光存儲設備發展歷史
① 光儲存設備包括哪些
光存儲設備主要可以歸為CD光碟機、DVD光碟機、CD刻錄機、DVD刻錄機、Combo。光存儲設備又簡稱光碟機於1991年問世,光碟機是用於電腦提供存儲數據的。在1991以前,電腦必須憑借軟碟機來讀取數據。但軟盤的存儲數據是有限的,而且速度也非常慢。
光存儲設備主要可以歸為CD光碟機、DVD光碟機、CD刻錄機、DVD刻錄機、Combo。光存儲設備又簡稱光碟機於1991年問世,光碟機是用於電腦提供存儲數據的。在1991以前,電腦必須憑借軟碟機來讀取數據。但軟盤的存儲數據是有限的,而且速度也非常慢。
DVD-Video(用於記錄家庭影音設備或者DVD-ROM驅動器的視頻信息。這種格式具有版權保護功能)、DVD-Audio(用戶記錄高品質的多音軌音頻),但是由於部分成員考慮到市場的問題,刻錄格式還沒有達到統一意見,使得DVD格式非常的多,包括:DVD-ROM、DVD-Video、DVD-Audio、DVD+RW、DVD-RW、DVD-R、DVD+R、DVD-VR。DVD標準的混亂局面已經不可避免地影響到了DVD的下一代標准。新一代DVD標准一直是世界家電業和IT業共同關注的焦點,世界電子企業為了統一下一代DVD標准而專門組建了DVD聯盟,但由於東芝和NEC的退出,以及台灣HD-DVD標準的提出,已經變得四分五裂。
② 求助!!關於DRAM的發展史
作為PC不可缺少的重要核心部件——內存,它伴隨著DIY硬體走過了多年歷程。從286時代的30pin SIMM內存、486時代的72pin SIMM 內存,到Pentium時代的EDO DRAM內存、PII時代的SDRAM內存,到P4時代的DDR內存和目前9X5平台的DDR2內存。內存從規格、技術、匯流排帶寬等不斷更新換代。不過我們有理由相信,內存的更新換代可謂萬變不離其宗,其目的在於提高內存的帶寬,以滿足CPU不斷攀升的帶寬要求、避免成為高速CPU運算的瓶頸。那麼,內存在PC領域有著怎樣的精彩人生呢?下面讓我們一起來了解內存發展的歷史吧。
一、歷史起源——內存條概念
如果你細心的觀察,顯存(或緩存)在目前的DIY硬體上都很容易看到,顯卡顯存、硬碟或光碟機的緩存大小直接影響到設備的性能,而寄存器也許是最能代表PC硬體設備離不開RAM的,的確如此,如果沒有內存,那麼PC將無法運轉,所以內存自然成為DIY用戶討論的重點話題。
在剛剛開始的時候,PC上所使用的內存是一塊塊的IC,要讓它能為PC服務,就必須將其焊接到主板上,但這也給後期維護帶來的問題,因為一旦某一塊內存IC壞了,就必須焊下來才能更換,由於焊接上去的IC不容易取下來,同時加上用戶也不具備焊接知識(焊接需要掌握焊接技術,同時風險性也大),這似乎維修起來太麻煩。
因此,PC設計人員推出了模塊化的條裝內存,每一條上集成了多塊內存IC,同時在主板上也設計相應的內存插槽,這樣內存條就方便隨意安裝與拆卸了內存的維修、升級都變得非常簡單,這就是內存「條」的來源
小帖士:內存(Random Access Memory,RAM)的主要功能是暫存數據及指令。我們可以同時寫數據到RAM 內存,也可以從RAM 讀取數據。由於內存歷來都是系統中最大的性能瓶頸之一,因此從某種角度而言,內存技術的改進甚至比CPU 以及其它技術更為令人激動。
二、開山鼻祖——SIMM 內存
在80286主板發布之前,內存並沒有被世人所重視,這個時候的內存是直接固化在主板上,而且容量只有64 ~256KB,對於當時PC所運行的工作程序來說,這種內存的性能以及容量足以滿足當時軟體程序的處理需要。不過隨著軟體程序和新一代80286硬體平台的出現,程序和硬體對內存性能提出了更高要求,為了提高速度並擴大容量,內存必須以獨立的封裝形式出現,因而誕生了前面我們所提到的「內存條」概念。
在80286主板剛推出的時候,內存條採用了SIMM(Single In-lineMemory Moles,單邊接觸內存模組)介面,容量為30pin、256kb,必須是由8 片數據位和1 片校驗位組成1 個bank,正因如此,我們見到的30pin SIMM一般是四條一起使用。自1982年PC進入民用市場一直到現在,搭配80286處理器的30pin SIMM 內存是內存領域的開山鼻祖)。
隨後,在1988 ~1990 年當中,PC 技術迎來另一個發展高峰,也就是386和486時代,此時CPU 已經向16bit 發展,所以30pin SIMM 內存再也無法滿足需求,其較低的內存帶寬已經成為急待解決的瓶頸,所以此時72pin SIMM 內存出現了(如圖3),72pin SIMM支持32bit快速頁模式內存,內存帶寬得以大幅度提升。72pin SIMM內存單條容量一般為512KB ~2MB,而且僅要求兩條同時使用,由於其與30pin SIMM 內存無法兼容,因此這個時候PC業界毅然將30pin SIMM 內存淘汰出局了.
小帖士:72線的SIMM內存引進了一個FP DRAM(又叫快頁內存),在386時代很流行。因為DRAM需要恆電流以保存信息,一旦斷電,信息即丟失,其刷新頻率每秒鍾可達幾百次,但由於FP DRAM使用同一電路來存取數據,所以DRAM的存取時間有一定的時間間隔,這導致了它的存取速度並不是很快。另外,在DRAM中,由於存儲地址空間是按頁排列,所以當訪問某一頁面時,切換到另一頁面會佔用CPU額外的時鍾周期。
三、徘徊不前——EDO DRAM內存
EDO DRAM(Extended Date Out RAM,外擴充數據模式存儲器)內存,這是1991 年到1995 年之間盛行的內存條,EDO-RAM同FP DRAM極其相似,它取消了擴展數據輸出內存與傳輸內存兩個存儲周期之間的時間間隔,在把數據發送給CPU的同時去訪問下一個頁面,故而速度要比普通DRAM快15~30%。工作電壓為一般為5V,帶寬32bit,速度在40ns以上,其主要應用在當時的486及早期的Pentium電腦上。
在1991 年到1995 年中,讓我們看到一個尷尬的情況,那就是這幾年內存技術發展比較緩慢,幾乎停滯不前,所以我們看到此時EDO RAM有72 pin和168 pin並存的情況,事實上EDO 內存也屬於72pin SIMM 內存的范疇,不過它採用了全新的定址方式。EDO 在成本和容量上有所突破,憑借著製作工藝的飛速發展,此時單條EDO 內存的容量已經達到4 ~16MB 。由於Pentium及更高級別的CPU數據匯流排寬度都是64bit甚至更高,所以EDO RAM與FPM RAM都必須成對使用。
四、一代經典——SDRAM 內存
自Intel Celeron系列以及AMD K6處理器以及相關的主板晶元組推出後,EDO DRAM內存性能再也無法滿足需要了,內存技術必須徹底得到個革新才能滿足新一代CPU架構的需求,此時內存開始進入比較經典的SDRAM時代。
第一代SDRAM 內存為PC66 規范,但很快由於Intel 和AMD的頻率之爭將CPU外頻提升到了100MHz,所以PC66內存很快就被PC100內存取代,接著133MHz 外頻的PIII以及K7時代的來臨,PC133規范也以相同的方式進一步提升SDRAM 的整體性能,帶寬提高到1GB/sec以上。由於SDRAM 的帶寬為64bit,正好對應CPU 的64bit 數據匯流排寬度,因此它只需要一條內存便可工作,便捷性進一步提高。在性能方面,由於其輸入輸出信號保持與系統外頻同步,因此速度明顯超越EDO 內存。
不可否認的是,SDRAM 內存由早期的66MHz,發展後來的100MHz、133MHz,盡管沒能徹底解決內存帶寬的瓶頸問題,但此時CPU超頻已經成為DIY用戶永恆的話題,所以不少用戶將品牌好的PC100品牌內存超頻到133MHz使用以獲得CPU超頻成功,值得一提的是,為了方便一些超頻用戶需求,市場上出現了一些PC150、PC166規范的內存。
五、曲高和寡——Rambus DRAM內存
盡管SDRAM PC133內存的帶寬可提高帶寬到1064MB/S,加上Intel已經開始著手最新的Pentium 4計劃,所以SDRAM PC133內存不能滿足日後的發展需求,此時,Intel為了達到獨占市場的目的,與Rambus聯合在PC市場推廣Rambus DRAM內存(稱為RDRAM內存)。與SDRAM不同的是,其採用了新一代高速簡單內存架構,基於一種類RISC(Reced Instruction Set Computing,精簡指令集計算機)理論,這個理論可以減少數據的復雜性,使得整個系統性能得到提高。
在AMD與Intel的競爭中,這個時候是屬於頻率競備時代,所以這個時候CPU的主頻在不斷提升,Intel為了蓋過AMD,推出高頻PentiumⅢ以及Pentium 4 處理器,因此Rambus DRAM內存是被Intel看著是未來自己的競爭殺手劍,Rambus DRAM內存以高時鍾頻率來簡化每個時鍾周期的數據量,因此內存帶寬相當出色,如PC 1066 1066 MHz 32 bits帶寬可達到4.2G Byte/sec,Rambus DRAM曾一度被認為是Pentium 4 的絕配。
盡管如此,Rambus RDRAM 內存生不逢時,後來依然要被更高速度的DDR「掠奪」其寶座地位,在當時,PC600、PC700的Rambus RDRAM 內存因出現Intel820 晶元組「失誤事件」、PC800 Rambus RDRAM因成本過高而讓Pentium 4平台高高在上,無法獲得大眾用戶擁戴,種種問題讓Rambus RDRAM胎死腹中,Rambus曾希望具有更高頻率的PC1066 規范RDRAM來力挽狂瀾,但最終也是拜倒在DDR 內存面前。
六、再續經典——DDR內存
DDR SDRAM(Dual Date Rate SDRAM)簡稱DDR,也就是「雙倍速率SDRAM「的意思。DDR可以說是SDRAM的升級版本, DDR在時鍾信號上升沿與下降沿各傳輸一次數據,這使得DDR的數據傳輸速度為傳統SDRAM的兩倍。由於僅多採用了下降緣信號,因此並不會造成能耗增加。至於定址與控制信號則與傳統SDRAM相同,僅在時鍾上升緣傳輸。
DDR 內存是作為一種在性能與成本之間折中的解決方案,其目的是迅速建立起牢固的市場空間,繼而一步步在頻率上高歌猛進,最終彌補內存帶寬上的不足。第一代DDR200 規范並沒有得到普及,第二代PC266 DDR SRAM(133MHz時鍾×2倍數據傳輸=266MHz帶寬)是由PC133 SDRAM內存所衍生出的,它將DDR 內存帶向第一個高潮,目前還有不少賽揚和AMD K7處理器都在採用DDR266規格的內存,其後來的DDR333內存也屬於一種過度,而DDR400內存成為目前的主流平台選配,雙通道DDR400內存已經成為800FSB處理器搭配的基本標准,隨後的DDR533 規范則成為超頻用戶的選擇對象。
七、今日之星——DDR2內存
隨著CPU 性能不斷提高,我們對內存性能的要求也逐步升級。不可否認,緊緊依高頻率提升帶寬的DDR遲早會力不從心,因此JEDEC 組織很早就開始醞釀DDR2 標准,加上LGA775介面的915/925以及最新的945等新平台開始對DDR2內存的支持,所以DDR2內存將開始演義內存領域的今天。
DDR2 能夠在100MHz 的發信頻率基礎上提供每插腳最少400MB/s 的帶寬,而且其介面將運行於1.8V 電壓上,從而進一步降低發熱量,以便提高頻率。此外,DDR2 將融入CAS、OCD、ODT 等新性能指標和中斷指令,提升內存帶寬的利用率。從JEDEC組織者闡述的DDR2標准來看,針對PC等市場的DDR2內存將擁有400、533、667MHz等不同的時鍾頻率。高端的DDR2內存將擁有800、1000MHz兩種頻率。DDR-II內存將採用200-、220-、240-針腳的FBGA封裝形式。最初的DDR2內存將採用0.13微米的生產工藝,內存顆粒的電壓為1.8V,容量密度為512MB。
內存技術在2005年將會毫無懸念,SDRAM為代表的靜態內存在五年內不會普及。QBM與RDRAM內存也難以挽回頹勢,因此DDR與DDR2共存時代將是鐵定的事實。在AMD的Athlon 64使用DDR400內存控制器的情況下,未來對於高頻率內存的需求量可能比較小,而且DDR2內存的發展空間也將取決於AMD是否改進內存控制器。
根據摩爾定理,只要DIY硬體在更新換代,內存規格也將不斷更替,比如目前的DDR3有望取代現有的DDR2,而未來的FB-DIMM內存又將是另一個更好解決方案。從PC技術發展情況來看,實際上內存的發展,也代表了DIY硬體領域的發展歷史,同時它也牽動並影響者整個DIY硬體技術的不管革新……
③ 光碟發展歷史存儲量變化
現在,已經出現了單面雙層的DVD碟片。單面雙層碟片(DVD+R Double Layer)是利用激光(Laser beam)聚焦的位置不同,在同一面上製作兩層記錄層,單面雙層碟片在第一層及第二層的激光功率(Writing Power)相同(激光功率為<30mW),反射率(Reflectivity)也相同(反射率為18%~30%),刻錄時,可從第一層連續刻錄到第二層,實現資料刻錄不間斷。
光碟尺寸
普通標准 120 型光碟
尺寸:外徑 120mm、內徑 15mm
厚度:1.2mm
容量:DVD 4.7GB;CD 650MB/700MB/800MB/890MB
小團圓盤 80 型光碟
尺寸:外徑 80mm,內徑 21mm
厚度:1.2 mm
容量:39--54MB 不等
名片光碟
尺寸:外徑 56mmX86mm,60mmX86mm 內徑 22mm
厚度:1.2 mm
容量:39--54MB 不等
雙弧形光碟
尺寸:外徑 56mmX86mm,60mmX86mm 內徑 22mm
厚度:1.2 mm
容量:30MB/50MB
異型光碟
尺寸: 可定製
厚度: 1.2mm
容量: 50MB/87MB/140MB/200MB
光碟讀取技術
1)CLV技術:(Constant-Linear-Velocity)恆定線速度讀取方式。在低於12倍速的光碟機中使用的技術。它是為了保持數據傳輸率不變,而隨時改變旋轉光碟的速度。讀取內沿數據的旋轉速度比外部要快許多。
2) CAV技術:(Constant-Angular-Velocity)恆定角速度讀取方式。它是用同樣的速度來讀取光碟上的數據。但光碟上的內沿數據比外沿數據傳輸速度要低,越往外越能體現光碟機的速度,倍速指的是最高數據傳輸率。
3) PCAV技術:(Partial-CAV)區域恆定角速度讀取方式。是融合了CLV和CAV的一種新技術,它是在讀取外沿數據採用CAV技術,在讀取內沿數據採用CAV技術,提高整體數據傳輸的速度。
光碟分類
CD:(Compact-Disc)光碟。CD是由liad-in(資料開始記錄的位置);而後是Table-of-Contents區域,由內及外記錄資料;在記錄之後加上一個lead-out的資料軌結束記錄的標記。在CD光碟,模擬數據通過大型刻錄機在CD上面刻出許多連肉眼都看不見的小坑。
CD-DA:(CD-Audio)用來儲存數位音效的光碟片。1982年SONY、Philips所共同制定紅皮書標准,以音軌方式儲存聲音資料。CD-ROM都兼容此規格音樂片的能力。
CD-G:(Compact-Disc-Graphics)CD-DA基礎上加入圖形成為另一格式,但未能推廣。是對多媒體電腦的一次嘗試。
CD-ROM:(Compact-Disc-Read-Only-Memory)只讀光碟機。1986年, SONY、Philips一起制定的黃皮書標准,定義檔案資料格式。定義了用於電腦數據存儲的MODE1和用於壓縮視頻圖象存儲的MODE2兩類型,使CD成為通用的儲存介質。並加上偵錯碼及更正碼等位元,以確保電腦資料能夠完整讀取無誤。
CD-PLUS:1994年,Microsoft公布了新的增強的CD的標准,又稱為CD-Elure。它是將CD-Audio音效放在CD的第一軌,而後放資料檔案,如此一來CD只會讀到前面的音軌,不會讀到資料軌,達到電腦與音響兩用的好處。
CD-ROM XA:(CD-ROM-eXtended-Architecture)1989年,SONY、Philips、Micuosoft對CD-ROM標准擴充形成的白皮書標准。又分為FORM1、FORM2兩種和一種增強型CD標准CD+。
VCD:(Video-CD)激光視盤。SONY、Philips、JVC、Matsu**a等共同制定,屬白皮書標准。是指全動態、全屏播放的激光影視光碟。
CD-I:(Compact-Disc-Interactive),是Philips、SONY共同制定的綠皮書標准。是互動式光碟系統。1992年實現全動態視頻圖像播放
Photo-CD: 1989年,KODAK公司推出相片光碟的橘皮書標准,可存100張具有五種格式的高解析度照片。可加上相應的解說詞和背景音樂或插曲,成為有聲電子圖片集。
CD-R:(Compact-Disc-Recordable)1990年,Philips發表多段式一次性寫入光碟數據格式。屬於橘皮書標准。在光碟上加一層可一次性記錄的染色層,可通進行刻錄。
CD-RW:在光碟上加一層可改寫的染色層,通過激光可在光碟上反復多次寫入數據。
SDCD:(Super-Density-CD)是東芝(TOSHIBA)、日立(Hitachi)、先鋒、松下(Panasonic)、JVC、湯姆森(Thomson)、三菱、Timewamer等制訂一種超密度光碟規范。雙面提供5GB的儲存量,數據壓縮比不高
MMCD:(Multi-Mdeia-CD)是由SONY、Philips等制定的多媒體光碟,單面提供3.7GB儲存量,數據壓縮比較高。
HD-CD:(High-Density-CD)高密度光碟。容量大。單面容量4.7GB,雙面容量高達9.4GB,有的達到7GB。HD-CD光碟採用MPEG-2標准。
MPEG-2: 1994年,ISO/IEC組織制定的運動圖像及其聲音編碼標准。針對廣播級的圖像和立體聲信號的壓縮和解壓縮。
DVD:(Digital-Versatile-Disk)數字多用光碟,以MPEG-2為標准,擁有4.7G的大容量,可儲存133分鍾的高解析度全動態影視節目,包括個杜比數字環繞聲音軌道,圖像和聲音質量是VCD所不及的。
DVD+RW:可反復寫入的DVD光碟,又叫DVD-E。由HP、SONY、Phioips共同發布的一個標准。容量為3.0GB,採用CAV技術來獲得較高的數據傳輸率
PD光碟機:(PowerDisk2)是Panasonic公司將可寫光碟機和CD-ROM合二為一,有LF-1000(外置式)和LF-1004(內置式)兩種類型。容量為65OMB,數據傳輸率達5.0MB/s,採用微型激光頭和精密機電伺服系統。
DVD-RAM:DVD論壇協會確立和公布的一項商務可讀寫DVD標准。它容量大而價格低、速度不慢且兼容性高。
④ 信息存儲技術的發展過程
人類記錄信息、存儲信息方法經歷了以下幾大技術:
1,結繩記事;
2,文字紙張;
3,磁記錄方式(磁鼓,磁帶,磁碟等) 當前比較成熟,
4,半導體電記錄(電路,電量或電容):ROM,RAM等;隨著半導體技術的提升而不斷提升、改進
5,光記錄(光碟,光運算器件) 光計算和光存儲也許會在不久的將來大力發展
⑤ 電腦光存儲的基礎知識
光存儲是由光碟表面的介質影響的,光碟上有凹凸不平的小坑,光照射到上面有不同的反射,再轉化為0、1的數字信號就成了光存儲。
光存儲概述:
光存儲是指採用激光技術在碟片上存儲數據的技術、設備和產品,如光碟(Optical disc)、激光碟機動器、相關演算法和軟體等。
從1960年發明紅寶石激光器,到1981年推出CD唱盤、1993年推出VCD、1995年推出DVD,再到2002年提出BD和HD DVD,光存儲技術日新月異。
光存儲技術的快速發展和廣泛使用,不僅為計算機和多媒體技術的發展和應用提供了條件,也在很大程度上改變了人類的娛樂方式、大大提高了我們的生活品質。
當然光碟外面還有保護膜,一般看不出來,不過你能看出來有信息和沒有信息的地方。
刻錄光碟也是這樣的原理,就是當刻錄的時候光比較強,燒出了不同的凹凸點。
光碟只是一個統稱,它分成兩類,一類是只讀型光碟,其中包括CD-Audio、CD-Video、CD-ROM、DVD-Audio、DVD- Video、DVD-ROM等;另一類是可記錄型光碟,它包括CD-R、CD-RW、DVD-R、DVD+R、DVD+RW、DVD-RAM、 Double layer DVD+R等各種類型。
隨著光學技術、激光技術、微電子技術、材料科學、細微加工技術、計算機與自動控制技術的發展,光存儲技術在記錄密度、容量、數據傳輸率、定址時間等關鍵技術上將有巨大的發展潛力。在下一個世紀初,光碟存儲將在功能多樣化,操作智能化方面都會有顯著的進展。隨著光量子數據存儲技術、三維體存儲技術、近場光學技術、光學集成技術的發展,光存儲技術必將在下一世紀成為信息產業中的支柱技術之一。
光存儲的原理
無論是CD光碟、DVD光碟等光存儲介質,採用的存儲方式都與軟盤、硬碟相同,是以二進制數據的形式來存儲信息。而要在這些光碟上面儲存數據,需要藉助激光把電腦轉換後的.二進制數據用數據模式刻在扁平、具有反射能力的碟片上。而為了識別數據,光碟上定義激光刻出的小坑就代表二進制的「1」,而空白處則代表二進制的「0」。DVD盤的記錄凹坑比CD-ROM更小,且螺旋儲存凹坑之間的距離也更小。DVD存放數據信息的坑點非常小,而且非常緊密,最小凹坑長度僅為0.4μm,每個坑點間的距離只是CD-ROM的50%,並且軌距只有0.74μm。
CD光碟機、DVD光碟機等一系列光存儲設備,主要的部分就是激光發生器和光監測器。光碟機上的激光發生器實際上就是一個激光二極體,可以產生對應波長的激光光束,然後經過一系列的處理後射到光碟上,然後經由光監測器捕捉反射回來的信號從而識別實際的數據。如果光碟不反射激光則代表那裡有一個小坑,那麼電腦就知道它代表一個「1」;如果激光被反射回來,電腦就知道這個點是一個「0」。然後電腦就可以將這些二進制代碼轉換成為原來的程序。當光碟在光碟機中做高速轉動,激光頭在電機的控制下前後移動,數據就這樣源源不斷的讀取出來了。
⑥ 存儲技術發展歷史
最早的外置存儲器可以追溯到19世紀末。為了解決人口普查的需要,霍列瑞斯首先把穿孔紙帶改造成穿孔卡片。
他把每個人所有的調查項目依次排列於一張卡片,然後根據調查結果在相應項目的位置上打孔。在以後的計算機系統里,用穿孔卡片輸入數據的方法一直沿用到20世紀70年代,數據處理也發展成為電腦的主要功能之一。
2、磁帶
UNIVAC-I第一次採用磁帶機作外存儲器,首先用奇偶校驗方法和雙重運算線路來提高系統的可靠性,並最先進行了自動編程的試驗。此時這個磁帶長達1200英寸、包含8個磁軌,每英寸可存儲128bits,每秒可記錄12800個字元,容量也達到史無前例的184KB。從 此之後,磁帶經歷了迅速發展,後來廣泛應用了錄音、影像領域。
3、軟盤(見過這玩意的一定是80後)
1967年 IBM公司推出世界上第一張「軟盤」,直徑32英寸。隨著技術的發展,軟盤的尺寸一直在減小,容量也在不斷提升,大小從8英寸,減到到5.25英寸軟盤,以及到後來的3.5英寸軟盤,容量卻從最早的81KB到後來的1.44MB。在80-90年代3.5英寸軟盤達到了巔峰。直到CD-ROM、USB存儲設備出現後,軟盤銷量才逐漸下滑。
4、CD
CD也就是我們常說的光碟、光碟,誕生於1982年,最早用於數字音頻存儲。1985年,飛利浦和索尼將其引入PC,當時稱之為CD-ROM(只 讀),後來又發展成CD-R(可讀)。因為聲頻CD的巨大成功,今天這種媒體的用途已經擴大到進行數據儲存,目的是數據存檔和傳遞。
5、磁碟
第一台磁碟驅動器是由IBM於1956年生產,可存儲5MB數據,總共使用了50個24英寸碟片。到1973年,IBM推出第一個現代「溫徹斯特」磁碟驅動器3340,使用了密封組件、潤滑主軸和小質量磁頭。此後磁碟的容量一度提升MB到GB再到TB。
6、DVD
數字多功能光碟,簡稱DVD,是一種光碟存儲器。起源於上世紀60年代,荷蘭飛利浦公司的研究人員開始使用激光光束進行記錄和重放信息的研究。1972年,他們的研究獲得了成功,1978年投放市場。最初的產品就是大家所熟知的激光視盤(LD,Laser Vision Disc)系統。它們的直徑多是120毫米左右。容量目前最大可到17.08GB。
7、快閃記憶體
淺談存儲器的進化歷程
快閃記憶體(Flash Memory)是一種長壽命的非易失性(在斷電情況下仍能保持所存儲的數據信+息)的存儲器。包含U盤、SD卡、CF卡、記憶棒等等種類。在1984年,東芝公司的發明人舛岡富士雄首先提出了快速快閃記憶體存儲器(此處簡稱快閃記憶體)的概念。與傳統電腦內存不同,快閃記憶體的特點是非易失性(也就是所存儲的數據在主機掉電後不會丟失),其記錄速度也非常快。Intel是世界上第一個生產快閃記憶體並將其投放市場的公司。到目前為止快閃記憶體形態多樣,存儲容量也不斷擴展到256GB甚至更高。
隨著存儲器的更新換代,存儲容量越來越大,讀寫速度也越來越快,企業級硬碟單盤容量已經達到10TB以上,目前使用的SSD固態硬碟,讀速度達:3000+MB/s,寫速度達:1700MB/s,用起來美滋滋啊。
⑦ 光碟技術的發展史
早在1968年,美國的ECD(Energy Conversion Device)公司就開始研究晶態和非晶態之間的轉換。1971年ECD和IBM公司合作研製成功了世界上第一片只讀相變光碟存儲器,隨後相繼開發成功了利用相變原理製造的一次寫WO盤。1983年,日本松下公司推出了世界上第一台可擦寫相變型光碟驅動器。1994年,松下公司又將相變型可擦寫光碟驅動器與四倍速CD-ROM相結合,推出了PD光碟驅動器,在一台光碟驅動器上同時具有相變型可擦寫與四倍速CD-ROM功能。松下公司一在聲稱PD並不是英文縮寫,但是人們通常將其理解為英文Phase-change Disk或Power Drive的縮寫。
與MO技術相比,由於相變光碟僅用光學技術來讀/寫,所以讀/寫光學頭可以做的相對比較簡單,存取時間也就可以提高;由於相變光碟的讀出方法與CD-ROM、CD-R光碟相同,因此兼容CD-ROM和CD-R的多功能相變光碟驅動器就變的容易實現,PD、CD-RW和可擦寫DVD-RAM等新一代可擦寫光碟存儲器均採用了相變技術。
相變光碟存儲技術經過20多年的不斷研究和穩步發展,具有比MO存儲密度高、記錄成本低、介質壽命長、驅動器結構簡單、讀出信號信噪比高和不受外界磁場環境影響等突出優點,特別是相變光碟存儲器能向下兼容目前廣泛使用的CD-ROM和CD-R,因此相變光碟技術已成為光存儲技術中的主流技術,具有廣闊的應用前景。
光碟發展歷史
光碟存儲技術是70年代初開始發展起來的一項高新技術。光碟存儲具有存儲密度高、容量大、可隨機存取、保存壽命長、工作穩定可靠、輕便易攜帶等一系列其它記錄媒體無可比擬的優點,特別適於大數據量信息的存儲和交換。光碟存儲技術不僅能滿足信息化社會海量信息存儲的需要,而且能夠同時存儲聲音、文字、圖形、圖象等多種媒體的信息,從而使傳統的信息存儲、傳輸、管理和使用方式發生了根本性的變化。
光碟存儲技術近年來不斷取得重大突破,並且進入了商業化大規模生產,在日本、北美及歐洲工業化國家已逐漸形成了獨立的光碟產業,其應用范圍也在不斷擴大,幾乎已深入到人類社會活動和生活的一切領域,對人類的工作方式、學習方式和生活方式產生了深遠的影響。在過去的幾年中,世界各主要光碟產業國家的光碟產業銷售額都在以兩位數以上的速度增長,1996年底全世界各種光碟驅動器的銷售總量達5760萬台,其中CD-ROM驅動器的銷售量為5450萬台,CD-R驅動器銷售量為150萬台。全球CD-ROM驅動器的累計裝機總量已超過1億台,CD-R驅動器的銷售量比1995年增長了10倍,是所有光碟產品中增長速度最快的一種。1996年全球光碟碟片的銷售量達到了1億片,其中CD-ROM盤約佔90%,CD-R盤約佔9%,其它可擦寫光碟僅佔1%。
一.只讀式光碟存儲器CD-ROM
自1985年Philips和Sony公布了在光碟上記錄計算機數據的黃皮書以來,CD-ROM驅動器便在計算機領域得到了廣泛的應用。CD-ROM光碟不僅可交叉存儲大容量的文字、聲音、圖形和圖象等多種媒體的數字化信息,而且便於快速檢索,因此CD-ROM驅動器已成為多媒體計算機中的標准配置之一。MPC標准已經對CD-ROM的數據傳輸速率和所支持的數據格式進行了規定。MPC 3標准要求CD-ROM驅動器的數據傳輸率為600KB/秒(4倍速),並支持CD-ROM、CD-ROM XA、Photo CD、Video CD和CD-I等光碟格式。
MPC 3標准對CD-ROM驅動器的要求只是一種基本的要求,CD-ROM驅動器從誕生至今一直持續不斷地向高倍速方向發展。1996年秋末,已有六種品牌的12倍速CD-ROM驅動器進入市場,Philips宣稱在1997年第一季度將推出16倍速CD-ROM驅動器。但是專家們認為,適於高倍速CD-ROM驅動器的操作、驅動及應用軟體還未出現,CD-ROM的使用性能並未隨著驅動器速度的加快而加快。就多媒體計算機的性能而言,6倍速的CD-ROM驅動器已能滿足要求。
CD-ROM是發行多媒體節目的優選載體。原因是它的存儲容量大,製造成本低,大批量生產時每片不到5元人民幣。目前,大量的文獻資料、視聽材料、教育節目、影視節目、游戲、圖書、計算機軟體等都通過CD-ROM來傳播。
光碟製作、光碟印刷、光碟刻錄、光碟復制、光碟列印、多媒體光碟製作等一系列服務!http://www.bjdisc.com.cn/憑著專業的設計隊伍、高效的光碟復制設備、先進的絲網印刷設備,從盤面設計製作到成品,我們可以在優質、高效的前提下為您一步到位地完成!
二.一次寫光碟存儲器CD-R
信息時代的加速到來使得越來越多的數據需要保存,需要交換。由於CD-ROM是只讀式光碟,因此用戶自己無法利用CD-ROM對數據進行備份和交換。在CD-R刻錄機大批量進入市場以前,用戶的唯一選擇就是採用可擦寫光碟機。
可擦寫光碟機根據其記錄原理的不同,有磁光碟機動器MO和相變驅動器PD。雖然這兩種產品較早進入市場,但是記錄在MO或PD碟片上的數據無法在廣泛使用的CD-ROM驅動器上讀取,因此難以實現數據交換和數據分發,更不可能製作自己的CD、VCD或CD-ROM節目。
CD-R的出現適時地解決了上述問題,使。CD-R是英文CD Recordable的簡稱,中文簡稱刻錄機。CD-R標准(橙皮書)是由Philips公司於1990年制定的,目前已成為工業界廣泛認可的標准。CD-R的另一英文名稱是CD-WO(Write Once ),顧名思意,就是只允許寫一次,寫完以後,記錄在CD-R盤上的信息無法被改寫,但可以象CD-ROM碟片一樣,在CD-ROM驅動器和CD-R驅動器上被反復地讀取多次。
CD-R盤與CD-ROM盤相比有許多共同之處,它們的主要差別在於CD-R盤上增加了一層有機染料作為記錄層,反射層用金,而不是CD-ROM中的鋁。當寫入激光束聚焦到記錄層上時,染料被加熱後燒溶,形成一系列代表信息的凹坑。這些凹坑與CD-ROM盤上的凹坑類似,但CD-ROM盤上的凹坑是用金屬壓模壓出的。
CD-R驅動器中使用的光學讀/寫頭與CD-ROM的光學讀出頭類似,只是其激光功率受寫入信號的調制。CD-R驅動器刻錄時,在要形成凹坑的地方,半導體激光器的輸出功率變大;不形成凹坑的地方,輸出功率變小。在讀出時,與CD-ROM一樣,要輸出恆定的小功率。
通常,CD-ROM除了要符合黃皮書以外,還要遵照一個附加的國際標准:ISO9660。這是因為當初Philips和Sony沒有定義CD-ROM的文件結構,而且各種計算機操作系統也只規定了該操作系統下的硬碟和軟盤文件結構,使得不同廠家生產的CD-ROM具有不同的文件結構,曾經一度引起了混亂。後來,ISO 9660規定了CD-ROM的文件結構,Microsoft公司很快就為CD-ROM開發了設備驅動軟體MSCDEX,使得不同生產廠家的CD-ROM在不同的操作系統環境下都能彼此兼容,就象該操作系統下的另外一個邏輯驅動器--目錄或磁碟。
CD-R的發展已有5年的歷史,但是也還存在上述類似的問題。我們無法在DOS或Windows環境下對CD-R驅動器直接進行讀寫,而是要依賴於CD-R生產廠家提供的刻錄軟體。大多數刻錄軟體的用戶界面並不直觀,而且系統安裝設置也比較繁瑣,給用戶的使用帶來很多麻煩和障礙。
為了改變這一狀況,國際標准化組織下的OSTA(光學存儲技術協會)最近制定了CD-UDF通用磁碟格式,只要對每一種操作系統開發相應的設備驅動軟體或擴展軟體,就可使操作系統將CD-R驅動器看作為一個邏輯驅動器。採用CD-UDF的CD-R刻錄機會使用戶感到,使用CD-R備份文件就如同使用軟盤或硬碟一樣方便。用戶可以直接使用DOS命令對CD-R進行讀寫操作,如果用戶使用如Windows Explorer這樣的圖形文件管理軟體,可將文件拖曳或投入(drag and drop)到CD-R刻錄機中,就可將文件課錄到CD-R盤上。
CD-UDF也是溝通ISO9660與DVD-UDF文件結構的橋梁,採用CD-UDF文件結構的CD-R盤可在DVD-ROM驅動器上讀出。
Philips公司最近推出的第四代CDD2600刻錄機首先採用了CD-UDF文件格式,並可在Windows 95和Windows NT環境下即插即用,使CD-R技術的發展步入了一個新的里程。
CD-R的最大特點是與CD-ROM完全兼容,CD-R盤上的信息可在廣泛使用的CD-ROM驅動器上讀取,而且其成本在各種光碟記錄介質中最低,每兆位元組所需化費的代價約為人民幣0.1元。CD-R光碟適於存儲數據、文字、圖形、圖象、聲音和電影等多種媒體,並且具有存儲可靠性高、壽命長(100年)和檢索方便等突出優點,目前已取代數據流磁帶(DDS)而成為數據備份、檔案保存、數據交換、及資料庫分發的理想記錄媒體,在企業、銀行證券、保險公司、檔案館、圖書館、博物館、醫院、出版社、新聞機關、政府機關及軍事部門的信息存儲、管理及傳遞中獲得了極為廣泛的應用。特別是為那些需要永久性存儲信息而不準擦除或更改的用戶提供了一種最佳方案。
三.可擦寫光碟存儲器
1.MO可擦寫光碟存儲器
MO是英文Magnet-Optical的縮寫,是指利用激光與磁性共同作用的結果記錄信息的光磁碟。MO盤用來存儲信息的媒體與軟磁碟相似,但其信息記錄密度和容量卻比軟磁碟高的多。這是由於記錄時在盤的上面施加磁場,而在盤下面用激光照射。磁場作用於盤面上的區域比較大,而激光通過光學系統聚焦於盤面的光點直徑只有1~2微米。在受光區域,激光的光能轉化為熱能,並使磁性層受熱而變的不穩定,即變的易受磁場影響。這樣,在直徑只有1~2微米的極小區域內就可記錄下一個單位的信息。通常的磁性記錄方式存儲一個單位的信息時,要佔用相當大的區域,因而磁軌也相應變寬,盤上記錄信息的總量也就很小。
MO碟片雖然比硬碟和軟盤便宜和耐用,但是與CD-R碟片相比就顯得比較昂貴了。MO的致命缺點是不能用普通CD-ROM驅動器讀出,因而不能滿足信息社會對計算機數據進行交換和數據分發的要求,在網路技術和網路建設不發達的國內,這一問題日驅突出和嚴重。
2.PCD可擦寫光碟存儲器
相變光碟(Phase Change Disk)與MO不同,MO光碟的記錄和讀出原理是利用磁技術和光技術相結合來記錄和讀出信息,而相變光碟的記錄和讀出原理只是用光技術來記錄和讀出信息。相變光碟利用激光使記錄介質在結晶態和非結晶態之間的可逆相變結構來實現信息的記錄和擦除。在寫操作時,聚焦激光束加熱記錄介質的目的是改變相變記錄介質晶體狀態,用結晶狀態和非結晶狀態來區分0和1;讀操作時,利用結晶狀態和非結晶狀態具有不同反射率這個特性來檢測0和1信號。
早在1968年,美國的ECD(Energy Conversion Device)公司就開始研究晶態和非晶態之間的轉換。1971年ECD和IBM公司合作研製成功了世界上第一片只讀相變光碟存儲器,隨後相繼開發成功了利用相變原理製造的一次寫WO盤。1983年,日本松下公司推出了世界上第一台可擦寫相變型光碟驅動器。1994年,松下公司又將相變型可擦寫光碟驅動器與四倍速CD-ROM相結合,推出了PD光碟驅動器,在一台光碟驅動器上同時具有相變型可擦寫與四倍速CD-ROM功能。松下公司一在聲稱PD並不是英文縮寫,但是人們通常將其理解為英文Phase-change Disk或Power Drive的縮寫。
與MO技術相比,由於相變光碟僅用光學技術來讀/寫,所以讀/寫光學頭可以做的相對比較簡單,存取時間也就可以提高;由於相變光碟的讀出方法與CD-ROM、CD-R光碟相同,因此兼容CD-ROM和CD-R的多功能相變光碟驅動器就變的容易實現,PD、CD-RW和可擦寫DVD-RAM等新一代可擦寫光碟存儲器均採用了相變技術。
相變光碟存儲技術經過20多年的不斷研究和穩步發展,具有比MO存儲密度高、記錄成本低、介質壽命長、驅動器結構簡單、讀出信號信噪比高和不受外界磁場環境影響等突出優點,特別是相變光碟存儲器能向下兼容目前廣泛使用的CD-ROM和CD-R,因此相變光碟技術已成為光存儲技術中的主流技術,具有廣闊的應用前景。
⑧ 相變存儲器的發展歷史
二十世紀五十年代至六十年代,Dr. Stanford Ovshinsky開始研究無定形物質的性質。無定形物質是一類沒有表現出確定、有序的結晶結構的物質。1968年,他發現某些玻璃在變相時存在可逆的電阻系數變化。1969年,他又發現激光在光學存儲介質中的反射率會發生響應的變化。1970年,他與他的妻子Dr. Iris Ovshinsky共同建立的能量轉換裝置(ECD)公司,發布了他們與Intel的Gordon Moore合作的結果。1970年9月28日在Electronics發布的這一篇文章描述了世界上第一個256位半導體相變存儲器。
近30年後,能量轉換裝置(ECD)公司與MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。在2000年2月,Intel與Ovonyx發表了合作與許可協議,此份協議是現代PCM研究與發展的開端。2000年12月,STMicroelectronics(ST)也與Ovonyx開始合作。至2003年,以上三家公司將力量集中,避免重復進行基礎的、競爭的研究與發展,避免重復進行延伸領域的研究,以加快此項技術的進展。2005年,ST與Intel發表了它們建立新的快閃記憶體公司的意圖,新公司名為Numonyx。
在1970年第一份產品問世以後的幾年中,半導體製作工藝有了很大的進展,這促進了半導體相變存儲器的發展。同時期,相變材料也愈加完善以滿足在可重復寫入的CD與DVD中的大量使用。Intel開發的相變存儲器使用了硫屬化物(Chalcogenides),這類材料包含元素周期表中的氧/硫族元素。Numonyx的相變存儲器使用一種含鍺、銻、碲的合成材料(Ge2Sb2Te5),多被稱為GST。現今大多數公司在研究和發展相變存儲器時都都使用GST或近似的相關合成材料。大部分DVD-RAM都是使用與Numonyx相變存儲器使用的相同的材料。
2011年8月31日,中國首次完成第一批基於相變存儲器的產品晶元。
2015年,《自然·光子學》雜志布了世界上第一個或可長期存儲數據且完全基於光的相變存儲器。
⑨ 光存儲設備有哪些
光存儲設主要可以歸為CD光碟機、DVD光碟機、CD刻錄機、DVD刻錄機、Combo。
光碟機雖然在1991年的時候就已經問世,但是發展顯得非常緩慢。
1993年,第二代MPC規格問世,光碟機的速度已變成了雙倍速,傳輸率達到了300KB/S,平均搜尋時間為400ms。
1995年夏,MultimdeiaPCWorkingGroup公布第三代規格標准,光碟機速度提高到四倍速,數據傳輸率為600KB/S,數據的平均時間不大於250ms。
兼容光碟格式:CD-Audio、CD-Mode1/2、CD-ROM/XA、photo-CD、CD-R、Video-CD、CD-I等。
⑩ 紫晶存儲是家什麼樣的光存儲公司
它是一家光存儲高科技企業,成立於2016年12月28日,是由新希望集團、小米科技、紅旗連鎖等優秀企業共同發起的四川首家民營銀行、全國第三家互聯網數字銀行,擁有全網、全國展業資質,總部位於成都高新區,專注於研發,製造,銷售存儲設備。
紫晶存儲發展11年間,榮獲多項業內獎項,並於2020年2月26日成功在上海證券交易所科創板上市。紫晶存儲的光存儲設備合作夥伴涉及醫療、教育、互聯網、金融,等多種領域,比如:國家超算中心、國家衛健委、國家檔案館、軍事科學院軍事科學信息研究中心等都在使用紫晶存儲的解決方案。