知識的存儲方式按照存儲結構劃分
㈠ 簡述計算機三級存儲體系結構
在計算機系統中存儲層次可分為高速緩沖存儲器、主存儲器、輔助存儲器三級。高速緩沖存儲器用來改善主存儲器與中央處理器的速度匹配問題。輔助存儲器用於擴大存儲空間。
1、高速緩沖存儲器
存在於主存與CPU之間的一級存儲器, 由靜態存儲晶元(SRAM)組成,容量比較小但速度比主存高得多, 接近於CPU的速度。在計算機存儲系統的層次結構中,是介於中央處理器和主存儲器之間的高速小容量存儲器。它和主存儲器一起構成一級的存儲器。高速緩沖存儲器和主存儲器之間信息的調度和傳送是由硬體自動進行的。
2、主存儲器(Main memory)
計算機硬體的一個重要部件,其作用是存放指令和數據,並能由中央處理器(CPU)直接隨機存取。現代計算機是為了提高性能,又能兼顧合理的造價,往往採用多級存儲體系。即由存儲容量小,存取速度高的高速緩沖存儲器,存儲容量和存取速度適中的主存儲器是必不可少的。
主存儲器是按地址存放信息的,存取速度一般與地址無關。32位(比特)的地址最大能表達4GB的存儲器地址。這對多數應用已經足夠,但對於某些特大運算量的應用和特大型資料庫已顯得不夠,從而對64位結構提出需求。
3、外儲存器
輔助存儲器又稱外存儲器(簡稱外存)。指除計算機內存及CPU緩存以外的儲存器,此類儲存器一般斷電後仍然能保存數據。常見的外存儲器有硬碟、軟盤、光碟、U盤等。
(1)知識的存儲方式按照存儲結構劃分擴展閱讀
計算機的主存儲器不能同時滿足存取速度快、存儲容量大和成本低的要求,在計算機中必須有速度由慢到快、容量由大到小的多級層次存儲器,以最優的控制調度演算法和合理的成本,構成具有性能可接受的存儲系統。存儲系統的性能在計算機中的地位日趨重要,主要原因是:
1、馮諾伊曼體系結構是建築在存儲程序概念的基礎上,訪存操作約佔中央處理器(CPU)時間的70%左右。
2、存儲管理與組織的好壞影響到整機效率。
3、現代的信息處理,如圖像處理、資料庫、知識庫、語音識別、多媒體等對存儲系統的要求很高。
㈡ 知識是如何存儲到大腦中的又採用了什麼技術和方法越詳細越好。。。。
記憶是人類生活之所以如此豐富多彩的基石,與我們的一系列能力存在密切聯系,例如學習、講故事甚至於能否認識對方。記憶力的好壞完全取決於我們的大腦。最近幾年,科研人員將有關記憶的研究上升到結構與分子層面。根據他們的研究發現,記憶存儲於神經元連接內的很多大腦結構,其長期穩定性甚至依賴於一個單一的分子。
大腦以兩種方式存儲記憶。根據麥吉爾大學和加拿大神經系統科學及心理健康和成癮研究院的研究,一步棋、客房門牌號等短期記憶由大腦內高度發達的額葉前部負責處理。在大腦深處的海馬狀突起,短期記憶被轉換成長期記憶。麥吉爾大學表示,海馬狀突起同時從大腦不同感覺區域獲取記憶並將它們結合在一起,形成一個記憶集。舉個例子來說,你可能記得整場晚餐派對而不是多個有關派對場面、聲音和味道的單個記憶。
麥吉爾大學指出,隨著海馬狀突起對記憶進行處理,神經元之間的連接與記憶結合,最終形成一個穩固的聯合體。例如,如果聽到一段音樂,你可能回想起其他一系列與聽到這段音樂時的場景有關的記憶。科學家在對大腦進行掃描時發現,當人們回想起一個記憶集時,大腦不同區域均處於活躍狀態,說明記憶充當了一個索引,將大腦記錄的不同感覺和想法聯系在一起。
根據麥吉爾大學和紐約大學的研究,海馬狀突起幫助鞏固形成記憶的神經連接的模式,但記憶本身取決於大腦細胞連接的穩定性。大腦細胞則依賴於蛋白質以及其他負責維持它們的連接並彼此間進行通訊的化學物質。紐約大學、喬治亞州醫學院以及其他研究機構的科學家通過動物實驗發現,移除或改變一個化學物質或者分子便可阻止記憶形成,甚至破壞已經存在的記憶。
許多神經科學家認為,日常生活中所發生的事情被轉化成記憶臨時保存到人腦的海馬體中,再由海馬體將記憶轉移到新大腦皮層儲存為長期記憶。這個轉移發生在人睡覺的時候,特別是深度、少夢的睡眠過程中。
這種關於記憶儲存轉移的理論目前受到了挑戰。美國布朗大學神經科學家馬雅克?梅達和諾貝爾獎獲得者、生理學家伯特?薩克曼共同主持了一項新的研究,找到了睡眠過程中海馬體和新大腦皮層進行「對話」的最好證據,表明了記憶儲存是通過一種驚人的「互動」來實現的。梅達發現,並不是海馬體以一種「腦細胞暴發」的方式向新大腦皮層上傳信息,相反,應該是新大腦皮層操控著它和海馬體之間的「對話」。
這一發現為科學家們提供了新的途徑來了解大腦在人類健康和痴呆的不同情況下是如何處理記憶的,而且對阿爾茨海默氏症(老年痴呆症)的病因和治療的研究具有啟發意義。
「長期記憶的形成過程可能與我們以前想的大不一樣。」布朗大學神經科學系的助理教授梅達說:「有兩種可能:或者這種對話在某種程度上是信息儲存的一部分,或者由海馬體向新大腦皮層的信息轉移並不發生在睡眠過程中。不管結果怎樣,都對通常認為的新大腦皮層和海馬體在睡眠過程中進行信息交流的理論提出了質疑。」
為了研究海馬體與新大腦皮層的「對話」,梅達記錄了老鼠大腦的電波活動。研究發現,在深度睡眠過程中,當新大腦皮層中處於興奮狀態的細胞有節奏地活動時,海馬體中興奮狀態的神經的活動卻是無規律的。梅達和他的團隊後來發現,如果將關注的焦點由處於興奮狀態的細胞轉到抑制性細胞,那麼大腦兩個部分就確實是在進行相同語言的對話了,而且細胞之間的活動也確實是相關聯的。活動或「對話」的時間,在大腦的兩個區域是一致的,海馬體會有短暫的滯後,就像是其中的細胞在回應新大腦皮層的「講話」一樣。海馬體和新大腦皮層之間進行同步交流的發現有兩個關鍵性的意義:首先,在深度睡眠過程中,是新大腦皮層而不是海馬體主持著大腦系統的對話。其次,是抑制性神經控制著對話。
科學家首次解答人大腦如何存儲和恢復陳舊記憶
http://news.QQ.com 2004年05月10日11:02 新華網 評論(0)
來自多倫多病童醫院和加州大學洛杉磯分校的科學家首次查明了大腦中負責儲存和恢復陳舊記憶的一塊區域。該研究發現發表在5月7日出版的《科學》雜志上。
記憶其實就是大腦神經細胞之間的連結形態。不過要儲存或拋掉某些信息,卻不是有意識的行為,而是由人腦中一個細小的構造——海馬體(hippocampus)來處理。海馬體在記憶的過程中,充當轉換站的功能。當大腦皮質(cortex)中的神經元接收到各種感官或知覺訊息時,它們會把訊息傳遞給海馬體。如果海馬體有反應,神經元就會開始形成持久的網路,但如果沒有通過這種認可的模式,那麼腦部接收到的經驗就會自動消逝。
多倫多病童醫院研究所科學家、多倫多大學生理學助理教授保羅-弗蘭克蘭博士說,「眾所周知,大腦中的海馬體,其機能是處理近期記憶,但並不永久地存儲記憶。我們經過研究發現,那些陳舊的、或者永久性記憶是在前扣帶腦皮質(anteriorcingulatecortex,ACC)中得到存儲和恢復。」
新記憶的形成過程包含著神經細胞之間的突觸連接加固的過程,回憶的過程則包含了同樣的神經細胞或者神經細胞網路被重新激化的過程。隨著記憶的老化,神經細胞網路也逐漸改變。剛開始時,日常事件的記憶似乎主要依靠大腦中海馬體的神經細胞網路來完成,然而隨著時間的推移,這些記憶日益變得依靠大腦皮質來進行。
弗蘭克蘭博士說,「我們認為海馬體和大腦皮質之間存在著活躍的交互作用,在這兩個大腦區域中所進行的記憶傳遞處理過程可以一直持續數周,甚至在人睡覺的時候也在進行。」
研究學者是以老鼠為實驗對象進行研究,其中有一隻樣品是轉基因老鼠,已經被除去了回憶陳舊記憶的能力,以此來確定老鼠大腦前扣帶腦皮質在記憶處理過程中扮演的角色。
加州大學洛杉磯分校神經生物學教授阿辛諾-斯里瓦說,「大多數人認為記憶是他們一生體驗的積累,但一直以來我們對大腦如何儲存和恢復記憶的問題卻是迷惑不解。現在,我們已經知道了該從哪裡入手,這有助於我們進一步開發出有效的葯物來治療與記憶混亂有關的大腦疾病。」
㈢ 數據信息的存儲方式可以分為幾類
(1)結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;政府行政審批;其他核心資料庫等。這些應用需要哪些存儲方案呢?基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
(2)非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖像、聲音、影視、超媒體等信息)。
面對海量非結構數據存儲,杉岩海量對象存儲MOS,提供完整解決方案,採用去中心化、分布式技術架構,支持百億級文件及EB級容量存儲,具備高效的數據檢索、智能化標簽和分析能力,輕松應對大數據和雲時代的存儲挑戰,為企業發展提供智能決策。
㈣ 計算機有哪些存儲結構
在計算機中存儲和組織數據的方式被稱之為數據結構,鏈表和數組是較為常見的兩種結構。
1、數組
數組就像一個個緊挨著的小格子,每一個格子都有它們自己的序號,這個序號被稱之為「索引」。與生活中不太相同的是,平時計數習慣以「1」開始,而在計算機中,「0」是開頭的第一個數字。
數組中的數據,在計算機的存儲器中,也是按順序存儲在連續的位置中。當我們尋找需要的數據時,通過格子中的索引,便可以找到數據。
2、鏈表
鏈表的存儲方式有些像地址和住宅的關系,地址可以寫在一張紙上,但是這並不代表住宅也緊密相鄰。鏈表中的數據在計算機中也是分散地存儲在各個地方,但是鏈表裡面除了存儲數據,還存儲了下一個數據的地址,以便於找到下一個數據。
與數組不同的是,鏈表儲存數據不像數組一樣,需要提前設定大小,就像火車的車廂長度是隨著乘客的數量而增加的。
(4)知識的存儲方式按照存儲結構劃分擴展閱讀
數據的鏈式存儲結構可用鏈接表來表示。
其中data表示值域,用來存儲節點的數值部分。Pl,p2,…,Pill(1n≥1)均為指針域,每個指針域為其對應的後繼元素或前驅元素所在結點(以後簡稱為後繼結點或前驅結點)的存儲位置。
通過結點的指針域(又稱為鏈域)可以訪問到對應的後繼結點或前驅結點,若一個結點中的某個指針域不需要指向其他結點,則令它的值為空(NULL)。
在數據的順序存儲中,由於每個元素的存儲位置都可以通過簡單計算得到,所以訪問元素的時間都相同;而在數據的鏈接存儲中。
由於每個元素的存儲位置保存在它的前驅或後繼結點中,所以只有當訪問到其前驅結點或後繼結點後才能夠按指針訪問到,訪問任一元素的時間與該元素結點在鏈式存儲結構中的位置有關。
㈤ 根據計算機存儲器記錄信息原理的不同可分為哪三類
存儲器不僅可以分為三類。因為按照不同的劃分方法,存儲器可分為不同種類。常見的分類方法如下。
一、按存儲介質劃分
1、半導體存儲器:用半導體器件組成的存儲器。
2、磁表面存儲器:用磁性材料做成的存儲器。
二、按存儲方式劃分
1、隨機存儲器:任何存儲單元的內容都能被隨機存取,且存取時間和存儲單元的物理位置無關。
2、順序存儲器:只能按某種順序來存取,存取時間和存儲單元的物理位置有關。
三、按讀寫功能劃分
1、只讀存儲器(ROM):存儲的內容是固定不變的,只能讀出而不能寫入的半導體存儲器。
2、隨機讀寫存儲器(RAM):既能讀出又能寫入的存儲器。
四、按資料保存師
1、非永久存儲器:斷電時信息消失的存儲器。
2、永久存儲器:斷電後仍能保存信息的存儲器。
五、按用途分類
1、主存:主存用於存儲計算機運行過程中大量的程序和數據,存取速度快,存儲容量小。
2、外部存儲:外部存儲系統程序和大數據文件及資料庫存儲容量,單位成本低。
3、高速緩存存儲器:高速緩存存儲器訪問指令和數據速度快,但存儲容量小。
(5)知識的存儲方式按照存儲結構劃分擴展閱讀:
1、內部存儲和外部存儲
一般來說,內部存儲是最經濟但最不靈活的,因此用戶必須確定未來對存儲的需求是否會增長,以及是否有某種方法可以升級到具有更多代碼空間的微控制器。用戶通常根據成本選擇能滿足應用要求的內存容量最小的單片機。
2、啟動存儲
在較大的微控制器或基於處理器的系統中,用戶可以用引導代碼進行初始化。應用程序本身通常決定是否需要引導代碼,以及是否需要專用的引導存儲。
3、配置存儲
對於現場可編程門陣列(fpga)或片上系統(SoC),存儲器可以用來存儲配置信息。這種存儲器必須是非易失的EPROM、EEPROM或快閃記憶體。在大多數情況下,FPGA使用SPI介面,但一些較老的設備仍然使用FPGA串列介面。
4、程序存儲
所有有處理器的系統都使用程序內存,但是用戶必須決定內存是在處理器內部還是外部。做出此決定後,用戶可以進一步確定存儲的容量和類型。
5、數據存儲
類似於程序存儲器,數據存儲器可以位於一個微控制器或一個外部設備,但有一些不同的兩種情況。有時微控制器內部包含SRAM(易失性)和EEPROM(非易失性)數據存儲器,但有時它不包含內部EEPROM,在這種情況下,當需要存儲大量數據時,用戶可以選擇外部串列EEPROM或串列快閃記憶體設備。
6、易失性和非易失性存儲器
內存可以分為易失性內存(在斷電後丟失數據)和非易失性內存(在斷電後保留數據)。用戶有時會將易失性內存與備用電池一起使用,以實現類似於非易失性設備的功能,但這可能比簡單地使用非易失性內存更昂貴。
7、串列存儲器和並行存儲器
對於較大的應用程序,微控制器通常沒有足夠大的內存。必須使用外部存儲器,因為外部定址匯流排通常是並行的,外部程序存儲器和數據存儲器也將是並行的。
8、EEPROM和快閃記憶體
內存技術的成熟已經模糊了RAM和ROM之間的區別,現在有一些類型的內存(如EEPROM和快閃記憶體)結合了兩者的特點。這些設備像RAM一樣讀寫,在斷電時像ROM一樣保存數據。它們都是電可擦可編程的,但各有優缺點。
㈥ 簡述計算機存儲系統的三級存儲體系概念
計算機存儲器包括主存(main memory),輔存(mass storage)和寄存器(register)。主存就是平時所說的內存,計算機運行時操作系統和其它進程的代碼存儲在其中。輔存主要指硬碟,也包括其它輔助存儲設備,如軟盤,U盤,光碟等,可以存放大量數據。寄存器位於CPU內,在指令執行時起臨時存放作用。
寄存器和主存、主存和輔存之間存在不停的數據傳輸和交流,其速度和容量就影響了計算機的性能。如果寄存器和主存之間每條指令和每個數據都進行一次傳輸,那麼計算機的運行速度就受到限制。因此出現了高速緩沖存儲器(cache memory),用於成批處理寄存器內的數據,以同主存進行交流。而且頻繁使用的數據,CPU可以直接從高速緩存中讀取,減少CPU的等待時間,提高系統效率。內存的容量有限,有時不能一次載入硬碟中所需的數據,這里會出現虛擬存儲(virtual memory)的概念。虛擬存儲是指當要接收的數據超過內存容量時,系統會在硬碟內分配足夠的空間存儲這些數據,再把這些數據分成很多頁(page),再根據需要實時地把一定的頁載入內存,這樣用戶感覺內存的容量就比真實的容量偏大。
另外,緩沖區(buffer)是用於存儲速度不同步的設備或優先順序不同的設備之間傳輸數據的區域,使進程之間的相互等待變少,從而使從速度慢的設備讀入數據時,速度快的設備的操作進程不發生間斷。
這里再順便說下離線(spooling)的概念。離線是指當多個進程要求同時使用非共享資源如列印機時,系統會根據需求把所有的數據同時讀取到硬碟,再在列印機上逐個列印,這樣給用戶的感覺就是一台列印機同時列印多個進程包含的文件。
以下引用主要區別高速緩存(cache)和緩沖區(buffer):
Cache:高速緩存,是位於CPU與主內存間的一種容量較小但速度很高的存儲器。由於CPU的速度遠高於主內存,CPU直接從內存中存取數據要等待一定時間周期, Cache中保存著CPU剛用過或循環使用的一部分數據,當CPU再次使用該部分數據時可從Cache中直接調用,這樣就減少了CPU的等待時間,提高了系統的效率。Cache又分為一級Cache(L1 Cache)和二級Cache(L2 Cache),L1 Cache集成在CPU內部,L2 Cache早期一般是焊在主板上,現在也都集成在CPU內部,常見的容量有256KB或512KB L2 Cache。
Buffer:緩沖區,一個用於存儲速度不同步的設備或優先順序不同的設備之間傳輸數據的區域。通過緩沖區,可以使進程之間的相互等待變少,從而使從速度慢的設備讀入數據時,速度快的設備的操作進程不發生間斷。
Buffer和cache都是佔用內存:
Buffer: 作為buffer cache的內存,是塊設備的讀寫緩沖區
Cache: 作為page cache的內存, 文件系統的cache
如果cache的值很大,說明cache住的文件數很多。如果頻繁訪問到的文件都能被cache住,那麼磁碟的讀IO bi會非常小。
㈦ 什麼是系統中存放數據的基本方式
1、順序存儲方式:順序存儲方式就是在一塊連續的存儲區域一個接著一個的存放數據。順序存儲方式把邏輯上相鄰的節點存儲在物理位置撒花姑娘相鄰的存儲單元里,節點間的邏輯關系由存儲單元的鄰接關系來體現。順序存儲方式也稱為順序存儲結構,一般採用數組或結構數組來描述。
2、鏈接存儲方式:鏈接存儲方式比較靈活,不要求邏輯上相鄰的節點在物理位置上相鄰,節點間的邏輯關系由附加的引用欄位來表示。一個節點的引用欄位往往指向下一個節點的存放位置。鏈接存儲方式也成為鏈式存儲結構。
3、索引存儲方式:索引存儲方式是採用附加的索引表的方式來存儲節點信息的一種存儲方式。索引表由若干索引項組成。索引存儲方式中索引項的一般形式為(關鍵字、地址)。其中,關鍵字是能夠唯一標識一個節點的數據項。索引存儲方式還可以細分為如下兩類。
稠密索引:這種方式中每個節點在索引表中都有一個索引項,其中索引項的地址知識節點所在的存儲位置。
稀疏索引:這種方式中一組節點在索引表中只對應一個索引項。其中,索引項的地址指示一組節點的起始存儲位置。
4、散列存儲方式:散列存儲方式是根據節點的關鍵字直接計算出該節點的存儲地址的一種存儲方式。
在實際應用中,往往需要根據具體的數據結構來決定採用哪種存儲方式。同一邏輯結構採用不同的存儲方法,可以得到不同的存儲結構。而且者4中基本存儲方法,既可以單獨使用,也可以組合起來對數據結構進行存儲描述。
㈧ 按照存儲結構劃分,索引分為哪兩類各有何作用
聚集索引:對表在物理數據頁中的數據排列進行排序,然後重新存儲到磁碟上,表中的數據行只能以一種方式存儲在磁碟上,故一個表只能有一個聚集索引。創建任何非聚集索引之前必須創建聚集索引。
非聚集索引:具有完全獨立於數據行的結構,使用非聚集索引不會影響數據表中記錄的實際存儲順序。
(8)知識的存儲方式按照存儲結構劃分擴展閱讀
優點
1.大大加快數據的檢索速度;
2.創建唯一性索引,保證資料庫表中每一行數據的唯一性;
3.加速表和表之間的連接;
4.在使用分組和排序子句進行數據檢索時,可以顯著減少查詢中分組和排序的時間。
缺點
1.索引需要佔物理空間。
2.當對表中的數據進行增加、刪除和修改的時候,索引也要動態的維護,降低了數據的維護速度。
㈨ 資料庫的存儲結構分為哪兩種其含義是什麼
邏輯結構、物理結構
資料庫的存儲結構也就是資料庫存儲數據的方式
邏輯存儲結構主要用於描述在Oracle內部的組織和管理數據的方式;而物理存儲結構則用於描述在Oracle外部,即操作系統中組織和管理數據的方式