磁碟陣列存儲技術
『壹』 伺服器百問百答:伺服器的磁碟陣列技術是什麼
RAID磁碟陣列介紹
RAID,為Rendant Arrays of Independent Disks的簡稱,中文為廉價冗餘磁碟陣列。在1987年由美國柏克萊大學提出
RAID(Rendant Arrayof Inexpensive Disks)理論,作為高性能的存儲系統,巳經得到了越來越廣泛的應用。RAID的級別
從RAID概念的提出到現在,巳經發展了多個級別,有明確標准級別分別是0、1、2、3、4、5等。但是最常用的是0、1、3、5四
個級別。其他還有6、7、10、30、50等。RAID為使用者降低了成本、增加了執行效率,並提供了系統運行的穩定性。
RAID 磁碟陣列簡單的碼神解釋,就是將多台硬碟透過RAID Controller(分Hardware,Software )結合成虛擬單台大容量的硬
盤使用,其特色是多台硬碟同時讀取速度加快及提供容錯性Fault Tolerant,所以RAID是當成平時主要訪問Dat
a的Storage不是Backup Solution。
在RAID磁碟陣列有一基本概念稱為EDAP ( Extended Data Availability and Protection ) ,其強調擴充性及容錯機制
, 也是各家廠商如: Mylex,IBM,HP,Compaq,Adaptec, Infortrend等訴求的重點,包括在不須停機情況下可處理 以下動
作:
RAID 磁碟陣列支持自動檢測故障硬碟。
RAID 磁碟陣列支持重建硬碟壞軌的資料。
RAID 磁碟陣列支持不須停機的硬碟備援 Hot Spare。
RAID 磁碟陣列支持不須停機的硬碟替換 Hot Swap。
RAID 磁碟陣列支持擴充硬碟容量等。
該站正在升級中滲模攔,不便之處請諒解
RAID磁碟陣列級別
NRAID:
硬碟連續使用。NRAID意思是不使用RAID功能。它使用硬碟的總容量組成邏輯碟(不使用條塊讀寫)。換句話說,它
生成的邏輯碟容量就是物理碟容量的總和。此外,NRAID不提供資料的備余。
JBOD:
JBOD的含意是控制器將機器上每顆硬碟都當作單獨的硬碟處理,因此每顆硬碟都被當作單顆獨立的邏輯碟使用。此
外,JBOD並不提供資料備余的功能。
RAID0:RAID0 - Disk Stripping without parity (常用)
又稱數據分塊,即把數據分成若干相等大小的小塊,並把它們寫到陣列上不同的硬碟上,這種技術又稱「Stripping」
(即將數據條帶化),這種把數據分布在多個盤上,在讀寫時是以並行的方式對各硬碟同時進行操作。從理論上講,其容量和
數據傳輸率是單個硬碟的N倍。N為構成RAID0的硬碟總數。當然,若陣列控制器有多個硬碟通道時,對多個通道上的硬碟進行
RAID0操作,I/O性能會更高。因此常用於圖象,視頻等領域,RAID0 I/O傳輸率較高,但平均故障時間MTTF只有單盤的N分之
一,因此RAID0可靠性最差。
RAID1:RAID 1 - Disk Mirroring(較常用)
又稱鏡像。即每個工作盤都有一個鏡像盤,每次寫數據時必須同時寫入鏡像盤,讀數據時只從工作盤讀出,一旦工作盤
發生故障立即轉入鏡像盤,從鏡像盤中讀出數據。當更換故障盤後,數據可以重構,恢復工作盤正確數據,這種陣列可靠性很
高,但其有效容量減小到總容量一半以下,因此RAID1常用於對容錯要求極嚴的應用場合,如財政、金融等領域。
RAID (0+1):
結合了RAID0和RAID 1 —條塊化讀寫的同時使用鏡像操作。RAID (0+1)允許多個硬碟損壞,因為它完全使用硬碟
來實現資料備余。如果有超過兩個硬碟做RAID 1,系統會自動實現RAID (0+1)。
RAID2:
又稱位交叉,它採用漢明碼作盤錯校驗,採用按位交叉存取,運用於大數據的讀寫,但冗餘信息開銷太大(校驗盤為
多個),已被淘汰。
RAID3:RAID 3 - Parallel Disk Array
為單盤容錯並行傳輸。即採用Stripping技術將數據分塊,對這些塊進行異或校驗,校驗數據寫到最後一個硬碟上。它
的特點是有一個盤為校驗盤,數據以位或位元組的方式存於各盤(分散記錄在組內相同扇區的各個硬碟上)。當一個硬碟發生故
障,除故障盤外,寫操作將繼續對數據盤和校驗盤進行操作。而讀操作是通過對叢胡剩餘數據盤和校驗盤的異或計算重構故障盤上
應有的數據來進行的。RAID3的優點是並行I/O傳輸和單盤容錯,具有很高可靠性。缺點:每次讀寫要牽動整個組,每次只能完
成一次I/O。
RAID4:
與RAID3相似,區別是:RAID3是按位或位元組交叉存取,而RAID4是按塊(扇區)存取,可以單獨地對某個盤進行操作,
無須像RAID3那樣,哪怕每一次小I/O操作也要涉及全組,只需涉及組中兩塊硬碟(一塊數據盤,一塊校驗盤)即可,從而提高
了小量數據I/O速度。缺點:對於隨機分散的小數據量I/O,固定的校驗盤又成為I/O瓶頸,例如:事務處理。作兩個很小的寫
操作,一個寫在drive2的stripe1 上,一個寫在drive3的stripe2上,它們都要往校驗盤上寫,所以發生爭用校驗盤的問題。
RAID5:RAID 5 - Striping with floating parity drive(最常用)
是一種旋轉奇偶校驗獨立存取的陣列方式,它與RAID3,RAID4不同的是沒有固定的校驗盤,而是按某種規則把奇偶校
驗信息均勻地分布在陣列所屬的硬碟上,所以在每塊硬碟上,既有數據信息也有校驗信息。這一改變解決了爭用校驗盤的問
題,使得在同一組內並發進行多個寫操作。所以RAID5即適用於大數據量的操作,也適用於各種事務處理,它是一種快速、大
容量和容錯分布合理的磁碟陣列。當有N塊陣列盤時,用戶空間為N-1塊盤容量。 RAID3、RAID5中,在一塊硬碟發生故障後,
RAID組從ONLINE變為DEGRADED方式,但I/O讀寫不受影響,直到故障盤恢復。但如果DEGRADED狀態下,又有第二塊盤故障,整
個RAID組的數據將丟失。
『貳』 存儲介質採用磁碟陣列或IP-SAN方式進行存儲是什麼意思
磁碟陣列(Rendant Arrays of Independent Disks,RAID),有"獨立磁碟構成的具有冗餘能力的陣列"之意。磁碟陣列是由很多價格較便宜的磁碟,組合成一個容量巨大的磁碟組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任意一個硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
SAN (Storage Area Network-存儲區域網路):是計算機信息處理技術中的一種架構,它將伺服器和遠程的計算機存儲設備(如磁碟陣列、磁帶庫)連接起來,使得這些存儲設備看起來就像是本地一樣,SAN是存儲虛擬化。而IP-SAN就是採用iscsi協議構建成的SAN存儲區域網路。
iSCSI:Internet 小型計算機系統介面 (iSCSI:Internet Small Computer System Interface)。iSCSI技術是一種由IBM公司研究開發的,是一個供硬體設備使用的可以在IP協議的上層運行的SCSI指令集,這種指令集合可以實現在IP網路上運行SCSI協議,使其能夠在諸如高速千兆乙太網上進行路由選擇。iSCSI技術是一種新儲存技術,該技術是將現有SCSI介面與乙太網絡(Ethernet)技術結合,使伺服器可與使用IP網路的儲存裝置互相交換資料。
『叄』 RAID技術
RAID(獨立磁碟冗餘陣列)是一種數據存儲虛擬化技術,將多個物理磁碟驅動器組件組合到一個或多個邏輯單元中,以實現數據冗餘和/或提高性能的目的。
數據以多種方式(稱為RAID級別)分布在驅動器上,具體取決於所需的冗餘和性能級別。不同的方案按資料分布布局以單詞「 RAID」命名,後跟一個數字,例如RAID 0或RAID1。每種方案或RAID級別在關鍵目標之間提供了不同的平衡:可靠性、性能和容量。大於RAID 0的RAID級別可提供針對不可恢復的扇區讀取錯誤以及鄭配整個物理驅動器故障的保護。
RAID技術主要具有以下三個基本功能:
(1)通過磁碟數據條帶化,可以實現對數據的塊訪問,減少了磁碟的機械搜索時間,提高了數據訪問速度。
(2)通過同時排列數組中的多個磁碟,可以減少磁碟的機械搜索時間,並提高數據訪問速度。
(3)通過鏡像或存儲同位信息,可以實現數據的冗餘保護。
RAID 0和RAID 1之間的區別:
1. RAID 0讀寫速度快,數組容量是數組磁碟的總容量,無數據備份功能,安全性較差。
2. RAID 1的讀寫速度如單磁碟,容量為單磁碟容量,但磁碟互相備份,安全性高。
RAID 0的特點:
RAID 0的缺點是它不提供數據冗餘,一旦用戶數據損壞,損壞的數據將無法恢復。當RAID中任何硬碟驅動器出現故障時,RAID 0運行都可能導致整個數據損壞。通常不建議企業用戶單獨使用。
RAID 1的特徵:
RAID 1通過硬碟數據鏡像實現數據冗餘,保護數據,在兩個磁碟上生成備份數據,並且在原始數據繁忙時可以直接從鏡像備份中讀取資料,因此RAID 1可以提供讀取性能。
RAID 0
RAID 0由條帶化組成,但沒有鏡像或同位。與跨區卷相比,RAID 0卷的容量是相同的。它是集合中磁碟容量的總和。但是由於條帶化將每個文件的內容分配到集合中的所有磁碟之間,因此任何磁碟的故障都會導致慶叢哪所有檔(整個RAID 0卷)丟失。跨區卷損壞至少可以將檔保留在正常運行的磁碟上。 RAID 0的好處是,對任何檔的讀寫操作的吞吐量都乘以磁碟數量,因為與跨區卷不同,讀寫操作是同時進行的,而且代價是驅動器故障的完全脆弱性。實際上,平均故障率比等效的單個非RAID驅動器高。
RAID 1
RAID 1由數據鏡像組成,沒有同位或分段。數據被相同地寫入兩個驅動器,從而產生驅動器的「鏡像集」。因此,RAID中的任何驅動器均可滿足任何讀取請求。如果將請求廣播到RAID中的每個驅動器,則可以由首先訪問數據的驅動器(根據其查找時間和循環等待時間)對請求進行服務,從而提高性能。如果針對控制器或軟體進行了優化,則持續讀取吞吐量將接近集合中每個驅動器的吞吐量總和。寫入較慢,因為寫入的數據必須更新到每個驅動器,而最慢的驅譽碼動器會限制寫入性能。但只要有一個驅動器正常工作,該數組就會繼續運行。
下面是RAID級別的對比表。
『肆』 磁碟陣列技術
目前人們逐漸認識了磁碟陣列技術。磁碟陣列技術可以詳細地劃分為若干個級別0-5 RAID技術,並且又發展了所謂的 RAID Level 10, 30, 50的新的級別。RAID是廉價冗餘磁碟陣列(Rendant Array of Inexpensive Disk)的簡稱。用RAID的好處簡單的說就是:安全性高,速度快,數據容量超大。
某些級別的RAID技術可以把速度提高到單個硬碟驅動器的400%。磁碟陣列把多個硬碟驅動器連接在一起協同工作,大大提高了速度,同時把硬碟系統的可靠性提高到接近無錯的境界。這些「容錯」系統速度極快,同時可靠性極高。
由磁碟陣列角度來看
磁碟陣列的規格最重要就在速度,也就是手舉CPU的種類。我們知道SCSI的演變是由SCSI 2 (Narrow, 8 bits, 10MB/s), SCSI 3 (Wide, 16bits, 20MB/s), Ultra Wide (16bits, 40MB/s), Ultra 2 (Ultra Ultra Wide, 80MB/s), Ultra 3 (Ultra Ultra Ultra Wide, 160MB/s),在由SCSI到Serial I/O,也就是所謂的 Fibre Channel (FC-AL, Fibre Channel - Arbitration Loop, 100 – 200MB/s), SSA (Serial Storage Architecture, 80 – 160 MB/s), 在過去使用 Ultra Wide SCSI, 40MB/s 的磁碟陣列時,對CPU的要求不友輪須太快,因為SCSI本身也不是很快,但是當SCSI演變到Ultra 2, 80MB/s時,對CPU的要求就非常關鍵。一般的CPU, (如 586)就必須改為高速的RISC CPU, (如 Intel RISC CPU, i960RD 32bits, i960RN 64 bits),不但是RISC CPU, 甚至於還分 32bits, 64 bits RISC CPU 的差異。586 與 RISC CPU 的差異可想而知 ! 這是由磁碟陣列的觀點出發來看的。
由伺服器的角度來看
伺服器的結構已由傳統的 I/O 結構改為 I2O ( Intelligent I/O, 簡稱 I2O ) 的結構,其目的就是為了減少伺服器CPU的負擔,才會將系統的 I/O 與伺服器CPU負載分開。Intel 因此提出 I2O 的架構,I2O 也是由一顆 RISC CPU ( i960RD 或I960RN ) 來負責 I/O 的工作。試想想若伺服器內都已是由 RISC i960 CPU 來負責 I/O,結果磁碟陣列上卻仍是用 586 CPU,速度會快嗎 ?
由操作系統的角度來看
SCO OpenServer 5.0 32 bits
MicroSoft Windows NT 32 bits
SCO Unixware 7.x 64 bits
MicroSoft Windows NT 2000 32 bit 64 bits
SUN Solaris 64 bits ……..其他操作系統
在操作系統都已由 32 bits 轉到 64 bits,磁碟陣列上的CPU 必須是 Intel i960 RISC CPU才能滿足速度的要求。586 CPU 是無法滿足的 !
磁碟陣列的功能
磁碟陣列內的硬碟連接方式是用SCA-II整體後背板還是只是用SCSI線連的?在SCA-II整體後背板上是否有隔絕晶元以防硬碟在熱插拔時所產生的高/低電壓,使系統電壓迴流,造成系統的不穩定,產生數據丟失的情形。我們一定要重視這個問題,因為在磁碟陣列內很多硬碟都是共用這同一SCSI匯流排!一個硬碟熱插拔,可不能引響其它的硬碟!甚幺是熱插拔或帶電插拔?硬碟有分熱插拔硬碟,80針的硬碟是熱插拔硬碟,68針的不是熱插拔硬碟,有沒有熱插拔,在電路上的設計差異就在於有沒有保護線路的設計,同樣的硬碟拖架也是一樣有分真的熱插拔及假的熱插拔的區別。
磁碟陣列內的硬碟是否有順序的要求?也就是說硬碟可否不按次好薯信序地插回陣列中,數據仍能正常的存取?很多人認為不是很重要,不太會發生,但是可能會發生的,我們就要防止它發生。假如您用六個硬碟做陣列,在最出初始化時,此六個硬碟是有順序放置在磁碟陣列內,分為第一、第二…到第六個硬碟,是有順序的,如果您買的磁碟陣列是有順序的要求,則您要注意了:有一天您將硬碟取出,做清潔時一定要以原來的擺放順序插回磁碟陣列中,否則您的數據可能因硬碟順序與原來的不苻,磁碟陣列上的控制器不認而數據丟失!因為您的硬碟的SCSI ID號亂掉所致。現在的磁碟陣列產品都已有這種不要求硬碟有順序的功能,為了防止上述的事件發生,都是不要求硬碟有順序的。
我們將討論這些新技術,以及不同級別RAID的優缺點。我們並不想涉及那些關鍵性的技術細節問題,而是將磁碟陣列和RAID技術介紹給對它們尚不熟悉的人們。相信這將幫助你選用合適的RAID技術。
『伍』 什麼是磁碟陣列(關於RAID的問題)
分類: 電腦/網路 >> 操作系統/系碰槐統故障
問題描述:
RAID說 無任何單獨的磁碟和磁碟陣列附帶任何可用,請檢查是否有磁碟陣列是否有損壞 這是怎麼回事啊.要怎麼作解決?
解析:
磁碟陣列技術
磁碟陣列(DiscArray)是由許多台磁碟機或光碟機按一定的規則,如分條(Striping)、分塊(Declustering)、交叉存取(Interleaving)等組成一個快速,超大容量的外存儲器子系統。它在陣列控制器的控制和管理下,實現快速,並行或交叉存取,並有較強的容錯能力。從用戶觀點看,磁碟陣列雖然是由幾個、幾十個甚至上百個盤組成,但仍可認為是一個單一磁碟,其容量可以高達幾百~上千千兆位元組,因此這一技術廣泛為多媒體系統所歡迎。
盤陣列的全稱是:
RendanArrayofInexpensiveDisk,簡稱RAID技術。它是1988年由美國加州大學Berkeley分校的DavidPatterson教授等人提出來的磁碟冗餘技術。從那時起,磁碟陣列技術發展得很快,並逐步走向成熟。現在已基本得到公認游物的有下面八種系列。
1.RAID0(0級盤陣列)
RAID0又稱數據分塊,即把數據分布在多個盤上,沒有容錯措施。其容量和數據傳輸率是單機容量的N倍,N為構成盤陣列的磁碟機的總數,I/O傳輸速率高,但平均無故障時間MTTF(MeanTimeToFailure)只有單台磁碟機的N分之一,因此零級盤陣列的可靠性最差。
2.RAID1(1級盤陣列)
RAID1又稱鏡像(Mirror)盤,採用鏡像容錯來提高可靠性。即每一個工作盤都有一個鏡像盤,每次寫數據時必須同時寫入鏡像盤,讀數據時只從工作盤讀出。一旦工作盤發生故障立即轉入鏡像盤,從鏡像盤中讀出數據,然後由系統再恢復工作盤正確數據。因此這種方式數據可以重構,但工作盤和鏡像盤必須保持一一對應關系。這種盤陣列可靠性很高,但其有效容量減小到總容量一半以下。因此RAID1常用於對出錯率要求極嚴的應用場合,如財政、金融等領域。
3.RAID2(2級盤陣列)
RAID2又稱位交叉,它採用漢明碼作盤錯檢驗,無需在每個扇區之後進行CRC(CyclicReDundancycheck)檢驗。漢明碼是一種(n,k)線性分組碼,n為碼字的長度,k為數據的位數,r為用於檢驗的位數,故有:n=2r-1r=n-k
因此按位交叉存取最有利於作漢明碼檢驗。這種盤適於大數據的讀寫。但冗餘信息開銷還是太大,阻止了這類盤的廣泛應用。
4.RAID3(3級盤陣列)
RAID3為單盤容錯並行傳輸陣列盤。它的特點是將檢驗盤減小為一個(RAID2校驗盤為多個,DAID1檢驗盤為1比1),數據以位或位元組的方式存於各盤(分散記錄在組內相同扇區號的各個磁碟機上)。它的優點是整個陣列的帶寬可以充分利用,使批量數據傳輸時間減小;其缺點是每次讀寫要牽動整個組,每次只能完成一次I/O。
5.RAID4(4級盤陣列)
RAID4是一種可獨立地對組內各盤進行讀寫的陣列。其校驗盤也只有一個。
RAID4和RAID3的區別是:RAID3是按位或按位元組交叉存取,而RAID4是按塊(扇區)存取,可以單獨地對某個盤進行操作,它無需象RAID3那樣,那怕每一次小I/O操作也要涉及全組,只需涉及組中兩台磁碟機(一台數據盤,一台檢驗盤)即可。從而提高了小量數笑磨友據的I/O速率。
6.RAID5(5級盤陣列)
RAID5是一種旋轉奇偶校驗獨立存取的陣列。它和RAID1、2、3、4各盤陣列的不同點,是它沒有固定的校驗盤,而是按某種規則把其冗餘的奇偶校驗信息均勻地分布在陣列所屬的所有磁碟上。於是在同一台磁碟機上既有數據信息也有校驗信息。這一改變解決了爭用校驗盤的問題,因此DAID5內允許在同一組內並發進行多個寫操作。所以RAID5即適於大數據量的操作,也適於各種事務處理。它是一種快速,大容量和容錯分布合理的磁碟陣列。
7.RAID6(6級盤陣列)
RAID6是一種雙維奇偶校驗獨立存取的磁碟陣列。它的冗餘的檢、糾錯信息均勻分布在所有磁碟上,而數據仍以大小可變的塊以交叉方式存於各盤。這類盤陣列可容許雙盤出錯。
8.RAID7(7級盤陣列)
RAID7是在RAID6的基礎上,採用了cache技術,它使得傳輸率和響應速度都有較大的提高。Cache是一種高速緩沖存儲器,即數據在寫入磁碟陣列以前,先寫入cache中。一般採用cache分塊大小和磁碟陣列中數據分塊大小相同,即一塊cache分塊對應一塊磁碟分塊。在寫入時將數據分別寫入兩個獨立的cache,這樣即使其中有一個cache出故障,數據也不會丟失。寫操作將直接在cache級響應,然後再轉到磁碟陣列。數據從cache寫到磁碟陣列時,同一磁軌的數據將在一次操作中完成,避免了不少塊數據多次寫的問題,提高了速度。在讀出時,主機也是直接從cache中讀出,而不是從陣列盤上讀取,減少與磁碟讀操作次數,這樣比較充分地利用了磁碟帶寬。
這樣cache和磁碟陣列技術的結合,彌補了磁碟陣列的不足(如分塊寫請求響應差等缺陷),從而使整個系統以高效、快速、大容量、高可靠以及靈活、方便的存儲系統提供給用戶,從而滿足了當前的技術發展的需要,尤其是多媒體系統的需要。
解析磁碟陣列的關鍵技術
存儲技術在計算機技術中受到廣泛關注,伺服器存儲技術更是業界關心的熱點。一談到伺服器存儲技術,人們幾乎立刻與SCSI(Small Computer Systems Interface)技術聯系在一起。盡管廉價的IDE硬碟在性能、容量等關鍵技術指標上已經大大地提高,可以滿足甚至超過原有的伺服器存儲設備的需求。但由於Inter的普及與高速發展,網路伺服器的規模也變得越來越大。同時,Inter不僅對網路伺服器本身,也對伺服器存儲技術提出了苛刻要求。無止境的市場需求促使伺服器存儲技術飛速發展。而磁碟陣列是伺服器存儲技術中比較成熟的一種,也是在市場上比較多見的大容量外設之一。
在高端,傳統的存儲模式無論在規模上,還是安全上,或是性能上,都無法滿足特殊應用日益膨脹的存儲需求。諸如存儲區域網(SAN)等新的技術或應用方案不斷涌現,新的存儲體系結構和解決方案層出不窮,伺服器存儲技術由直接連接存儲(DAS)向存儲網路技術(NAS)方面擴展。在中低端,隨著硬體技術的不斷發展,在強大市場需求的推動下,本地化的、基於直接連接的磁碟陣列存儲技術,在速度、性能、存儲能力等方面不斷地邁上新台階。並且,為了滿足用戶對存儲數據的安全、存取速度和超大的存儲容量的需求,磁碟陣列存儲技術也從講求技術創新、重視系統優化,以技術方案為主導的技術推動期逐漸進入了強調工業標准、著眼市場規模,以成熟產品為主導的產品普及期。
回顧磁碟陣列的發展歷程,一直和SCSI技術的發展緊密關聯,一些廠商推出的專有技術,如IBM的SSA(Serial Storage Architecture)技術等,由於兼容性和升級能力不盡如人意,在市場上的影響都遠不及SCSI技術廣泛。由於SCSI技術兼容性好,市場需求旺盛,使得SCSI技術發展很快。從最原始5MB/s傳輸速度的SCSI-1,一直發展到現在LVD介面的160MB/s傳輸速度的Ultra 160 SCSI,320MB/s傳輸速度的Ultra 320 SCSI介面也將在2001年出現(見表1)。從當前市場看,Ultra 3 SCSI技術和RAID(Rendant Array of Inexpensive Disks)技術還應是磁碟陣列存儲的主流技術。
SCSI技術
SCSI本身是為小型機(區別於微機而言)定製的存儲介面,SCSI協議的Version 1 版本也僅規定了5MB/s傳輸速度的SCSI-1的匯流排類型、介面定義、電纜規格等技術標准。隨著技術的發展,SCSI協議的Version 2版本作了較大修訂,遵循SCSI-2協議的16位數據帶寬,高主頻的SCSI存儲設備陸續出現並成為市場的主流產品,也使得SCSI技術牢牢地佔據了伺服器的存儲市場。SCSI-3協議則增加了能滿足特殊設備協議所需要的命令集,使得SCSI協議既適應傳統的並行傳輸設備,又能適應最新出現的一些串列設備的通訊需要,如光纖通道協議(FCP)、串列存儲協議(SSP)、串列匯流排協議等。漸漸地,「小型機」的概念開始弱化,「高性能計算機」和「伺服器」的概念在人們的心目中得到強化,SCSI一度成為用戶從硬體上來區分「伺服器」和PC機的一種標准。
通常情況下,用戶對SCSI匯流排的關心放在硬體上,不同的SCSI的工作模式意味著有不同的最大傳輸速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大傳輸速度並不代表設備正常工作時所能達到的平均訪問速度,也不意味著不同SCSI工作模式之間的訪問速度存在著必然的「倍數」關系。SCSI控制器的實際訪問速度與SCSI硬碟型號、技術參數,以及傳輸電纜長度、抗干擾能力等因素關系密切。提高SCSI匯流排效率必須關注SCSI設備端的配置和傳輸線纜的規范和質量。可以看出,Ultra 3模式下獲得的實際訪問速度還不到Ultra Wide模式下實際訪問速度的2倍。
一般說來,選用高速的SCSI硬碟、適當增加SCSI通道上連接硬碟數、優化應用對磁碟數據的訪問方式等,可以大幅度提高SCSI匯流排的實際傳輸速度。尤其需要說明的是,在同樣條件下,不同的磁碟訪問方式下獲得的SCSI匯流排實際傳輸速度可以相差幾十倍,對應用的優化是獲得高速存儲訪問時必須關注的重點,而這卻常常被一些用戶所忽視。按4KB數據塊隨機訪問6塊SCSI硬碟時,SCSI匯流排的實際訪問速度為2.74MB/s,SCSI匯流排的工作效率僅為匯流排帶寬的1.7%;在完全不變的條件下,按256KB的數據塊對硬碟進行順序讀寫,SCSI匯流排的實際訪問速度為141.2MB/s,SCSI匯流排的工作效率高達匯流排帶寬的88%。
隨著傳輸速度的提高,信號傳輸過程中的信號衰減和干擾問題顯得越來越突出,終結器在一定程度上可以起到降低信號波反射,改善信號質量的作用。同時,LVD(Low-Voltage Differential)技術的應用也越來越多。LVD工作模式是和SE(Single-Ended)模式相對應的,它可以很好地抵抗傳輸干擾,延長信號的傳輸距離。同時,Ultra 2 SCSI和Ultra 3 SCSI模式也通過採用專用的雙絞型SCSI電纜來提高信號傳輸的質量。
在磁碟陣列的概念中,大容量硬碟並不是指單個硬碟容量大,而是指將單個硬碟通過RAID技術,按RAID 級別組合成更大容量的硬碟。所以在磁碟陣列技術中,RAID技術是比較關鍵的,同時,根據所選用的RAID級別的不同,得到的「大硬碟」的功能也有不同。
RAID是一項非常成熟的技術,但由於其價格比較昂貴,配置也不方便,缺少相對專業的技術人員,所以應用並不十分普及。據統計,全世界75%的伺服器系統目前沒有配置RAID。由於伺服器存儲需求對數據安全性、擴展性等方面的要求越來越高,RAID市場的開發潛力巨大。RAID技術是一種工業標准,各廠商對RAID級別的定義也不盡相同。目前對RAID級別的定義可以獲得業界廣泛認同的只有4種,RAID 0、RAID 1、RAID 0+1和RAID 5。
RAID 0是無數據冗餘的存儲空間條帶化,具有低成本、極高讀寫性能、高存儲空間利用率的RAID級別,適用於Video / Audio信號存儲、臨時文件的轉儲等對速度要求極其嚴格的特殊應用。但由於沒有數據冗餘,其安全性大大降低,構成陣列的任何一塊硬碟損壞都將帶來數據災難性的損失。所以,在RAID 0中配置4塊以上的硬碟,對於一般應用來說是不明智的。
RAID 1是兩塊硬碟數據完全鏡像,安全性好,技術簡單,管理方便,讀寫性能均好。但其無法擴展(單塊硬碟容量),數據空間浪費大,嚴格意義上說,不應稱之為「陣列」。
RAID 0+1綜合了RAID 0和RAID 1的特點,獨立磁碟配置成RAID 0,兩套完整的RAID 0互相鏡像。它的讀寫性能出色,安全性高,但構建陣列的成本投入大,數據空間利用率低,不能稱之為經濟高效的方案。
RAID 5是目前應用最廣泛的RAID技術。各塊獨立硬碟進行條帶化分割,相同的條帶區進行奇偶校驗(異或運算),校驗數據平均分布在每塊硬碟上。以n塊硬碟構建的RAID 5陣列可以有n-1塊硬碟的容量,存儲空間利用率非常高(見圖6)。任何一塊硬碟上數據丟失,均可以通過校驗數據推算出來。它和RAID 3最大的區別在於校驗數據是否平均分布到各塊硬碟上。RAID 5具有數據安全、讀寫速度快,空間利用率高等優點,應用非常廣泛,但不足之處是1塊硬碟出現故障以後,整個系統的性能大大降低。
對於RAID 1、RAID 0+1、RAID 5陣列,配合熱插拔(也稱熱可替換)技術,可以實現數據的在線恢復,即當RAID陣列中的任何一塊硬碟損壞時,不需要用戶關機或停止應用服務,就可以更換故障硬碟,修復系統,恢復數據,對實現HA(High Availability)高可用系統具有重要意義。
各廠商還在不斷推出各種RAID級別和標准。例如更高安全性的,從RAID控制器開始鏡像的RAID;更快讀寫速度的,為構成RAID的每塊硬碟配置CPU和Cache的RAID等等,但都不普及。用IDE硬碟構建RAID的技術是新出現的一個技術方向,對市場影響也較大,其突出優點就是構建RAID陣列非常廉價。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三個級別,最多支持4塊IDE硬碟。由於受IDE設備擴展性的限制,同時,也由於IDE設備也缺乏熱可替換的技術支持的原因,IDE RAID的應用還不多。
總之,發展是永恆的主題,在伺服器存儲技術領域也不例外。一方面,一些巨頭廠商嘗試推出新的概念或標准,來領導伺服器及存儲技術的發展方向,較有代表性的如Intel力推的IA-64架構及存儲概念;另一方面,致力於存儲的專業廠商以現有技術和工業標准為基礎,推動SCSI、RAID、Fibre Channel等基於現有存儲技術和方案快速更新和發展。在市場經濟條件下,檢驗技術發展的唯一標準是市場的認同。市場呼喚好的技術,而新的技術必須起到推動市場向前發展作用時才能被廣泛接受和承認。隨著高性能計算機市場的發展,高性能比、高可靠性、高安全性的存儲新技術也會不斷涌現。
現在市場上的磁碟陣列產品有很多,用戶在選擇磁碟陣列產品的過程中,也要根據自己的需求來進行選擇,現在列舉幾個磁碟陣列產品,同時也為需要磁碟陣列產品的用戶提供一些選擇。表2列出了幾種磁碟陣列的主要技術指標。
--------------------------------------------------------------------------------
小知識:磁碟陣列的可靠性和可用性
可靠性,指的是硬碟在給定條件下發生故障的概率。可用性,指的是硬碟在某種用途中可能用的時間。磁碟陣列可以改善硬碟系統的可靠性。從表3中可以看到RAID硬碟子系統與單個硬碟子系統的可靠性比較。
此外,在系統的可用性方面,單一硬碟系統的可用性比沒有數據冗餘的磁碟陣列要好,而冗餘磁碟陣列的可用性比單個硬碟要好得多。這是因為冗餘磁碟陣列允許單個硬碟出錯,而繼續正常工作;一個硬碟故障後的系統恢復時間也大大縮短(與從磁帶恢復數據相比);冗餘磁碟陣列發生故障時,硬碟上的數據是故障當時的數據,替換後的硬碟也將包含故障時的數據。但是,要得到完全的容錯性能,計算機硬碟子系統的其它部件也必須有冗餘。
『陸』 什麼叫磁碟陣列,怎麼用
磁碟陣列(Rendant Arrays of Independent Drives,RAID),有「獨立磁碟構成的具有冗餘能力的陣列」之意。 磁碟陣列是由很多塊獨立的磁碟,組合成一個容量巨大的磁碟頃派組,利用個別磁碟提供數據所產生加成效果提升整個磁碟系統效能。利用這項技術,將數據切割成許多區段,分別存放在各個硬碟上。
磁碟陣列還能利用同位檢查(Parity Check)的觀念,在數組中任意一個硬碟故障時,仍可讀出數據,在數據重構時,將數據經計算後重新置入新硬碟中。
(6)磁碟陣列存儲技術擴展閱讀:
磁碟陣列RAID技術主要有以下三個基本功能:
1、通過對磁碟上的數據進行條帶化,實現對數據成塊存取,減少磁碟的機械尋道時間,提高了數據存取速度。局鏈
2、通過對一個陣列中的幾塊磁碟同時讀取,減少了磁碟的機械尋道時間,提高數據存取速度。[3]
3、通過鏡像或者存儲奇偶校驗雀臘賀信息的方式,實現了對數據的冗餘保護。