當前位置:首頁 » 操作系統 » 決策樹演算法案例

決策樹演算法案例

發布時間: 2025-04-10 05:51:38

① 決策樹的原理及演算法

決策樹基本上就是把我們以前的經驗總結出來。我給你准備了一個打籃球的訓練集。如果我們要出門打籃球,一般會根據「天氣」、「溫度」、「濕度」、「刮風」這幾個條件來判斷,最後得到結果:去打籃球?還是不去?

上面這個圖就是一棵典型的決策樹。我們在做決策樹的時候,會經歷兩個階段:構造和剪枝。

構造就是生成一棵完整的決策樹。簡單來說,構造的過程就是選擇什麼屬性作為節點的過程,那麼在構造過程中,會存在三種節點:
根節點:就是樹的最頂端,最開始的那個節點。在上圖中,「天氣」就是一個根節點;
內部節點:就是樹中間的那些節點,比如說「溫度」、「濕度」、「刮風」;
葉節點:就是樹最底部的節點,也就是決策結果。

剪枝就是給決策樹瘦身,防止過擬合。分為「預剪枝」(Pre-Pruning)和「後剪枝」(Post-Pruning)。

預剪枝是在決策樹構造時就進行剪枝。方法是在構造的過程中對節點進行評估,如果對某個節點進行劃分,在驗證集中不能帶來准確性的提升,那麼對這個節點進行劃分就沒有意義,這時就會把當前節點作為葉節點,不對其進行劃分。

後剪枝就是在生成決策樹之後再進行剪枝,通常會從決策樹的葉節點開始,逐層向上對每個節點進行評估。如果剪掉這個節點子樹,與保留該節點子樹在分類准確性上差別不大,或者剪掉該節點子樹,能在驗證集中帶來准確性的提升,那麼就可以把該節點子樹進行剪枝。

1是欠擬合,3是過擬合,都會導致分類錯誤。

造成過擬合的原因之一就是因為訓練集中樣本量較小。如果決策樹選擇的屬性過多,構造出來的決策樹一定能夠「完美」地把訓練集中的樣本分類,但是這樣就會把訓練集中一些數據的特點當成所有數據的特點,但這個特點不一定是全部數據的特點,這就使得這個決策樹在真實的數據分類中出現錯誤,也就是模型的「泛化能力」差。

p(i|t) 代表了節點 t 為分類 i 的概率,其中 log2 為取以 2 為底的對數。這里我們不是來介紹公式的,而是說存在一種度量,它能幫我們反映出來這個信息的不確定度。當不確定性越大時,它所包含的信息量也就越大,信息熵也就越高。

ID3 演算法計算的是信息增益,信息增益指的就是劃分可以帶來純度的提高,信息熵的下降。它的計算公式,是父親節點的信息熵減去所有子節點的信息熵。

公式中 D 是父親節點,Di 是子節點,Gain(D,a) 中的 a 作為 D 節點的屬性選擇。

因為 ID3 在計算的時候,傾向於選擇取值多的屬性。為了避免這個問題,C4.5 採用信息增益率的方式來選擇屬性。信息增益率 = 信息增益 / 屬性熵,具體的計算公式這里省略。

當屬性有很多值的時候,相當於被劃分成了許多份,雖然信息增益變大了,但是對於 C4.5 來說,屬性熵也會變大,所以整體的信息增益率並不大。

ID3 構造決策樹的時候,容易產生過擬合的情況。在 C4.5 中,會在決策樹構造之後採用悲觀剪枝(PEP),這樣可以提升決策樹的泛化能力。

悲觀剪枝是後剪枝技術中的一種,通過遞歸估算每個內部節點的分類錯誤率,比較剪枝前後這個節點的分類錯誤率來決定是否對其進行剪枝。這種剪枝方法不再需要一個單獨的測試數據集。

C4.5 可以處理連續屬性的情況,對連續的屬性進行離散化的處理。比如打籃球存在的「濕度」屬性,不按照「高、中」劃分,而是按照濕度值進行計算,那麼濕度取什麼值都有可能。該怎麼選擇這個閾值呢,C4.5 選擇具有最高信息增益的劃分所對應的閾值。

針對數據集不完整的情況,C4.5 也可以進行處理。

暫無

請你用下面的例子來模擬下決策樹的流程,假設好蘋果的數據如下,請用 ID3 演算法來給出好蘋果的決策樹。

「紅」的信息增益為:1「大」的信息增益為:0
因此選擇「紅」的作為根節點,「大」沒有用,剪枝。

數據分析實戰45講.17 丨決策樹(上):要不要去打籃球?決策樹來告訴你

② 決策樹演算法-原理篇

關於決策樹演算法,我打算分兩篇來講,一篇講思想原理,另一篇直接擼碼來分析演算法。本篇為原理篇。
通過閱讀這篇文章,你可以學到:
1、決策樹的本質
2、決策樹的構造過程
3、決策樹的優化方向

決策樹根據使用目的分為:分類樹和回歸樹,其本質上是一樣的。本文只講分類樹。

決策樹,根據名字來解釋就是,使用樹型結構來模擬決策。
用圖形表示就是下面這樣。

其中橢圓形代表:特徵或屬性。長方形代表:類別結果。
面對一堆數據(含有特徵和類別),決策樹就是根據這些特徵(橢圓形)來給數據歸類(長方形)
例如,信用貸款問題,我根據《神奇動物在哪裡》的劇情給銀行造了個決策樹模型,如下圖:

然而,決定是否貸款可以根據很多特徵,然麻雞銀行選擇了:(1)是否房產價值>100w;(2)是否有其他值錢的抵押物;(3)月收入>10k;(4)是否結婚;這四個特徵,來決定是否給予貸款。
先不管是否合理,但可以肯定的是,決策樹做了特徵選擇工作,即選擇出類別區分度高的特徵。

由此可見, 決策樹其實是一種特徵選擇方法。 (特徵選擇有多種,決策樹屬於嵌入型特徵選擇,以後或許會講到,先給個圖)即選擇區分度高的特徵子集。

那麼, 從特徵選擇角度來看決策樹,決策樹就是嵌入型特徵選擇技術

同時,決策樹也是機器學習中經典分類器演算法,通過決策路徑,最終能確定實例屬於哪一類別。
那麼, 從分類器角度來看決策樹,決策樹就是樹型結構的分類模型

從人工智慧知識表示法角度來看,決策樹類似於if-then的產生式表示法。
那麼, 從知識表示角度來看決策樹,決策樹就是if-then規則的集合

由上面的例子可知,麻雞銀行通過決策樹模型來決定給哪些人貸款,這樣決定貸款的流程就是固定的,而不由人的主觀情感來決定。
那麼, 從使用者角度來看決策樹,決策樹就是規范流程的方法

最後我們再來看看決策樹的本質是什麼已經不重要了。
決策樹好像是一種思想,而通過應用在分類任務中從而成就了「決策樹演算法」。

下面內容還是繼續講解用於分類的「決策樹演算法」。

前面講了決策樹是一種 特徵選擇技術

既然決策樹就是一種特徵選擇的方法,那麼經典決策樹演算法其實就是使用了不同的特徵選擇方案。
如:
(1)ID3:使用信息增益作為特徵選擇
(2)C4.5:使用信息增益率作為特徵選擇
(3)CART:使用GINI系數作為特徵選擇
具體選擇的方法網上一大把,在這里我提供幾個鏈接,不細講。

但,不僅僅如此。
決策樹作為嵌入型特徵選擇技術結合了特徵選擇和分類演算法,根據特徵選擇如何生成分類模型也是決策樹的一部分。
其生成過程基本如下:

根據這三個步驟,可以確定決策樹由:(1)特徵選擇;(2)生成方法;(3)剪枝,組成。
決策樹中學習演算法與特徵選擇的關系如下圖所示:

原始特徵集合T:就是包含收集到的原始數據所有的特徵,例如:麻瓜銀行收集到與是否具有償還能力的所有特徵,如:是否結婚、是否擁有100w的房產、是否擁有汽車、是否有小孩、月收入是否>10k等等。
中間的虛線框就是特徵選擇過程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系數。
其中評價指標(如:信息增益)就是對特徵的要求,特徵需要滿足這種條件(一般是某個閾值),才能被選擇,而這一選擇過程嵌入在學習演算法中,最終被選擇的特徵子集也歸到學習演算法中去。
這就是抽象的決策樹生成過程,不論哪種演算法都是將這一抽象過程的具體化。
其具體演算法我將留在下一篇文章來講解。

而決策樹的剪枝,其實用得不是很多,因為很多情況下隨機森林能解決決策樹帶來的過擬合問題,因此在這里也不講了。

決策樹的優化主要也是圍繞決策樹生成過程的三個步驟來進行優化的。
樹型結構,可想而知,演算法效率決定於樹的深度,優化這方面主要從特徵選擇方向上優化。
提高分類性能是最重要的優化目標,其主要也是特徵選擇。
面對過擬合問題,一般使用剪枝來優化,如:李國和基於決策樹生成及剪枝的數據集優化及其應用。
同時,決策樹有很多不足,如:多值偏向、計算效率低下、對數據空缺較為敏感等,這方面的優化也有很多,大部分也是特徵選擇方向,如:陳沛玲使用粗糙集進行特徵降維。
由此,決策樹的優化方向大多都是特徵選擇方向,像ID3、C4.5、CART都是基於特徵選擇進行優化。

參考文獻
統計學習方法-李航
特徵選擇方法綜述-李郅琴
決策樹分類演算法優化研究_陳沛玲
基於決策樹生成及剪枝的數據集優化及其應用-李國和

熱點內容
程序編譯時閃退 發布:2025-04-26 09:12:27 瀏覽:889
屏幕熄滅的時間腳本還會運行嗎 發布:2025-04-26 09:12:23 瀏覽:1000
go流媒體伺服器搭建 發布:2025-04-26 09:11:26 瀏覽:128
android電源鎖 發布:2025-04-26 09:07:14 瀏覽:866
超時代視頻加密注冊機 發布:2025-04-26 08:55:37 瀏覽:511
htmlmd5加密 發布:2025-04-26 08:42:38 瀏覽:472
auto在c語言中什麼意思 發布:2025-04-26 08:37:18 瀏覽:175
如何將電腦設置成虛擬伺服器 發布:2025-04-26 08:35:10 瀏覽:744
月供演算法 發布:2025-04-26 08:14:46 瀏覽:92
c資料庫遠程訪問 發布:2025-04-26 08:06:34 瀏覽:109