當前位置:首頁 » 存儲配置 » 緩存器和程序存儲器

緩存器和程序存儲器

發布時間: 2022-08-10 22:59:57

⑴ cpu上的緩存和內存。。。

你是小白吧,緩存是CPU里的高速緩存器,內存是內存
解釋名詞:
CPU緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大於系統內存和硬碟。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬碟上尋找,以此提高系統性能。但是由於CPU晶元面積和成本的因素來考慮,緩存都很小。

概念

L1 Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般伺服器CPU的L1緩存的容量通常在32—256KB。

L2 Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種晶元。內部的晶元二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是4MB,而伺服器和工作站上用CPU的L2高速緩存更高達2MB—4MB,有的高達8MB或者19MB。

L3 Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在伺服器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大L3緩存的配置利用物理內存會更有效,故它比較慢的磁碟I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。

其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。

但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。

作用

速緩沖存儲器Cache是位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。

在Cache中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從Cache中調用,從而加快讀取速度。由此可見,在CPU中加入Cache是一種高效的解決方案,這樣整個內存儲器(Cache+內存)就變成了既有Cache的高速度,又有內存的大容量的存儲系統了。

Cache對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與Cache間的帶寬引起的。

高速緩存的工作原理

1、讀取順序
CPU要讀取一個數據時,首先從Cache中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入Cache中,可以使得以後對整塊數據的讀取都從Cache中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取Cache的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在Cache中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先Cache後內存。

2、緩存分類
前面是把Cache作為一個整體來考慮的,現在要分類分析了。Intel從Pentium開始將Cache分開,通常分為一級高速緩存L1和二級高速緩存L2。在以往的觀念中,L1 Cache是集成在CPU中的,被稱為片內Cache。在L1中還分數據Cache(I-Cache)和指令Cache(D-Cache)。它們分別用來存放數據和執行這些數據的指令,而且兩個Cache可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。

在P4處理器中使用了一種先進的一級指令Cache——動態跟蹤緩存。它直接和執行單元及動態跟蹤引擎相連,通過動態跟蹤引擎可以很快地找到所執行的指令,並且將指令的順序存儲在追蹤緩存里,這樣就減少了主執行循環的解碼周期,提高了處理器的運算效率。

以前的L2 Cache沒集成在CPU中,而在主板上或與CPU集成在同一塊電路板上,因此也被稱為片外Cache。但從PⅢ開始,由於工藝的提高L2 Cache被集成在CPU內核中,以相同於主頻的速度工作,結束了L2 Cache與CPU大差距分頻的歷史,使L2 Cache與L1 Cache在性能上平等,得到更高的傳輸速度。L2Cache只存儲數據,因此不分數據Cache和指令Cache。在CPU核心不變化的情況下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手腳,可見L2 Cache的重要性。現在CPU的L1 Cache與L2 Cache惟一區別在於讀取順序。

3、讀取命中率
CPU在Cache中找到有用的數據被稱為命中,當Cache中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有2級Cache的CPU中,讀取L1 Cache的命中率為80%。也就是說CPU從L1 Cache中找到的有用數據占數據總量的80%,剩下的20%從L2 Cache讀取。由於不能准確預測將要執行的數據,讀取L2的命中率也在80%左右(從L2讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。在一些高端領域的CPU(像Intel的Itanium)中,我們常聽到L3 Cache,它是為讀取L2 Cache後未命中的數據設計的—種Cache,在擁有L3 Cache的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。

為了保證CPU訪問時有較高的命中率,Cache中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出Cache,提高Cache的利用率。 緩存技術的發展
總之,在傳輸速度有較大差異的設備間都可以利用Cache作為匹配來調節差距,或者說是這些設備的傳輸通道。在顯示系統、硬碟和光碟機,以及網路通訊中,都需要使用Cache技術。但Cache均由靜態RAM組成,結構復雜,成本不菲,使用現有工藝在有限的面積內不可能做得很大,不過,這也正是技術前進的源動力,有需要才有進步!

一級緩存

CPU緩存(Cache Memory)是位於CPU與內存之間的臨時存儲器,它的容量比內存小的多但是交換速度卻比內存要快得多。緩存的出現主要是為了解決CPU運算速度與內存讀寫速度不匹配的矛盾,因為CPU運算速度要比內存讀寫速度快很多,這樣會使CPU花費很長時間等待數據到來或把數據寫入內存。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存 內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。

緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。

目前緩存基本上都是採用SRAM存儲器,SRAM是英文Static RAM的縮寫,它是一種具有靜志存取功能的存儲器,不需要刷新電路即能保存它內部存儲的數據。不像DRAM內存那樣需要刷新電路,每隔一段時間,固定要對DRAM刷新充電一次,否則內部的數據即會消失,因此SRAM具有較高的性能,但是SRAM也有它的缺點,即它的集成度較低,相同容量的DRAM內存可以設計為較小的體積,但是SRAM卻需要很大的體積,這也是目前不能將緩存容量做得太大的重要原因。它的特點歸納如下:優點是節能、速度快、不必配合內存刷新電路、可提高整體的工作效率,缺點是集成度低、相同的容量體積較大、而且價格較高,只能少量用於關鍵性系統以提高效率。

按照數據讀取順序和與CPU結合的緊密程度,CPU緩存可以分為一級緩存,二級緩存,部分高端CPU還具有三級緩存,每一級緩存中所儲存的全部數據都是下一級緩存的一部分,這三種緩存的技術難度和製造成本是相對遞減的,所以其容量也是相對遞增的。當CPU要讀取一個數據時,首先從一級緩存中查找,如果沒有找到再從二級緩存中查找,如果還是沒有就從三級緩存或內存中查找。一般來說,每級緩存的命中率大概都在80%左右,也就是說全部數據量的80%都可以在一級緩存中找到,只剩下20%的總數據量才需要從二級緩存、三級緩存或內存中讀取,由此可見一級緩存是整個CPU緩存架構中最為重要的部分。

一級緩存(Level 1 Cache)簡稱L1 Cache,位於CPU內核的旁邊,是與CPU結合最為緊密的CPU緩存,也是歷史上最早出現的CPU緩存。由於一級緩存的技術難度和製造成本最高,提高容量所帶來的技術難度增加和成本增加非常大,所帶來的性能提升卻不明顯,性價比很低,而且現有的一級緩存的命中率已經很高,所以一級緩存是所有緩存中容量最小的,比二級緩存要小得多。

一般來說,一級緩存可以分為一級數據緩存(Data Cache,D-Cache)和一級指令緩存(Instruction Cache,I-Cache)。

二者分別用來存放數據以及對執行這些數據的指令進行即時解碼,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。目前大多數CPU的一級數據緩存和一級指令緩存具有相同的容量,例如AMD的Athlon XP就具有64KB的一級數據緩存和64KB的一級指令緩存,其一級緩存就以64KB 64KB來表示,其餘的CPU的一級緩存表示方法以此類推。

Intel的採用NetBurst架構的CPU(最典型的就是Pentium 4)的一級緩存有點特殊,使用了新增加的一種一級追蹤緩存(Execution Trace Cache,T-Cache或ETC)來替代一級指令緩存,容量為12KμOps,表示能存儲12K條即12000條解碼後的微指令。一級追蹤緩存與一級指令緩存的運行機制是不相同的,一級指令緩存只是對指令作即時的解碼而並不會儲存這些指令,而一級追蹤緩存同樣會將一些指令作解碼,這些指令稱為微指令(micro-ops),而這些微指令能儲存在一級追蹤緩存之內,無需每一次都作出解碼的程序,因此一級追蹤緩存能有效地增加在高工作頻率下對指令的解碼能力,而μOps就是micro-ops,也就是微型操作的意思。它以很高的速度將μops提供給處理器核心。Intel NetBurst微型架構使用執行跟蹤緩存,將解碼器從執行循環中分離出來。這個跟蹤緩存以很高的帶寬將uops提供給核心,從本質上適於充分利用軟體中的指令級並行機制。Intel並沒有公布一級追蹤緩存的實際容量,只知道一級追蹤緩存能儲存12000條微指令(micro-ops)。所以,我們不能簡單地用微指令的數目來比較指令緩存的大小。實際上,單核心的NetBurst架構CPU使用8Kμops的緩存已經基本上夠用了,多出的4kμops可以大大提高緩存命中率。而如果要使用超線程技術的話,12KμOps就會有些不夠用,這就是為什麼有時候Intel處理器在使用超線程技術時會導致性能下降的重要原因。

例如Northwood核心的一級緩存為8KB 12KμOps,就表示其一級數據緩存為8KB,一級追蹤緩存為12KμOps;而Prescott核心的一級緩存為16KB 12KμOps,就表示其一級數據緩存為16KB,一級追蹤緩存為12KμOps。在這里12KμOps絕對不等於12KB,單位都不同,一個是μOps,一個是Byte(位元組),而且二者的運行機制完全不同。所以那些把Intel的CPU一級緩存簡單相加,例如把Northwood核心說成是20KB一級緩存,把Prescott核心說成是28KB一級緩存,並且據此認為Intel處理器的一級緩存容量遠遠低於AMD處理器128KB的一級緩存容量的看法是完全錯誤的,二者不具有可比性。在架構有一定區別的CPU對比中,很多緩存已經難以找到對應的東西,即使類似名稱的緩存在設計思路和功能定義上也有區別了,此時不能用簡單的算術加法來進行對比;而在架構極為近似的CPU對比中,分別對比各種功能緩存大小才有一定的意義。

二級緩存

CPU緩存(Cache Memory)是位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存 內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。

緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。

最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(Data Cache,D-Cache)和指令緩存(Instruction Cache,I-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,用新增的一種一級追蹤緩存替代指令緩存,容量為12KμOps,表示能存儲12K條微指令。

隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。

二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。

CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。

為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。

CPU產品中,一級緩存的容量基本在4KB到64KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB、2MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。

雙核心CPU的二級緩存比較特殊,和以前的單核心CPU相比,最重要的就是兩個內核的緩存所保存的數據要保持一致,否則就會出現錯誤,為了解決這個問題不同的CPU使用了不同的辦法:
Intel雙核心處理器的二級緩存
目前Intel的雙核心CPU主要有Pentium D、Pentium EE、Core Duo三種,其中Pentium D、Pentium EE的二級緩存方式完全相同。Pentium D和Pentium EE的二級緩存都是CPU內部兩個內核具有互相獨立的二級緩存,其中,8xx系列的Smithfield核心CPU為每核心1MB,而9xx系列的Presler核心CPU為每核心2MB。這種CPU內部的兩個內核之間的緩存數據同步是依靠位於主板北橋晶元上的仲裁單元通過前端匯流排在兩個核心之間傳輸來實現的,所以其數據延遲問題比較嚴重,性能並不盡如人意。

Core Duo使用的核心為Yonah,它的二級緩存則是兩個核心共享2MB的二級緩存,共享式的二級緩存配合Intel的「Smart cache」共享緩存技術,實現了真正意義上的緩存數據同步,大幅度降低了數據延遲,減少了對前端匯流排的佔用,性能表現不錯,是目前雙核心處理器上最先進的二級緩存架構。今後Intel的雙核心處理器的二級緩存都會採用這種兩個內核共享二級緩存的「Smart cache」共享緩存技術。

AMD雙核心處理器的二級緩存
Athlon 64 X2 CPU的核心主要有Manchester和Toledo兩種,他們的二級緩存都是CPU內部兩個內核具有互相獨立的二級緩存,其中,Manchester核心為每核心512KB,而Toledo核心為每核心1MB。處理器內部的兩個內核之間的緩存數據同步是依靠CPU內置的System Request Interface(系統請求介面,SRI)控制,傳輸在CPU內部即可實現。這樣一來,不但CPU資源佔用很小,而且不必佔用內存匯流排資源,數據延遲也比Intel的Smithfield核心和Presler核心大為減少,協作效率明顯勝過這兩種核心。不過,由於這種方式仍然是兩個內核的緩存相互獨立,從架構上來看也明顯不如以Yonah核心為代表的Intel的共享緩存技術Smart Cache。

一級緩存與二級緩存的比較

L1 cache vs L2 Cache用於存儲數據的緩存部分通常被稱為RAM,掉電以後其中的信息就會消失。RAM又分兩種,其中一種是靜態RAM(SRAM);另外一種是動態RAM(DRAM)。前者的存儲速度要比後者快得多,我們現在使用的內存一般都是動態RAM。CPU的L1級緩存通常都是靜態RAM,速度非常的快,但是靜態RAM集成度低(存儲相同的數據,靜態RAM的體積是動態RAM的6倍),而且價格也相對較為昂貴(同容量的靜態RAM是動態RAM的四倍)。擴大靜態RAM作為緩存是一個不太合算的做法,但是為了提高系統的性能和速度又必須要擴大緩存,這就有了一個折中的方法:在不擴大原來的靜態RAM緩存容量的情況下,僅僅增加一些高速動態RAM做為L2級緩存。高速動態RAM速度要比常規動態RAM快,但比原來的靜態RAM緩存慢,而且成本也較為適中。一級緩存和二級緩存中的內容都是內存中訪問頻率高的數據的復製品(映射),它們的存在都是為了減少高速CPU對慢速內存的訪問。二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上存在差異,由此可見二級緩存對CPU的重要性。CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率,從某種意義上說,預取效率的提高,大大降低了生產成本卻提供了非常接近理想狀態的性能。除非某天生產技術變得非常強,否則內存仍會存在,緩存的性能遞增特性也仍會保留。 CPU緩存與內存的關系既然CPU緩存能夠在很大程度上提高CPU的性能,那麼,有些朋友可能會問,是不是將來有可能,目前的系統內存將會被CPU取代呢?

答案應該是否定的,首先,盡管CPU緩存的傳輸速率確實很高,但要完全取代內存的地位仍不可行,這主要是因為緩存只是內存中少部分數據的復製品,所以CPU到緩存中尋找數據時,也會出現找不到的情況(因為這些數據沒有從內存復制到緩存中去),這時CPU還是會到內存中去找數據,與此同時系統的速度就慢了下來,不過CPU會把這些數據復制到緩存中去,以便下一次不用再到內存中去取。也即是說,隨著緩存增大到一定程度,其對CPU性能的影響將越來越小,在性能比上來說,越來越不合算。就目前緩存容量、成本以及功耗表現來看,還遠遠無法與內存抗衡,另外從某種意義上來說,內存也是CPU緩存的一種表現形式,只不過在速率上慢很多,然而卻在容量、功耗以及成本方面擁有巨大優勢。如果內存在將來可以做到足夠強的話,反而很有取代CPU緩存的可能。 緩存的讀寫演算法同樣重要即便CPU內部集成的緩存數據交換能力非常強,也仍需要對調取數據做一定的篩選。這是因為隨著時間的變化,被訪問得最頻繁的數據不是一成不變的,也就是說,剛才還不頻繁的數據,此時已經需要被頻繁的訪問,剛才還是最頻繁的數據,現在又不頻繁了,所以說緩存中的數據要經常按照一定的演算法來更換,這樣才能保證緩存中的數據經常是被訪問最頻繁的。命中率演算法中較常用的「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。 高速緩存做為CPU不可分割的一部分,已經融入到性能提升的考慮因素當中,伴隨生產技術的進一步發展,緩存的級數還將增加,容量也會進一步提高。作為CPU性能助推器的高速緩存,仍會在成本和功耗控制方面發揮巨大的優勢,而性能方面也會取得長足的發展。

三級緩存

其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限於製造工藝,並沒有被集成進晶元內部,而是集成在主板上。在只能夠和系統匯流排頻率同步的L3緩存同主內存其實差不了多少。後來使用L3緩存的是英特爾為伺服器市場所推出的Itanium處理器。接著就是P4EE和至強MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以後24MB L3緩存的雙核心Itanium2處理器。

但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端匯流排的增加,要比緩存增加帶來更有效的性能提升。

內存

在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存)。

內存是電腦中的主要部件,它是相對於外存而言的。我們平常使用的程序,如Windows操作系統、打字軟體、游戲軟體等,一般都是安裝在硬碟等外存上的,但僅此是不能使用其功能的,必須把它們調入內存中運行,才能真正使用其功能,我們平時輸入一段文字,或玩一個游戲,其實都是在內存中進行的。通常我們把要永久保存的、大量的數據存儲在外存上,而把一些臨時的或少量的數據和程序放在內存上。

⑵ 主存儲器 與 緩存 有什麼關系

一般來說緩存在CPU裡面,常聽說的就是一有緩存,二級緩存,
像比較新的酷睿四核的二級緩存可中8M
還有現在的硬碟也帶緩存,高端的是16M的緩存,一般是2M或8M
主存主是平常說的內存,不包含緩存,它本事就是一個高速存儲器.
速度:CPU緩存>內存>硬碟緩存>硬碟

⑶ plc緩存器是什麼意思

為系統程序存儲器和用戶存儲器。
系統程序存儲器用以存放系統程序,包括管理程序,監控程序以及對用戶程序做編譯處理的解釋編譯程序。由只讀存儲器、ROM組成。廠家使用的,內容不可更改,斷電不消失。
用戶存儲器分為用戶程序存儲區和工作數據存儲區。由隨機存取存儲器組成。用戶使用的。斷電內容消失。常用高效的鋰電池作為後備電源。現在的一般均採用可電擦除的存儲器來作為系統存儲器和用戶存儲器。

⑷ 隨機存儲器(RAM)、只讀存儲器(ROM)、以及高速緩存(CACHE)各是什麼

只讀存儲器(rom)
rom表示只讀存儲器(read
only
memory),在製造rom的時候,信息(數據或程序)就被存入並永久保存。這些信息只能讀出,一般不能寫入,即使機器掉電,這些數據也不會丟失。\
隨機存儲器(ram)
隨機存儲器(random
access
memory)表示既可以從中讀取數據,也可以寫入數據。當機器電源關閉時,存於其中的數據就會丟失。
高速緩沖存儲器(cache)
cache它位於cpu與內存之間,是一個讀寫速度比內存更快的存儲器。當cpu向內存中寫入或讀出數據時,這個數據也被存儲進高速緩沖存儲器中。當cpu再次需要這些數據時,cpu就從高速緩沖存儲器讀取數據,而不是訪問較慢的內存.

⑸ 緩存,顯存,內存都是什麼意思。

虛擬內存:虛擬內存用硬碟空間做內存來彌補計算機RAM空間的缺乏。當實際RAM滿時(實際上,在RAM滿之前),虛擬內存就在硬碟上創建了。當物理內存用完後,虛擬內存管理器選擇最近沒有用過的,低優先順序的內存部分寫到交換文件上。這個過程對應用是隱藏的,應用把虛擬內存和實際內存看作是一樣的。
內存:在計算機的組成結構中,有一個很重要的部分,就是存儲器。存儲器是用來存儲程序和數據的部件,對於計算機來說,有了存儲器,才有記憶功能,才能保證正常工作。存儲器的種類很多,按其用途可分為主存儲器和輔助存儲器,主存儲器又稱內存儲器(簡稱內存),輔助存儲器又稱外存儲器(簡稱外存)。外存通常是磁性介質或光碟,像硬碟,軟盤,磁帶,CD等,能長期保存信息,並且不依賴於電來保存信息,但是由機械部件帶動,速度與CPU相比就顯得慢的多。內存指的就是主板上的存儲部件,是CPU直接與之溝通,並用其存儲數據的部件,存放當前正在使用的(即執行中)的數據和程序,它的物理實質就是一組或多組具備數據輸入輸出和數據存儲功能的集成電路,內存只用於暫時存放程序和數據,一旦關閉電源或發生斷電,其中的程序和數據就會丟失。
顯存:卡主要是由IO 圖形處理晶元、顯存(顯卡的內存)。
圖形處理晶元:相當於電腦的CPU,不過它的主要任務是處理顯示信息,在處理信息的過程中,它會產生大量的臨時數據(未處的、正在處理的、已經處理完成的...),這就需要一個專門的地方來存放這些臨時數據,緩沖區就是來不及處理、處理完還沒被轉交或者為了提高運行速度而建立的專門的一個數據區。
用於存放緩沖數據的地方,就叫緩存,這是一個邏輯概念,它也可能是一個晶元,也可能只是晶元的一部分,這要看硬體的設計和軟體的編制了。
緩存:緩存是CPU的一部分,它存在於CPU中

CPU存取數據的速度非常的快,一秒鍾能夠存取、處理十億條指令和數據(術語:CPU主頻1G),而內存就慢很多,快的內存能夠達到幾十兆就不錯了,可見兩者的速度差異是多麼的大緩存是為了解決CPU速度和內存速度的速度差異問題
內存中被CPU訪問最頻繁的數據和指令被復制入CPU中的緩存,這樣CPU就可以不經常到象「蝸牛」一樣慢的內存中去取數據了,CPU只要到緩存中去取就行了,而緩存的速度要比內存快很多。
二級緩存:為了分清這兩個概念,我們先了解一下RAM

ram和ROM相對的,RAM是掉電以後,其中才信息就消失那一種,ROM在掉電以後信息也不會消失那一種

RAM又分兩種,

一種是靜態RAM,SRAM;一種是動態RAM,DRAM。前者的存儲速度要比後者快得多,我們現在使用的內存一般都是動態RAM。

有的菜鳥就說了,為了增加系統的速度,把緩存擴大不就行了嗎,擴大的越大,緩存的數據越多,系統不就越快了嗎

緩存通常都是靜態RAM,速度是非常的快,

但是靜態RAM集成度低(存儲相同的數據,靜態RAM的體積是動態RAM的6倍),

價格高(同容量的靜態RAM是動態RAM的四倍),

由此可見,擴大靜態RAM作為緩存是一個非常愚蠢的行為,

但是為了提高系統的性能和速度,我們必須要擴大緩存,

這樣就有了一個折中的方法,不擴大原來的靜態RAM緩存,而是增加一些高速動態RAM做為緩存,

這些高速動態RAM速度要比常規動態RAM快,但比原來的靜態RAM緩存慢,

我們把原來的靜態ram緩存叫一級緩存,而把後來增加的動態RAM叫二級緩存。

一級緩存和二級緩存中的內容都是內存中訪問頻率高的數據的復製品(映射),它們的存在都是為了減少高速CPU對慢速內存的訪問。

⑹ 緩存器是什麼

CPU緩存(Cache Memoney)位於CPU與內存之間的臨時存儲器,它的容量比內存小但交換速度快。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因為CPU的數據交換順序和CPU與緩存間的帶寬引起的。

緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。

最早先的CPU緩存是個整體的,而且容量很低,英特爾公司從Pentium時代開始把緩存進行了分類。當時集成在CPU內核中的緩存已不足以滿足CPU的需求,而製造工藝上的限制又不能大幅度提高緩存的容量。因此出現了集成在與CPU同一塊電路板上或主板上的緩存,此時就把 CPU內核集成的緩存稱為一級緩存,而外部的稱為二級緩存。一級緩存中還分數據緩存(I-Cache)和指令緩存(D-Cache)。二者分別用來存放數據和執行這些數據的指令,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成的沖突,提高了處理器效能。英特爾公司在推出Pentium 4處理器時,還新增了一種一級追蹤緩存,容量為12KB.

隨著CPU製造工藝的發展,二級緩存也能輕易的集成在CPU內核中,容量也在逐年提升。現在再用集成在CPU內部與否來定義一、二級緩存,已不確切。而且隨著二級緩存被集成入CPU內核中,以往二級緩存與CPU大差距分頻的情況也被改變,此時其以相同於主頻的速度工作,可以為CPU提供更高的傳輸速度。

二級緩存是CPU性能表現的關鍵之一,在CPU核心不變化的情況下,增加二級緩存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二級緩存上有差異,由此可見二級緩存對於CPU的重要性。

CPU在緩存中找到有用的數據被稱為命中,當緩存中沒有CPU所需的數據時(這時稱為未命中),CPU才訪問內存。從理論上講,在一顆擁有二級緩存的CPU中,讀取一級緩存的命中率為80%。也就是說CPU一級緩存中找到的有用數據占數據總量的80%,剩下的20%從二級緩存中讀取。由於不能准確預測將要執行的數據,讀取二級緩存的命中率也在80%左右(從二級緩存讀到有用的數據占總數據的16%)。那麼還有的數據就不得不從內存調用,但這已經是一個相當小的比例了。目前的較高端的CPU中,還會帶有三級緩存,它是為讀取二級緩存後未命中的數據設計的—種緩存,在擁有三級緩存的CPU中,只有約5%的數據需要從內存中調用,這進一步提高了CPU的效率。

為了保證CPU訪問時有較高的命中率,緩存中的內容應該按一定的演算法替換。一種較常用的演算法是「最近最少使用演算法」(LRU演算法),它是將最近一段時間內最少被訪問過的行淘汰出局。因此需要為每行設置一個計數器,LRU演算法是把命中行的計數器清零,其他各行計數器加1。當需要替換時淘汰行計數器計數值最大的數據行出局。這是一種高效、科學的演算法,其計數器清零過程可以把一些頻繁調用後再不需要的數據淘汰出緩存,提高緩存的利用率。

CPU產品中,一級緩存的容量基本在4KB到18KB之間,二級緩存的容量則分為128KB、256KB、512KB、1MB等。一級緩存容量各產品之間相差不大,而二級緩存容量則是提高CPU性能的關鍵。二級緩存容量的提升是由CPU製造工藝所決定的,容量增大必然導致CPU內部晶體管數的增加,要在有限的CPU面積上集成更大的緩存,對製造工藝的要求也就越高。

⑺ 緩存、內存、快閃記憶體的區別分別指什麼樣的東西

一、主體不同

1、緩存:是指訪問速度比一般隨機存取存儲器(RAM)快的一種高速存儲器

2、內存:是計算機中重要的部件之一,它是外存與CPU進行溝通的橋梁。

3、快閃記憶體:一種電子式可清除程序化只讀存儲器的形式,允許在操作中被多次擦或寫的存儲器。

二、特點不同

1、緩存:不像系統主存那樣使用DRAM技術,而使用昂貴但較快速的SRAM技術。

2、內存:內存的運行也決定了計算機的穩定運行。內存條是由內存晶元、電路板、金手指等部分組成的。

3、快閃記憶體:是一種特殊的、以宏塊抹寫的EPROM。快閃記憶體進行一次抹除,就會清除掉整顆晶元上的數據。


三、作用不同

1、緩存:可以進行高速數據交換的存儲器,它先於內存與CPU交換數據,因此速率很快。

2、內存:作用是用於暫時存放CPU中的運算數據,以及與硬碟等外部存儲器交換的數據。

3、快閃記憶體:是一種非易失性存儲器,即斷電數據也不會丟失。因為快閃記憶體不像RAM(隨機存取存儲器)一樣以位元組為單位改寫數據,因此不能取代RAM。

⑻ 存儲器可分為哪三類

存儲器不僅可以分為三類。因為按照不同的劃分方法,存儲器可分為不同種類。常見的分類方法如下。

一、按存儲介質劃分

1. 半導體存儲器:用半導體器件組成的存儲器。

2. 磁表面存儲器:用磁性材料做成的存儲器。

二、按存儲方式劃分

1. 隨機存儲器:任何存儲單元的內容都能被隨機存取,且存取時間和存儲單元的物理位置無關。

2. 順序存儲器:只能按某種順序來存取,存取時間和存儲單元的物理位置有關。

三、按讀寫功能劃分

1. 只讀存儲器(ROM):存儲的內容是固定不變的,只能讀出而不能寫入的半導體存儲器。

2. 隨機讀寫存儲器(RAM):既能讀出又能寫入的存儲器。

二、選用各種存儲器,一般遵循的選擇如下:

1、內部存儲器與外部存儲器

一般而言,內部存儲器的性價比最高但靈活性最低,因此用戶必須確定對存儲的需求將來是否會增長,以及是否有某種途徑可以升級到代碼空間更大的微控制器。基於成本考慮,用戶通常選擇能滿足應用要求的存儲器容量最小的微控制器。

2、引導存儲器

在較大的微控制器系統或基於處理器的系統中,用戶可以利用引導代碼進行初始化。應用本身通常決定了是否需要引導代碼,以及是否需要專門的引導存儲器。

3、配置存儲器

對於現場可編程門陣列(FPGA)或片上系統(SoC),可以使用存儲器來存儲配置信息。這種存儲器必須是非易失性EPROM、EEPROM或快閃記憶體。大多數情況下,FPGA採用SPI介面,但一些較老的器件仍採用FPGA串列介面。

4、程序存儲器

所有帶處理器的系統都採用程序存儲器,但是用戶必須決定這個存儲器是位於處理器內部還是外部。在做出了這個決策之後,用戶才能進一步確定存儲器的容量和類型。

5、數據存儲器

與程序存儲器類似,數據存儲器可以位於微控制器內部,或者是外部器件,但這兩種情況存在一些差別。有時微控制器內部包含SRAM(易失性)和EEPROM(非易失)兩種數據存儲器,但有時不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,用戶可以選擇外部的串列EEPROM或串列快閃記憶體器件。

6、易失性和非易失性存儲器

存儲器可分成易失性存儲器或者非易失性存儲器,前者在斷電後將丟失數據,而後者在斷電後仍可保持數據。用戶有時將易失性存儲器與後備電池一起使用,使其表現猶如非易失性器件,但這可能比簡單地使用非易失性存儲器更加昂貴。

7、串列存儲器和並行存儲器

對於較大的應用系統,微控制器通常沒有足夠大的內部存儲器。這時必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部的程序存儲器和數據存儲器也將是並行的。

8、EEPROM與快閃記憶體

存儲器技術的成熟使得RAM和ROM之間的界限變得很模糊,如今有一些類型的存儲器(比如EEPROM和快閃記憶體)組合了兩者的特性。這些器件像RAM一樣進行讀寫,並像ROM一樣在斷電時保持數據,它們都可電擦除且可編程,但各自有它們優缺點。

參考資料來源:網路——存儲器

⑼ 外部數據存儲器和程序存儲器的區別是什麼

外部數據存儲器是指機器關閉後數據仍能存放的存儲器,例如:機械硬碟,固態硬碟,移動硬碟,NAS,雲存儲等等;而程序存儲器是指機器運行時程序存放的存儲器,如:內存,緩存等等。

熱點內容
奧維地圖伺服器地址怎麼填 發布:2024-04-25 12:40:04 瀏覽:964
低配置游戲玩哪個平台 發布:2024-04-25 12:35:04 瀏覽:558
glinux下載 發布:2024-04-25 12:30:09 瀏覽:83
安卓手機可以用的谷歌叫什麼 發布:2024-04-25 12:05:57 瀏覽:942
linux改變用戶所屬組 發布:2024-04-25 11:50:33 瀏覽:469
rsa加密演算法java代碼 發布:2024-04-25 11:40:07 瀏覽:883
如何改變拉桿箱上的初始密碼 發布:2024-04-25 11:17:23 瀏覽:799
內網掛代理虛擬機如何配置網卡 發布:2024-04-25 11:15:06 瀏覽:687
明日之後緩存怎麼清理 發布:2024-04-25 11:14:56 瀏覽:205
華為mate30怎麼退回安卓版 發布:2024-04-25 11:08:49 瀏覽:898