secureRandom = SecureRandom.getInstance("SHA1PRNG");

            secureRandom.setSeed(salt.getBytes());

            kgen.init(128, secureRandom);

            SecretKey secretKey = kgen.generateKey();

            byte[] enCodeFormat = secretKey.getEncoded();

            SecretKeySpec key = new SecretKeySpec(enCodeFormat, "AES");

            Cipher cipher = Cipher.getInstance("AES");// 創建密碼器

            cipher.init(Cipher.DECRYPT_MODE, key);// 初始化

            byte[] result = cipher.doFinal(content);

            return result; // 加密

        } catch (NoSuchAlgorithmException e) {

            e.printStackTrace();

        } catch (NoSuchPaddingException e) {

            e.printStackTrace();

        } catch (InvalidKeyException e) {

            e.printStackTrace();

        } catch (IllegalBlockSizeException e) {

            e.printStackTrace();

        } catch (BadPaddingException e) {

            e.printStackTrace();

        }

        return null;

    }

    public static String bytesToHexString(byte[] src) {

        StringBuffer sb = new StringBuffer();

        for (int i = 0; i < src.length; i++) {

            String hex = Integer.toHexString(src[i] & 0xFF);

            if (hex.length() == 1) {

                hex = '0' + hex;

            }

            sb.append(hex.toUpperCase());

        }

        return sb.toString();

    }

    public static String encryptToStr(String content, String password){

        return bytesToHexString(encrypt(content,password));

    }

    public static byte[] decrypt(String content, String keyWord) {

        return decrypt(hexStringToBytes(content), keyWord);

    }

    public static byte[] hexStringToBytes(String hexString) {

        if (hexString.length() < 1)

            return null;

        byte[] result = new byte[hexString.length() / 2];

        for (int i = 0; i < hexString.length() / 2; i++) {

            int high = Integer.parseInt(hexString.substring(i * 2, i * 2 + 1), 16);

            int low = Integer.parseInt(hexString.substring(i * 2 + 1, i * 2 + 2), 16);

            result[i] = (byte) (high * 16 + low);

        }

        return result;

    }

}

public class TestMain {

    public void main(){

        String content = "carl.zhao";

        String Key = "http://www.csdn.net";

        //加密

        String encryptResult = AesHelper.encryptToStr(content, Key);

        //解密

        byte[] decryptResult = AesHelper.decrypt(encryptResult,Key);

        Assert.assertEquals(content, new String(decryptResult));

    }

}

輸出結果:

@@3c2278ea668b03b50102@@

❺ 快速了解常用的對稱加密演算法,再也不用擔心面試官的刨根問底

加密演算法通常被分為兩種: 對稱加密 非對稱加密 。其中,對稱加密演算法在加密和解密時使用的密鑰相同;非對稱加密演算法在加密和解密時使用的密鑰不同,分為公鑰和私鑰。此外,還有一類叫做 消息摘要演算法 ,是對數據進行摘要並且不可逆的演算法。

這次我們了解一下對稱加密演算法。

對稱加密演算法在加密和解密時使用的密鑰相同,或是使用兩個可以簡單地相互推算的密鑰。在大多數的對稱加密演算法中,加密和解密的密鑰是相同的。

它要求雙方在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都可以對他們發送的信息進行解密,這也是對稱加密演算法的主要缺點之一。

常見的對稱加密演算法有:DES演算法、3DES演算法、AES演算法。

DES演算法(Data Encryption Standard)是一種常見的分組加密演算法。

分組加密演算法是將明文分成固定長度的組,每一組都採用同一密鑰和演算法進行加密,輸出也是固定長度的密文。

由IBM公司在1972年研製,1976年被美國聯邦政府的國家標准局確定為聯邦資料處理標准(FIPS),隨後在國際上廣泛流傳開來。

在DES演算法中,密鑰固定長度為64位。明文按64位進行分組,分組後的明文組和密鑰按位置換或交換的方法形成密文組,然後再把密文組拼裝成密文。

密鑰的每個第八位設置為奇偶校驗位,也就是第8、16、24、32、40、48、56、64位,所以密鑰的實際參與加密的長度為56位。

我們用Java寫個例子:

運行結果如下:

DES現在已經不是一種安全的加密方法,主要因為它使用的密鑰過短,很容易被暴力破解。

3DES演算法(Triple Data Encryption Algorithm)是DES演算法的升級版本,相當於是對明文進行了三次DES加密。

由於計算機運算能力的增強,DES演算法由於密鑰長度過低容易被暴力破解;3DES演算法提供了一種相對簡單的方法,即通過增加DES的密鑰長度來避免類似的攻擊,而不是設計一種全新的塊密碼演算法。

在DES演算法中,密鑰固定長度為192位。在加密和解密時,密鑰會被分為3個64位的密鑰。

加密過程如下:

解密過程如下:

我們用Java寫個例子:

運行結果如下:

雖然3DES演算法在安全性上有所提升,但是因為使用了3次DES演算法,加密和解密速度比較慢。

AES(Advanced Encryption Standard,高級加密標准)主要是為了取代DES加密演算法的,雖然出現了3DES的加密方法,但由於它的加密時間是DES演算法的3倍多,密鑰位數還是不能滿足對安全性的要求。

1997年1月2號,美國國家標准與技術研究院(NIST)宣布希望徵集高級加密標准,用以取代DES。全世界很多密碼工作者都提交了自己設計的演算法。經過甄選流程,高級加密標准由美國國家標准與技術研究院於2001年11月26日發布於FIPS PUB 197,並在2002年5月26日成為有效的標准。

該演算法為比利時密碼學家Joan Daemen和Vincent Rijmen所設計,結合兩位作者的名字,以 Rijndael 為名投稿高級加密標準的甄選流程。

AES演算法的密鑰長度是固定,密鑰的長度可以使用128位、192位或256位。

AES演算法也是一種分組加密演算法,其分組長度只能是128位。分組後的明文組和密鑰使用幾種不同的方法來執行排列和置換運算形成密文組,然後再把密文組拼裝成密文。

我們用Java寫個例子:

運行結果如下:

AES演算法是目前應用最廣泛的對稱加密演算法。

對稱加密演算法在加密和解密時使用的密鑰相同,常見的對稱加密演算法有:DES演算法、3DES演算法、AES演算法。
由於安全性低、加密解密效率低,DES演算法和3DES演算法是不推薦使用的,AES演算法是目前應用最廣泛的對稱加密演算法。

❻ 用c語言設計一個簡單地加密算,解密演算法,並說明其中的原理

恰巧這兩天剛看的一種思路,很簡單的加密解密演算法,我說一下吧。
演算法原理很簡單,假設你的原密碼是A,用A與數B按位異或後得到C,C就是加密後的密碼,用C再與數B按位異或後能得回A。即(A異或B)異或B=A。用C實現很簡單的。
這就相當於,你用原密碼A和特定數字B產生加密密碼C,別人拿到這個加密的密碼C,如果不知道特定的數字B,他是無法解密得到原密碼A的。
對於密碼是數字的情況可以用下面的代碼:
#include <stdio.h>
#define BIRTHDAY 19880314
int main()
{
long a, b;

scanf("%ld", &a);
printf("原密碼:%ld\n", a);
b = BIRTHDAY;
a ^= b;
printf("加密密碼:%ld\n", a);

a ^= b; printf("解密密碼:%ld\n", a);
return 0;
}
如果密碼是字元串的話,最簡單的加密演算法就是對每個字元重新映射,只要加密解密雙方共同遵守同一個映射規則就行啦。

❼ 現代密碼學為什麼要求公開密碼學演算法

這個主要是為了保證設計的密碼演算法是可靠的,不是隨隨便便就能被人破解的.因為設計好的密碼演算法總是要被人用的,而要被人廣泛使用的話,絕對無法保證演算法本身的保密性(小范圍使用還可以差不多保證). 理論上來說,這是因為現代密碼學的密碼演算法設計是

❽ 國密演算法是什麼呢

國密演算法是國家密碼局制定標準的一系列演算法。其中包括了對稱加密演算法,橢圓曲線非對稱加密演算法,雜湊演算法。具體包括SM1、SM2、SM3、SMS4等,其中:

SM1:對稱加密演算法,加密強度為128位,採用硬體實現。

SM2:國家密碼管理局公布的公鑰演算法,其加密強度為256位。其它幾個重要的商用密碼演算法包括:

SM3:密碼雜湊演算法,雜湊值長度為32位元組,和SM2演算法同期公布,參見《國家密碼管理局公告(第 22 號)》。

SMS4:對稱加密演算法,隨WAPI標准一起公布,可使用軟體實現,加密強度為128位。

案例

例如:在門禁應用中,採用SM1演算法進行身份鑒別和數據加密通訊,實現卡片合法性的驗證,保證身份識別的真實性。安全是關系國家、城市信息、行業用戶、百姓利益的關鍵問題。國家密碼管理局針對現有重要門禁系統建設和升級改造應用也提出指導意見,加強晶元、卡片、系統的標准化建設。

❾ 為什麼在設計密碼演算法時,應當遵循一切秘密蘊含於密鑰之中

如果信息大於密鑰會被解開,要是信息比密鑰短,可以說是解放不開的。

❿ 黃依依結局死了嗎

曾經有一部電視劇引起劇烈的反響,那就是諜戰劇《暗算》,這部劇中有很多出彩的人物,而其中讓人印象最深刻的就要數陳數飾演的黃依依,看過這部劇的人都會被陳數的演技所折服,而作為劇中的主角,黃依依的結局也是十分令人痛惜的,那麼黃依依最後怎麼樣了?

暗算里黃依依是怎麼死的?

熱播劇《暗算》中,女一號陳數顯得非常惹眼,這個熒屏上前所未有的個性角色,不僅成為很多男性觀眾眼中的夢中情人,更得到了“死後”被觀眾悼念的超高待遇。



10年破解世界5大著名密碼,很多人會想,這個科學家一定是一個生活非常單調的人。王小雲卻說:“那10年是我感覺過得很輕松的10年。”在破解密碼的同時,她生了一個女兒,還養了一陽台的花。在生活中她唯一與數字有關的習慣竟然是記計程車號。

原來,王小雲的課題組中有一半多成員都是女博士生。工作晚了,沒有公交車,王小雲總要送她們打車回家。為了保證安全,她總要記住學生們乘坐計程車的車號,等學生到家給她發回平安簡訊,她才把記住的計程車號從腦子里刪除。
熱點內容
解壓到當前文件夾右鍵 發布:2024-04-26 03:57:08 瀏覽:979
html5android教程視頻下載 發布:2024-04-26 03:09:59 瀏覽:867
伺服器的描述是什麼 發布:2024-04-26 03:08:32 瀏覽:394
個人加密 發布:2024-04-26 03:01:23 瀏覽:520
linuxusbgadget 發布:2024-04-26 02:52:54 瀏覽:304
我的世界空島世界伺服器地址 發布:2024-04-26 01:39:08 瀏覽:248
尼爾機械紀元加密 發布:2024-04-26 01:37:11 瀏覽:867
在控制台輸出sql語句 發布:2024-04-26 01:08:12 瀏覽:432
動畫java 發布:2024-04-26 01:02:40 瀏覽:12
得力文件夾5302 發布:2024-04-26 00:21:32 瀏覽:91