當前位置:首頁 » 操作系統 » 聚類演算法的原理

聚類演算法的原理

發布時間: 2023-03-09 22:08:28

A. 數據挖掘 聚類演算法概述

文 | 宿痕
來源 | 知乎
本篇重點介紹聚類演算法的原理,應用流程、使用技巧、評估方法、應用案例等。具體的演算法細節可以多查閱相關的資料。聚類的主要用途就是客戶分群。
1.聚類 VS 分類
分類是「監督學習」,事先知道有哪些類別可以分。

聚類是「無監督學習」,事先不知道將要分成哪些類。

舉個例子,比如蘋果、香蕉、獼猴桃、手機、電話機。
根據特徵的不同,我們聚類會分為【蘋果、香蕉、獼猴桃】為水果的一類,和【手機、電話機】為數碼產品的一類。
而分類的話,就是我們在判斷「草莓」的時候,把它歸為「水果」一類。
所以通俗的解釋就是:分類是從訓練集學習對數據的判斷能力,再去做未知數據的分類判斷;而聚類就是把相似的東西分為一類,它不需要訓練數據進行學習。
學術解釋:分類是指分析資料庫中的一組對象,找出其共同屬性。然後根據分類模型,把它們劃分為不同的類別。分類數據首先根據訓練數據建立分類模型,然後根據這些分類描述分類資料庫中的測試數據或產生更恰當的描述。
聚類是指資料庫中的數據可以劃分為一系列有意義的子集,即類。在同一類別中,個體之間的距離較小,而不同類別上的個體之間的距離偏大。聚類分析通常稱為「無監督學習」。
2.聚類的常見應用
我們在實際情況的中的應用會有:
marketing:客戶分群
insurance:尋找汽車保險高索賠客戶群
urban planning:尋找相同類型的房產
比如你做買家分析、賣家分析時,一定會聽到客戶分群的概念,用標准分為高價值客戶、一般價值客戶和潛在用戶等,對於不同價值的客戶提供不同的營銷方案;

還有像在保險公司,那些高索賠的客戶是保險公司最care的問題,這個就是影響到保險公司的盈利問題;
還有在做房產的時候,根據房產的地理位置、價格、周邊設施等情況聚類熱房產區域和冷房產區域。

3.k-means
(1)假定K個clusters(2)目標:尋找緊致的聚類
a.隨機初始化clusters

b.分配數據到最近的cluster

c.重復計算clusters

d.repeat直到收斂

優點:局部最優
缺點:對於非凸的cluster有問題
其中K=?
K<=sample size
取決於數據的分布和期望的resolution
AIC,DIC
層次聚類避免了這個問題
4.評估聚類
魯棒性?
聚類如何,是否過度聚合?
很多時候是取決於聚合後要干什麼。
5.case案例
case 1:賣家分群雲圖

作者:宿痕 授權轉載
原文鏈接:http://zhuanlan.hu.com/dataman/20397891

B. K均值聚類分析的原理

在訓練圖像中,數據事件數量非常多。如果將這些數據事件逐一與模擬區域數據模式進行比對,對計算機性能要求高,計算效率低下。對數據事件分析發現,很多數據事件具有很高的相似性,可以將其劃分為同一類。這樣大大減少數據事件的個數,提高了運算效率。基於這樣考慮,聚類分析技術被引入到多點地質統計學中。

J.B.MacQueen在1967年提出的K-means演算法是到目前為止用於科學和工業應用的諸多聚類演算法中一種極有影響的技術。它是聚類方法中一個基本的劃分方法,常常採用誤差平方和准則函數作為聚類准則函數,誤差平方和准則函數定義為

多點地質統計學原理、方法及應用

式中:mi(i=1,2,…,k)是類i中數據對象的均值,分別代表K個類。

K-means演算法的工作原理:首先隨機從數據集中選取K個點作為初始聚類中心,然後計算各個樣本到聚類中的距離,把樣本歸到離它最近的那個聚類中心所在的類。計算新形成的每一個聚類的數據對象的平均值來得到新的聚類中心,如果相鄰兩次的聚類中心沒有任何變化,說明樣本調整結束,聚類准則函數已經收斂。本演算法的一個特點是在每次迭代中都要考察每個樣本的分類是否正確。若不正確,就要調整,在全部樣本調整完後,再修改聚類中心,進入下一次迭代。如果在一次迭代演算法中,所有的樣本被正確分類,則不會有調整,聚類中心也不會有任何變化,這標志著已經收斂,因此演算法結束。

基本步驟如下:

a.對於數據對象集,任意選取K個對象作為初始的類中心;

b.根據類中對象的平均值,將每個對象重新賦給最相似的類;

c.更新類的平均值,即計算每個類中對象的平均值;

d.重復b和c步驟;

e.直到不再發生變化。

圖2-7是利用K-means方法做的一個數據事件的聚類分析結果。數據類定義為10個。數據事件來自於圖2-8,採用的數據樣板是8×8的數據樣板。

K-means演算法優點為當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,缺點主要有三個:

圖2-7 K-means方法聚類結果

圖2-8 用於聚類的訓練圖像,數據樣板選擇為8*8

1)在K-means演算法中K是事先給定的,這個K值的選定是非常難以估計的。很多時候,事先並不知道給定的數據集應該分成多少個類別才最合適。這是K-means演算法的一個不足。

2)在K-means演算法中,首先需要根據初始聚類中心來確定一個初始劃分,然後對初始劃分進行優化。這個初始聚類中心的選擇對聚類結果有較大的影響,一旦初始值選擇的不好,可能無法得到有效的聚類結果,這也成為K-means演算法的一個主要問題。

3)從K-means演算法框架可以看出,該演算法需要不斷地進行樣本分類調整,不斷地計算調整後的新的聚類中心,因此當數據量非常大時,演算法的時間開銷是非常大的。所以需要對演算法的時間復雜度進行分析、改進,提高演算法應用范圍。

C. 聚類演算法 - 凝聚層次聚類

層次聚類 就是通過對數據集按照某種方法進行層次分解,直到滿足某種條件為止。按照分類原理的不同,可以分為凝聚和分裂兩種方法。

層次聚類方法對給定的數據集進行層次的分解,直到某種條件滿足為止。具體又可分為 凝聚 分裂 的兩種方案:

凝聚的層次聚類是一種自底向上的策略,首先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有的對象都在一個簇中,或者某個終結條件被滿足,絕大多數層次聚類方法屬於這一類,它們只是在簇間相似度的定義上有所不同。.

分裂的層次聚類與凝聚的層次聚類相反,採用自頂向下的策略,它首先將所有對象置於同一個簇中,然後逐漸細分為越來越小的簇,直到每個對象自成一簇,或者達到了某個終止條件。

本篇主要討論凝聚的層次聚類。

第一步 ,將訓練樣本集中的每個數據點都當做一個聚類
第二步 ,計算每兩個聚類之間的距離,將距離最近的或最相似的兩個聚類進行合並,如同下圖中的p1和p2、p5和p6
第三步 ,重復上述步驟,依舊計算每個聚類的距離,當然這次因為已經有聚合起來的簇了因此距離的計算方式有多種: 【單鏈】簇內的最近的點的距離、【全鏈】簇內的最遠的點的距離、【組平均】簇的平均距離、簇的相似度等
第四步 ,直到得到的當前聚類數是合並前聚類數的10%,即90%的聚類都被合並了;當然還可以設置其他終止條件,這樣設置是為了防止過度合並,此時需要幾個簇,那麼就可以用一條橫線去截取分出的簇,如下圖分出3類、4類、5類的橫線截止

ps:距離在通常的情況下可以計算歐幾里得距離,就是普通的直線距離,還可以計算餘弦相似度
具體的動畫效果可以參考視頻,這是----> 傳送門

1)距離和規則的相似度容易定義,限制少
2)不像kmeans,不需要預先制定聚類數
3)可以發現類的層次關系

1)計算復雜度太高
2)奇異值也能產生很大影響
3)由於根據距離來聚合數據,演算法很可能聚類成鏈狀

D. DBSCAN原理

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚類演算法,它是一種基於高密度連通區域的、基於密度的聚類演算法,能夠將具有足夠高密度的區域劃分為簇,並在具有雜訊的數據中發現任意形狀的簇。我們總結一下DBSCAN聚類演算法原理的基本要點:
DBSCAN演算法需要選擇一種距離度量,對於待聚類的數據集中,任意兩個點之間的距離,反映了點之間的密度,說明了點與點是否能夠聚到同一類中。由於DBSCAN演算法對高維數據定義密度很困難,所以對於二維空間中的點,可以使用歐幾里德距離來進行度量。
DBSCAN演算法需要用戶輸入2個參數:一個參數是半徑(Eps),表示以給定點P為中心的圓形鄰域的范圍;另一個參數是以點P為中心的鄰域內最少點的數量(MinPts)。如果滿足:以點P為中心、半徑為Eps的鄰域內的點的個數不少於MinPts,則稱點P為核心點。
DBSCAN聚類使用到一個k-距離的概念,k-距離是指:給定數據集P={p(i); i=0,1,…n},對於任意點P(i),計算點P(i)到集合D的子集S={p(1), p(2), …, p(i-1), p(i+1), …, p(n)}中所有點之間的距離,距離按照從小到大的順序排序,假設排序後的距離集合為D={d(1), d(2), …, d(k-1), d(k), d(k+1), …,d(n)},則d(k)就被稱為k-距離。也就是說,k-距離是點p(i)到所有點(除了p(i)點)之間距離第k近的距離。對待聚類集合中每個點p(i)都計算k-距離,最後得到所有點的k-距離集合E={e(1), e(2), …, e(n)}。
根據經驗計算半徑Eps:根據得到的所有點的k-距離集合E,對集合E進行升序排序後得到k-距離集合E』,需要擬合一條排序後的E』集合中k-距離的變化曲線圖,然後繪出曲線,通過觀察,將急劇發生變化的位置所對應的k-距離的值,確定為半徑Eps的值。
根據經驗計算最少點的數量MinPts:確定MinPts的大小,實際上也是確定k-距離中k的值,DBSCAN演算法取k=4,則MinPts=4。
另外,如果覺得經驗值聚類的結果不滿意,可以適當調整Eps和MinPts的值,經過多次迭代計算對比,選擇最合適的參數值。可以看出,如果MinPts不變,Eps取得值過大,會導致大多數點都聚到同一個簇中,Eps過小,會導致以一個簇的分裂;如果Eps不變,MinPts的值取得過大,會導致同一個簇中點被標記為雜訊點,MinPts過小,會導致發現大量的核心點。

E. k均值聚類演算法原理

 演算法:
第一步:選K個初始聚類中心,z1(1),z2(1),…,zK(1),其中括弧內的序號為尋找聚類中心的迭代運算的次序號。聚類中心的向量值可任意設定,例如可選開始的K個模式樣本的向量值作為初始聚類中心。
第二步:逐個將需分類的模式樣本{x}按最小距離准則分配給K個聚類中心中的某一個zj(1)。
假設i=j時, ,則 ,其中k為迭代運算的次序號,第一次迭代k=1,Sj表示第j個聚類,其聚類中心為zj。
第三步:計算各個聚類中心的新的向量值,zj(k+1),j=1,2,…,K
求各聚類域中所包含樣本的均值向量:

其中Nj為第j個聚類域Sj中所包含的樣本個數。以均值向量作為新的聚類中心,可使如下聚類准則函數最小:

在這一步中要分別計算K個聚類中的樣本均值向量,所以稱之為K-均值演算法。
第四步:若 ,j=1,2,…,K,則返回第二步,將模式樣本逐個重新分類,重復迭代運算;
若 ,j=1,2,…,K,則演算法收斂,計算結束。

F. K-Mode 聚類演算法的原理和用法

適用於catagorical data,適用於離散屬性的數據集,因為不用計算簇的均值和點與點之間的歐拉距離

對於有M個屬性的N個樣本

1. 隨機選擇k個聚類中心C_1, C_2 ... C_k個長度為M的向量,作為聚類中心

2.以樣本X與每個中心的不同屬性值個數作為距離,計算出每個樣本X到不同中心的距離,並按照距離歸到最小簇

3. 在全部的樣本都被分到簇之後,重新確定簇的中心。使每個族中每個屬性出現頻率最大的那個屬性作為簇的代表屬性,如([a,b], [a,c], [c,b], [b,c])的代表屬性是[a,c]或者是[a,b]

4.重復2-3一直到簇中心不再變化為止就好了

refers:

K-Means聚類演算法以及擴展演算法K-Modes、K-Prototype

k-modes聚類演算法介紹

G. K-Means聚類演算法原理是怎麼樣的

問題:
姓名 身高 體重 眼睛
A 180 X 1.2
A X 140 X

A 180 140 X

A 168 120 1.5
姓名一樣,用java演算法,判斷出是兩個人?

H. 聚類演算法--KMeans

    與分類、序列標注等任務不同,聚類是在事先並不知道任何樣本標簽的情況下,通過數據之間的內在關系把樣本劃分為若干類別,使得同類別樣本之間的相似度高,不同類別之間的樣本相似度低(即增大類內聚,減少類間距)。    

    聚類屬於非監督學習,K均值聚類是最基礎常用的聚類演算法。它的基本思想是,通過迭代尋找K個簇(Cluster)的一種劃分方案,使得聚類結果對應的損失函數最小。其中,損失函數可以定義為各個樣本距離所屬簇中心點的誤差平方和。

其中 代表第i個樣本, 是 所屬的簇,  代表簇對應的中心點,M是樣本總數。

相關概念:

    K值: 要得到的簇的個數。

    質心: 每個簇的均值向量。即向量各維取平均即可。

    距離量度: 常用歐幾里得距離和餘弦相似度(先標准化)。

    KMeans的主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點所代表的類簇中,所有點分配完畢之後,根據一個類簇內的所有點重新計算該類簇的中心點(取平均值),然後再迭代的進行分配點和更新類簇中心點的步驟,直至類簇中心點的變化很小,或者達到指定的迭代次數。

    KMeans的核心目標是將給定的數據集劃分成K個簇(K是超餐),並給出每個樣本數據對應的中心點。具體步驟非常簡單:

    (1)首先確定一個K值,即我們希望將數據集經過聚類得到k個集合。

    (2)從數據集中隨機選擇K個數據點作為質心。

    (3)對數據集中每一個點,計算其與每一個質心的距離(如歐式距離),離哪個質心近,就劃分到哪個質心所屬的集合。

    (4)把所有數據歸好集合後,一共有K個集合。然後重新計算每個集合的質心。

    (5)如果新計算出來的質心和原來的質心之間的距離小於某一個設置的閾值(表示重新計算的質心的位置變化不大,趨於穩定,或者說收斂),我們可以認為聚類已經達到期望的結果,演算法終止。

    (6)如果新質心和原質心距離變化很大,需要迭代3-5步驟。

KMeans最核心的部分是先固定中心點,調整每個樣本所屬的類別來減少J;再固定每個樣本的類別,調整中心點繼續減小J。兩個過程交替循環,J單調遞減直到極小值,中心點和樣本劃分的類別同時收斂。

KMeans的優點 :

 高效可伸縮,計算復雜度為O(NKt)接近於線性(N是數據量,K是聚類總數,t是迭代輪數)。

 收斂速度快,原理相對通俗易懂,可解釋性強。

當結果簇是密集的,而簇與簇之間區別是明顯時,他的效果較好。主要需要調參的參數僅僅是簇數K。

缺點 :

 受初始值和異常點影響,聚類結果可能不是全局最優而是局部最優。K-Means演算法對初始選取的質心點是敏感的,不同的隨機種子點得到的聚類結果完全不同,對結果影響很大。

 K是超參數,一般需要按經驗選擇。

 對噪音和異常點比較的敏感,用來檢測異常值。

 只能發現球狀的簇。在K-Means中,我們用單個點對cluster進行建模,這實際上假設各個cluster的數據是呈高維球型分布的,但是在生活中出現這種情況的概率並不算高。例如,每一個cluster是一個一個的長條狀的,K-Means的則根本識別不出來這種類別( 這種情況可以用GMM )。實際上,K-Means是在做凸優化,因此處理不了非凸的分布。

根據以上特點,我們可以從下面幾個角度對演算法做調優。

(1)數據預處理:歸一化和異常點過濾

    KMeans本質是一種基於歐式距離度量的數據劃分方法,均值和方差大的維度將對數據的聚類結果產生決定性影響 。所以在聚類前對數據( 具體的說是每一個維度的特徵 )做歸一化和單位統一至關重要。此外,異常值會對均值計算產生較大影響,導致 中心偏移 ,這些雜訊點最好能提前過濾。

(2)合理選擇K值

    K值的選擇一般基於實驗和多次實驗結果。例如採用 手肘法 ,嘗試不同K值並將對應的損失函數畫成折線。手肘法認為圖上的 拐點就是K的最佳值 (k=3)。

為了將尋找最佳K值的過程自動化,研究人員提出了Gap Statistic方法。不需要人們用肉眼判斷,只需要找到最大的Gap Statistic對應的K即可。

       損失函數記為  ,當分為K類時,Gap Statistic定義為:  。 是 的期望 ,一般由蒙特卡洛模擬產生。我們在樣本所在的區域內按照均勻分布隨機地產生和原始樣本數一樣多的隨機樣本,並對這個隨機樣本做KMeans,得到一個 ,重復多次就可以計算出 的近似值。

       的物理含義是隨機樣本的損失與實際樣本的損失之差。Gap越大說明聚類的效果越好 。一種極端情況是,隨著K的變化 幾乎維持一條直線保持不變。說明這些樣本間沒有明顯的類別關系,數據分布幾乎和均勻分布一致,近似隨機。此時做聚類沒有意義。

(3)改進初始值的選擇

    之前我們採用隨機選擇K個中心的做法,可能導致不同的中心點距離很近,就需要更多的迭代次數才能收斂。如果在選擇初始中心點時能 讓不同的中心盡可能遠離 ,效果往往更好。這類演算法中,以K-Means++演算法最具影響力。

(4)採用核函數

    主要思想是通過一個非線性映射,將輸入空間中的數據點映射到高維的特徵空間中,並在新的空間進行聚類。非線性映射增加了數據點線性可分的概率(與SVM中使用核函數思想類似)對於非凸的數據分布可以達到更為准確的聚類結果。

 (1)初始的K個質心怎麼選?

    最常用的方法是隨機選,初始質心的選取對最終聚類結果有影響,因此演算法一定要多執行幾次,哪個結果更合理,就用哪個結果。當然也有一些優化的方法,第一種是選擇彼此距離最遠的點,具體來說就是先選第一個點,然後選離第一個點最遠的當第二個點,然後選第三個點,第三個點到第一、第二兩點的距離之和最小,以此類推。第二種是先根據其他聚類演算法(如層次聚類)得到聚類結果,從結果中每個分類選一個點

(2)關於離群值?

    離群值就是遠離整體的,非常異常、非常特殊的數據點,在聚類之前應該將這些"極大""極小"之類的離群數據都去掉,否則會對於聚類的結果有影響。但是,離散值往往自身就很有分析的價值,可以把離群值單獨作為一類來分析。

(3)單位要一致!

(4)標准化

    數據中X整體都比較小,比如都是1到10之間的數,Y很大,比如都是1000以上的數,那麼在計算距離的時候Y起到的作用就比X大很多,X對於距離的影響幾乎可以忽略,這也有問題。因此,如果K-Means聚類中選擇歐幾里得距離計算距離,數據集又出現了上面所述的情況,就一定要進行數據的標准化(normalization),即將數據按比例縮放,使之落入一個小的特定區間。

    K-Means是無監督學習的聚類演算法,沒有樣本輸出;而KNN是監督學習的分類演算法,有對應的類別輸出 。KNN基本不需要訓練,對測試集裡面的點,只需要找到在訓練集中最近的K個點,用這最近的K個點的類別來決定測試點的類別。而K-Means則有明顯的訓練過程,找到K個類別的最佳質心,從而決定樣本的簇類別。當然,兩者也有一些相似點,兩個演算法都包含一個過程,即找出和某一個點最近的點。 兩周都利用了最近鄰的思想 。

I. Kmeans聚類演算法簡介(有點枯燥)

1. Kmeans聚類演算法簡介

由於具有出色的速度和良好的可擴展性,Kmeans聚類演算法算得上是最著名的聚類方法。Kmeans演算法是一個重復移動類中心點的過程,把類的中心點,也稱重心(centroids),移動到其包含成員的平均位置,然後重新劃分其內部成員。k是演算法計算出的超參數,表示類的數量;Kmeans可以自動分配樣本到不同的類,但是不能決定究竟要分幾個類。k必須是一個比訓練集樣本數小的正整數。有時,類的數量是由問題內容指定的。例如,一個鞋廠有三種新款式,它想知道每種新款式都有哪些潛在客戶,於是它調研客戶,然後從數據里找出三類。也有一些問題沒有指定聚類的數量,最優的聚類數量是不確定的。後面我將會詳細介紹一些方法來估計最優聚類數量。

Kmeans的參數是類的重心位置和其內部觀測值的位置。與廣義線性模型和決策樹類似,Kmeans參數的最優解也是以成本函數最小化為目標。Kmeans成本函數公式如下:

μiμi是第kk個類的重心位置。成本函數是各個類畸變程度(distortions)之和。每個類的畸變程度等於該類重心與其內部成員位置距離的平方和。若類內部的成員彼此間越緊湊則類的畸變程度越小,反之,若類內部的成員彼此間越分散則類的畸變程度越大。求解成本函數最小化的參數就是一個重復配置每個類包含的觀測值,並不斷移動類重心的過程。首先,類的重心是隨機確定的位置。實際上,重心位置等於隨機選擇的觀測值的位置。每次迭代的時候,Kmeans會把觀測值分配到離它們最近的類,然後把重心移動到該類全部成員位置的平均值那裡。

2. K值的確定

2.1 根據問題內容確定

這種方法就不多講了,文章開篇就舉了一個例子。

2.2 肘部法則

如果問題中沒有指定kk的值,可以通過肘部法則這一技術來估計聚類數量。肘部法則會把不同kk值的成本函數值畫出來。隨著kk值的增大,平均畸變程度會減小;每個類包含的樣本數會減少,於是樣本離其重心會更近。但是,隨著kk值繼續增大,平均畸變程度的改善效果會不斷減低。kk值增大過程中,畸變程度的改善效果下降幅度最大的位置對應的kk值就是肘部。為了讓讀者看的更加明白,下面讓我們通過一張圖用肘部法則來確定最佳的kk值。下圖數據明顯可分成兩類:

從圖中可以看出,k值從1到2時,平均畸變程度變化最大。超過2以後,平均畸變程度變化顯著降低。因此最佳的k是2。

2.3 與層次聚類結合

經常會產生較好的聚類結果的一個有趣策略是,首先採用層次凝聚演算法決定結果粗的數目,並找到一個初始聚類,然後用迭代重定位來改進該聚類。

2.4 穩定性方法

穩定性方法對一個數據集進行2次重采樣產生2個數據子集,再用相同的聚類演算法對2個數據子集進行聚類,產生2個具有kk個聚類的聚類結果,計算2個聚類結果的相似度的分布情況。2個聚類結果具有高的相似度說明kk個聚類反映了穩定的聚類結構,其相似度可以用來估計聚類個數。採用次方法試探多個kk,找到合適的k值。

2.5 系統演化方法

系統演化方法將一個數據集視為偽熱力學系統,當數據集被劃分為kk個聚類時稱系統處於狀態kk。系統由初始狀態k=1k=1出發,經過分裂過程和合並過程,系統將演化到它的穩定平衡狀態 kiki ,其所對應的聚類結構決定了最優類數 kiki 。系統演化方法能提供關於所有聚類之間的相對邊界距離或可分程度,它適用於明顯分離的聚類結構和輕微重疊的聚類結構。

2.6 使用canopy演算法進行初始劃分

基於Canopy Method的聚類演算法將聚類過程分為兩個階段

(1) 聚類最耗費計算的地方是計算對象相似性的時候,Canopy Method在第一階段選擇簡單、計算代價較低的方法計算對象相似性,將相似的對象放在一個子集中,這個子集被叫做Canopy,通過一系列計算得到若干Canopy,Canopy之間可以是重疊的,但不會存在某個對象不屬於任何Canopy的情況,可以把這一階段看做數據預處理;

(2) 在各個Canopy內使用傳統的聚類方法(如Kmeans),不屬於同一Canopy的對象之間不進行相似性計算。

從這個方法起碼可以看出兩點好處:首先,Canopy不要太大且Canopy之間重疊的不要太多的話會大大減少後續需要計算相似性的對象的個數;其次,類似於Kmeans這樣的聚類方法是需要人為指出K的值的,通過(1)得到的Canopy個數完全可以作為這個k值,一定程度上減少了選擇k的盲目性。

其他方法如貝葉斯信息准則方法(BIC)可參看文獻[4]。

3. 初始質心的選取

選擇適當的初始質心是基本kmeans演算法的關鍵步驟。常見的方法是隨機的選取初始中心,但是這樣簇的質量常常很差。處理選取初始質心問題的一種常用技術是:多次運行,每次使用一組不同的隨機初始質心,然後選取具有最小SSE(誤差的平方和)的簇集。這種策略簡單,但是效果可能不好,這取決於數據集和尋找的簇的個數。

第二種有效的方法是,取一個樣本,並使用層次聚類技術對它聚類。從層次聚類中提取kk個簇,並用這些簇的質心作為初始質心。該方法通常很有效,但僅對下列情況有效:(1)樣本相對較小,例如數百到數千(層次聚類開銷較大);(2) kk相對於樣本大小較小。

第三種選擇初始質心的方法,隨機地選擇第一個點,或取所有點的質心作為第一個點。然後,對於每個後繼初始質心,選擇離已經選取過的初始質心最遠的點。使用這種方法,確保了選擇的初始質心不僅是隨機的,而且是散開的。但是,這種方法可能選中離群點。此外,求離當前初始質心集最遠的點開銷也非常大。為了克服這個問題,通常該方法用於點樣本。由於離群點很少(多了就不是離群點了),它們多半不會在隨機樣本中出現。計算量也大幅減少。

第四種方法就是上面提到的canopy演算法。

4. 距離的度量

常用的距離度量方法包括:歐幾里得距離和餘弦相似度。兩者都是評定個體間差異的大小的。

歐氏距離是最常見的距離度量,而餘弦相似度則是最常見的相似度度量,很多的距離度量和相似度度量都是基於這兩者的變形和衍生,所以下面重點比較下兩者在衡量個體差異時實現方式和應用環境上的區別。

藉助三維坐標系來看下歐氏距離和餘弦相似度的區別:

從圖上可以看出距離度量衡量的是空間各點間的絕對距離,跟各個點所在的位置坐標(即個體特徵維度的數值)直接相關;而餘弦相似度衡量的是空間向量的夾角,更加的是體現在方向上的差異,而不是位置。如果保持A點的位置不變,B點朝原方向遠離坐標軸原點,那麼這個時候餘弦相似cosθ是保持不變的,因為夾角不變,而A、B兩點的距離顯然在發生改變,這就是歐氏距離和餘弦相似度的不同之處。

根據歐氏距離和餘弦相似度各自的計算方式和衡量特徵,分別適用於不同的數據分析模型:歐氏距離能夠體現個體數值特徵的絕對差異,所以更多的用於需要從維度的數值大小中體現差異的分析,如使用用戶行為指標分析用戶價值的相似度或差異;而餘弦相似度更多的是從方向上區分差異,而對絕對的數值不敏感,更多的用於使用用戶對內容評分來區分用戶興趣的相似度和差異,同時修正了用戶間可能存在的度量標准不統一的問題(因為餘弦相似度對絕對數值不敏感)。

因為歐幾里得距離度量會受指標不同單位刻度的影響,所以一般需要先進行標准化,同時距離越大,個體間差異越大;空間向量餘弦夾角的相似度度量不會受指標刻度的影響,餘弦值落於區間[-1,1],值越大,差異越小。但是針對具體應用,什麼情況下使用歐氏距離,什麼情況下使用餘弦相似度?

從幾何意義上來說,n維向量空間的一條線段作為底邊和原點組成的三角形,其頂角大小是不確定的。也就是說對於兩條空間向量,即使兩點距離一定,他們的夾角餘弦值也可以隨意變化。感性的認識,當兩用戶評分趨勢一致時,但是評分值差距很大,餘弦相似度傾向給出更優解。舉個極端的例子,兩用戶只對兩件商品評分,向量分別為(3,3)和(5,5),這兩位用戶的認知其實是一樣的,但是歐式距離給出的解顯然沒有餘弦值合理。

5. 聚類效果評估

我們把機器學習定義為對系統的設計和學習,通過對經驗數據的學習,將任務效果的不斷改善作為一個度量標准。Kmeans是一種非監督學習,沒有標簽和其他信息來比較聚類結果。但是,我們還是有一些指標可以評估演算法的性能。我們已經介紹過類的畸變程度的度量方法。本節為將介紹另一種聚類演算法效果評估方法稱為輪廓系數(Silhouette Coefficient)。輪廓系數是類的密集與分散程度的評價指標。它會隨著類的規模增大而增大。彼此相距很遠,本身很密集的類,其輪廓系數較大,彼此集中,本身很大的類,其輪廓系數較小。輪廓系數是通過所有樣本計算出來的,計算每個樣本分數的均值,計算公式如下:

aa是每一個類中樣本彼此距離的均值,bb是一個類中樣本與其最近的那個類的所有樣本的距離的均值。

6. Kmeans演算法流程

輸入:聚類個數k,數據集XmxnXmxn。 

輸出:滿足方差最小標準的k個聚類。

(1) 選擇k個初始中心點,例如c[0]=X[0] , … , c[k-1]=X[k-1];

(2) 對於X[0]….X[n],分別與c[0]…c[k-1]比較,假定與c[i]差值最少,就標記為i;

(3) 對於所有標記為i點,重新計算c[i]={ 所有標記為i的樣本的每個特徵的均值};

(4) 重復(2)(3),直到所有c[i]值的變化小於給定閾值或者達到最大迭代次數。

Kmeans的時間復雜度:O(tkmn),空間復雜度:O((m+k)n)。其中,t為迭代次數,k為簇的數目,m為樣本數,n為特徵數。

7. Kmeans演算法優缺點

7.1 優點

(1). 演算法原理簡單。需要調節的超參數就是一個k。

(2). 由具有出色的速度和良好的可擴展性。

7.2 缺點

(1). 在 Kmeans 演算法中 kk 需要事先確定,這個 kk 值的選定有時候是比較難確定。

(2). 在 Kmeans 演算法中,首先需要初始k個聚類中心,然後以此來確定一個初始劃分,然後對初始劃分進行優化。這個初始聚類中心的選擇對聚類結果有較大的影響,一旦初始值選擇的不好,可能無法得到有效的聚類結果。多設置一些不同的初值,對比最後的運算結果,一直到結果趨於穩定結束。

(3). 該演算法需要不斷地進行樣本分類調整,不斷地計算調整後的新的聚類中心,因此當數據量非常大時,演算法的時間開銷是非常大的。

(4). 對離群點很敏感。

(5). 從數據表示角度來說,在 Kmeans 中,我們用單個點來對 cluster 進行建模,這實際上是一種最簡化的數據建模形式。這種用點來對 cluster 進行建模實際上就已經假設了各 cluster的數據是呈圓形(或者高維球形)或者方形等分布的。不能發現非凸形狀的簇。但在實際生活中,很少能有這種情況。所以在 GMM 中,使用了一種更加一般的數據表示,也就是高斯分布。

(6). 從數據先驗的角度來說,在 Kmeans 中,我們假設各個 cluster 的先驗概率是一樣的,但是各個 cluster 的數據量可能是不均勻的。舉個例子,cluster A 中包含了10000個樣本,cluster B 中只包含了100個。那麼對於一個新的樣本,在不考慮其與A cluster、 B cluster 相似度的情況,其屬於 cluster A 的概率肯定是要大於 cluster B的。

(7). 在 Kmeans 中,通常採用歐氏距離來衡量樣本與各個 cluster 的相似度。這種距離實際上假設了數據的各個維度對於相似度的衡量作用是一樣的。但在 GMM 中,相似度的衡量使用的是後驗概率 αcG(x|μc,∑c)αcG(x|μc,∑c) ,通過引入協方差矩陣,我們就可以對各維度數據的不同重要性進行建模。

(8). 在 Kmeans 中,各個樣本點只屬於與其相似度最高的那個 cluster ,這實際上是一種 hard clustering 。

針對Kmeans演算法的缺點,很多前輩提出了一些改進的演算法。例如 K-modes 演算法,實現對離散數據的快速聚類,保留了Kmeans演算法的效率同時將Kmeans的應用范圍擴大到離散數據。還有K-Prototype演算法,可以對離散與數值屬性兩種混合的數據進行聚類,在K-prototype中定義了一個對數值與離散屬性都計算的相異性度量標准。當然還有其它的一些演算法,這里我 就不一一列舉了。

Kmeans 與 GMM 更像是一種 top-down 的思想,它們首先要解決的問題是,確定 cluster 數量,也就是 k 的取值。在確定了 k 後,再來進行數據的聚類。而 hierarchical clustering 則是一種 bottom-up 的形式,先有數據,然後通過不斷選取最相似的數據進行聚類。

熱點內容
java崗位職責 發布:2025-08-22 04:31:19 瀏覽:339
易語言取ip源碼 發布:2025-08-22 04:23:05 瀏覽:769
伺服器主板故障聲音怎麼設置消除 發布:2025-08-22 04:19:25 瀏覽:984
包名androidstudio 發布:2025-08-22 04:19:25 瀏覽:37
從哪裡給微信加密碼 發布:2025-08-22 04:12:44 瀏覽:276
個人雲存儲哪個好 發布:2025-08-22 04:12:36 瀏覽:181
劉老根4下載ftp 發布:2025-08-22 04:12:29 瀏覽:580
加密方式代碼 發布:2025-08-22 04:11:22 瀏覽:216
互聯網根伺服器什麼時候移交中國 發布:2025-08-22 04:06:40 瀏覽:501
安卓喇叭哪個牌子好 發布:2025-08-22 03:49:09 瀏覽:832