當前位置:首頁 » 操作系統 » 數據結構演算法順序

數據結構演算法順序

發布時間: 2025-05-05 18:27:30

① 關於數據結構排序演算法的問題

選擇排序

插入排序:每次比較後最多移掉一個逆序,因此與冒泡排序的效率相同。但它在速度上還是要高點,這是因為在冒泡排序下是進行值交換,而在插入排序下是值移動,所以直接插入排序將要優於冒泡排序。直接插入法也是一種對數據的有序性非常敏感的一種演算法。在有序情況下只需要經過n-1次比較,在最壞情況下,將需要n(n-1)/2次比較。

選擇排序:簡單的選擇排序,它的比較次數一定:n(n-1)/2。也因此無論在序列何種情況下,它都不會有優秀的表現(從上100K的正序和反序數
據可以發現它耗時相差不多,相差的只是數據移動時間),可見對數據的有序性不敏感。它雖然比較次數多,但它的數據交換量卻很少。所以我們將發現它在一般情
況下將快於冒泡排序。

冒泡排序:在最優情況下只需要經過n-1次比較即可得出結果,(這個最優情況那就是序列己是正序,從100K的正序結果可以看出結果正是如此),但在最壞情況下,即倒序(或一個較小值在最後),下沉演算法將需要n(n-1)/2次比較。所以一般情況下,特別是在逆序時,它很不理想。它是對數據有序性非常敏感的排序演算法。
堆排序:由於它在直接選擇排序的基礎上利用了比較結果形成。效率提高很大。它完成排序的總比較次數為O(nlog2n)。它是對數據的有序性不敏感的一種演算法。但堆排序將需要做兩個步驟:-是建堆,二是排序(調整堆)。所以一般在小規模的序列中不合適,但對於較大的序列,將表現出優越的性能。

基數排序:在程序中採用的是以數值的十進制位分解,然後對空間採用一次性分配,因此它需要較多的輔助空間(10*n+10), (但我們可以進行其它分解,如以一個位元組分解,空間採用鏈表將只需輔助空間n+256)。基數排序的時間是線性的(即O(n))。由此可見,基數排序非常吸引人,但它也不是就地排序,若節點數據量大時宜改為索引排序。但基數排序有個前提,要關鍵字能象整型、字元串這樣能分解,若是浮點型那就不行了。

② 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

③ 數據結構有哪些基本演算法

一、排序演算法 1、有簡單排序(包括冒泡排序、插入排序、選擇排序) 2、快速排序,很常見的 3、堆排序, 4、歸並排序,最穩定的,即沒有太差的情況 二、搜索演算法 最基礎的有二分搜索演算法,最常見的搜索演算法,前提是序列已經有序 還有深度優先和廣度有限搜索;及使用剪枝,A*,hash表等方法對其進行優化。 三、當然,對於基本數據結構,棧,隊列,樹。都有一些基本的操作 例如,棧的pop,push,隊列的取隊頭,如隊;以及這些數據結構的具體實現,使用連續的存儲空間(數組),還是使用鏈表,兩種具體存儲方法下操作方式的具體實現也不一樣。 還有樹的操作,如先序遍歷,中序遍歷,後續遍歷。 當然,這些只是一些基本的針對數據結構的演算法。 而基本演算法的思想應該有:1、回溯2、遞歸3、貪心4、動態規劃5、分治有些數據結構教材沒有涉及基礎演算法,lz可以另外找一些基礎演算法書看一下。有興趣的可以上oj做題,呵呵。演算法真的要學起來那是挺費勁。

④ 數據結構的排序演算法中,哪些排序是穩定的,哪些排序是不穩定的

一、穩定排序演算法

1、冒泡排序

2、雞尾酒排序

3、插入排序

4、桶排序

5、計數排序

6、合並排序

7、基數排序

8、二叉排序樹排序

二、不穩定排序演算法

1、選擇排序

2、希爾排序

3、組合排序

4、堆排序

5、平滑排序

6、快速排序

排序(Sorting) 是計算機程序設計中的一種重要操作,它的功能是將一個數據元素(或記錄)的任意序列,重新排列成一個關鍵字有序的序列。

一個排序演算法是穩定的,就是當有兩個相等記錄的關鍵字R和S,且在原本的列表中R出現在S之前,在排序過的列表中R也將會是在S之前。

不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地實現為穩定。

做這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個對象間之比較,就會被決定使用在原先數據次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。

(4)數據結構演算法順序擴展閱讀:

排序演算法的分類:

1、通過時間復雜度分類

計算的復雜度(最差、平均、和最好性能),依據列表(list)的大小(n)。

一般而言,好的性能是 O(nlogn),且壞的性能是 O(n^2)。對於一個排序理想的性能是 O(n)。

而僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要 O(nlogn)。

2、通過空間復雜度分類

存儲器使用量(空間復雜度)(以及其他電腦資源的使用)

3、通過穩定性分類

穩定的排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。

⑤ c++ 線性代數 離散數學 數據結構與演算法的學習順序

線性代數,離散數學是數學理論,你可以先學。然後你先學C語言(C會了,學C++就很簡單了),在學數據結構,C和數據結構可以同步學習,最後學演算法。我沒有看過網上課程,就不推薦了。

⑥ 數據結構排序演算法

數據結構中的排序演算法主要包括以下幾類

1. 穩定排序演算法冒泡排序:通過不斷交換相鄰元素的位置,逐步將數據排序。 雞尾酒排序:也稱雙向冒泡排序,是冒泡排序的改進版。 插入排序:通過將元素逐個插入已排序的部分,形成有序序列。 桶排序:通過將元素分配到不同的桶中,然後對每個桶內的元素排序,最後合並。 計數排序:適用於元素范圍較小的整數,通過統計每個元素出現的次數來排序。

2. 分治策略排序演算法合並排序:採用分治策略,將大問題分解為小問題解決,然後合並結果。 二叉排序樹排序:利用二叉樹特性,實現元素的有序排列。

3. 特定分布規則排序演算法鴿巢排序:通過特定的分布規則,對數據進行分段和組合排序。 基數排序:通過逐位比較和分配,實現數據的排序。

4. 不穩定排序演算法選擇排序:通過不斷選擇最小元素,進行簡單移動。 希爾排序:是插入排序的一種改進版,通過比較和移動距離較遠的元素來加快排序速度。 堆排序:利用堆數據結構,實現快速排序。 平滑排序:高效的隨機化排序演算法。 快速排序:高效的隨機化排序演算法,通過選擇一個基準元素,將數組分為兩部分,遞歸排序。 內省排序:結合了快速排序和堆排序的優點,根據不同情況動態選擇排序策略。

5. 不那麼實用的排序方法紙牌排序盲目搜索排序愚蠢排序珠排序:雖然原理獨特,但實際應用中效率較低,且復雜度較高。 煎餅排序:視覺上有趣的排序方法,但實用性不強。

這些排序演算法各有優缺點,適用於不同的數據分布和場景需求。在實際應用中,需要根據具體情況選擇合適的排序演算法。

熱點內容
如何解開別人手機密碼 發布:2025-05-05 21:39:09 瀏覽:192
關於漢服課程的視頻腳本 發布:2025-05-05 21:33:30 瀏覽:732
proe文件加密 發布:2025-05-05 21:23:11 瀏覽:662
評價伺服器屬於什麼資產 發布:2025-05-05 21:23:07 瀏覽:793
去吧皮卡丘懸賞腳本 發布:2025-05-05 21:12:16 瀏覽:873
nfa演算法 發布:2025-05-05 21:11:40 瀏覽:99
柯基編程 發布:2025-05-05 21:02:20 瀏覽:246
農商銀行雲證書密碼多少 發布:2025-05-05 21:00:49 瀏覽:389
綠城桂語榕庭小區有什麼配置 發布:2025-05-05 20:53:01 瀏覽:466
如何偷到人支付寶密碼 發布:2025-05-05 20:32:15 瀏覽:928