新聞爬蟲python
Ⅰ python如何簡單爬取騰訊新聞網前五頁文字內容
可以使用python裡面的一個爬蟲庫,beautifulsoup,這個庫可以很方便的爬取數據。爬蟲首先就得知道網頁的鏈接,然後獲取網頁的源代碼,通過正則表達式或者其他方法來獲取所需要的內容,具體還是要對著網頁源代碼進行操作,查看需要哪些地方的數據,然後通過beautifulsoup來爬取特定html標簽的內容。網上有很多相關的內容,可以看看。
Ⅱ Python的爬蟲框架哪個最好用
1、Scrapy:是一個為了抓取網站數據,提取數據結構性數據而編寫的應用框架,可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中,用這個框架可以輕松爬下來各種信息數據。
2、Pyspider:是一個用Python實現的功能強大的網路爬蟲系統,能在瀏覽器界面上進行腳本的編寫,功能的調度和爬取結果的實時查看,後端使用常用的資料庫進行抓取結構的存儲,還能定時設置任務與任務優先順序等。
3、Crawley:可以高速抓取對應網站內容,支持關系和非關系資料庫,數據可以導出為json、xml等。
4、Portia:是一個開源可視化爬蟲工具,可以讓您在不需要任何編程知識的情況下抓取網站,簡單地註解您感興趣的頁面,創建一個蜘蛛來從類似的頁面抓取數據。
5、Newspaper:可以用來提取新聞、文章和內容分析,使用多線程,支持10多種編程語言。
6、Beautiful Soup:是一個可以從HTML或者xml文件中提取數據的Python庫,它能通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式;同時幫你節省數小時甚至數天的工作時間。
7、Grab:是一個用於創建web刮板的Python框架,藉助Grab,您可以創建各種復雜的網頁抓取工具,從簡單的五行腳本到處理數萬個網頁的復雜非同步網站抓取工具。Grab提供一個api用於執行網路請求和處理接收到的內容。
8、Cola:是一個分布式的爬蟲框架,對於用戶來說,只需要編寫幾個特定的函數,而無需關注分布式運行的細節,任務會自動分配到多台機器上,整個過程對用戶是透明的。
Ⅲ Python中的爬蟲框架有哪些呢
實現爬蟲技術的編程環境有很多種,java、Python、C++等都可以用來爬蟲。但很多人選擇Python來寫爬蟲,為什麼呢?因為Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。那麼,Python爬蟲一般用什麼框架比較好?
一般來講,只有在遇到比較大型的需求時,才會使用Python爬蟲框架。這樣的做的主要目的,是為了方便管理以及擴展。本文我將向大家推薦十個Python爬蟲框架。
1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
2、Crawley:高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
3、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。
4、newspaper:可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。作者從requests庫的簡潔與強大得到靈感,使用Python開發的可用於提取文章內容的程序。支持10多種語言並且所有的都是unicode編碼。
5、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
6、Beautiful Soup:名氣大,整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
7、mechanize:它的優點是可以載入JS。當然它也有缺點,比如文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
9、cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
10、PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。
Ⅳ python網路爬蟲可以幹啥
Python爬蟲開發工程師,從網站某一個頁面(通常是首頁)開始,讀取網頁的內容,找到在網頁中的其它鏈接地址,然後通過這些鏈接地址尋找下一個網頁,這樣一直循環下去,直到把這個網站所有的網頁都抓取完為止。如果把整個互聯網當成一個網站,那麼網路蜘蛛就可以用這個原理把互聯網上所有的網頁都抓取下來。
網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動的抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻,自動索引,模擬程序或者蠕蟲。爬蟲就是自動遍歷一個網站的網頁,並把內容都下載下來
Ⅳ 最高效的python爬蟲框架有幾個
1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
2、Crawley:高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
3、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。
4、newspaper:可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。作者從requests庫的簡潔與強大得到靈感,使用Python開發的可用於提取文章內容的程序。支持10多種語言並且所有的都是unicode編碼。
5、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
6、Beautiful Soup:名氣大,整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
7、mechanize:它的優點是可以載入JS。當然它也有缺點,比如文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
9、cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
10、PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。
Ⅵ [內附完整源碼和文檔] 基於python的新聞檢索系統
1 系統介紹
1.1 系統需求
新聞檢索系統:定向採集不少於 4 個中文社會新聞網站或頻道,實現這些網站新聞信息及評論信息的自動爬取、抽取、索引和檢索。本項目未使用 lucene,Goose 等成熟開源框架。
1.2 系統思路與框架
本系統總體的實現思路如圖 1 所示:
一個完整的搜索系統主要的步驟是:
對新聞網頁進行爬蟲得到語料庫
抽取新聞的主體內容,得到結構化的 xml 數據
內存式單遍掃描索引構建方法構建倒排索引,供檢索模塊使用
用戶輸入查詢,得到相關文檔返回給用戶
2 設計方案
2.1 新聞爬取
2.1.1 演算法簡述
該模塊針對搜狐,網易,騰訊三大主流新聞網站及官方的參考消息網站進行了新聞獲取。並基於其網站結構,設計了不同的爬取模式。由於網站架構兩兩相似,以下選取兩種類型的典型代表進行介紹:
(1)搜狐新聞
搜狐新聞除正常主頁外,存在隱藏的列表式新聞頁 , 如 http://news.sohu.com/1/0903/62/subject212846206.shtml 。
(2)網易新聞
可以將網易新聞及騰訊新聞歸結為一般類型的新聞主頁,我們採用了自新聞主頁開始的廣度優先的遞歸爬取策略。注意到新聞的正文頁往往是靜態網頁.html,因此,我們將網頁中出現的所有以.html 結尾的網頁的 URL 均記錄下來,在爬取到一定量時,進行一次去重。
對於一些不是新聞的錯分網頁,容錯處理即通過檢查新聞正文標簽
時會被剔除。
新聞正文頁中我們重點關注內容,時間,評論獲取。
2.1.2 創新點
實現了對新聞網頁動態載入的評論進行爬取,如搜狐新聞評論爬取
未藉助開源新聞爬取工具,自己實現了對新聞標題,正文,時間,評論內容,評論數目的高效爬取
2.2 索引構建
分詞,我們藉助開源的 jieba 中文分片語件來完成,jieba 分詞能夠將一個中文句子切成一個個詞項,這樣就可以統計 tf, df 了
去停用詞,去停詞的步驟在 jieba 分詞之後完成
倒排記錄表存儲,詞典用 B-樹或 hash 存儲,倒排記錄表用鄰接鏈表存儲方式,這樣能大大減少存儲空間
倒排索引構建演算法使用內存式單遍掃描索引構建方法(SPIMI),就是依次對每篇新聞進行分詞,如果出現新的詞項則插入到詞典中,否則將該文檔的信息追加到詞項對應的倒排記錄表中。
2.3 檢索模塊
2.3.1 檢索模式
(1)關鍵詞檢索
查詢即根據用戶輸入的關鍵字,返回其相應的新聞。首先根據用戶的查詢進行 jieba 分詞,記錄分詞後詞項的數量以字典形式進行存儲。
完整的源碼和詳細的文檔,上傳到了 WRITE-BUG技術共享平台 上,需要的請自取:
https://www.write-bug.com/article/3122.html
Ⅶ 如何用Python做爬蟲
1)首先你要明白爬蟲怎樣工作。
想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。
突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。
那麼在python里怎麼實現呢?
很簡單
import Queue
initial_page = "初始化頁"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲好
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。
問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example
注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]
好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...
那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?
我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)
考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼於是寫成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。
但是如果附加上你需要這些後續處理,比如
有效地存儲(資料庫應該怎樣安排)
有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)
有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...
及時更新(預測這個網頁多久會更新一次)
如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。
所以,不要問怎麼入門,直接上路就好了:)
Ⅷ python爬蟲框架哪個好用
說實話感覺大同小異。各有優缺點吧~
常見python爬蟲框架
1)Scrapy:很強大的爬蟲框架,可以滿足簡單的頁面爬取(比如可以明確獲知url pattern的情況)。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。
2)Crawley: 高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等
3)Portia:可視化爬取網頁內容
4)newspaper:提取新聞、文章以及內容分析
5)python-goose:java寫的文章提取工具
6)Beautiful Soup:名氣大,整合了一些常用爬蟲需求。缺點:不能載入JS。
7)mechanize:優點:可以載入JS。缺點:文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8)selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。
9)cola:一個分布式爬蟲框架。項目整體設計有點糟,模塊間耦合度較高。
資料來源:網頁鏈接
希望我的回答對你有幫助~
Ⅸ 從零開始學python爬蟲(八):selenium提取數據和其他使用方法
知識點:
知識點:了解 driver對象的常用屬性和方法
注意:最新版本的selenium已經取消了這種格式,取而代之的是:
你要先導入:
然後再:
知識點:掌握 driver對象定位標簽元素獲取標簽對象的方法
代碼實現,如下,獲取騰訊新聞首頁的新聞標簽的內容。
知識點:掌握 元素對象的操作方法
參考代碼示例:
知識點:掌握 selenium控制標簽頁的切換
知識點:掌握 selenium控制frame標簽的切換
知識點:掌握 利用selenium獲取cookie的方法
知識點:掌握 selenium控制瀏覽器執行js代碼的方法
知識點:掌握 手動實現頁面等待
知識點:掌握 selenium開啟無界面模式
知識點:了解 selenium使用代理ip
知識點:了解 selenium替換user-agent
Ⅹ python爬蟲用什麼框架
python爬蟲框架概述
爬蟲框架中比較好用的是 Scrapy 和PySpider。pyspider上手更簡單,操作更加簡便,因為它增加了 WEB 界面,寫爬蟲迅速,集成了phantomjs,可以用來抓取js渲染的頁面。Scrapy自定義程度高,比 PySpider更底層一些,適合學習研究,需要學習的相關知識多,不過自己拿來研究分布式和多線程等等是非常合適的。
PySpider
PySpider是binux做的一個爬蟲架構的開源化實現。主要的功能需求是:
抓取、更新調度多站點的特定的頁面
需要對頁面進行結構化信息提取
靈活可擴展,穩定可監控
pyspider的設計基礎是:以python腳本驅動的抓取環模型爬蟲
通過python腳本進行結構化信息的提取,follow鏈接調度抓取控制,實現最大的靈活性
通過web化的腳本編寫、調試環境。web展現調度狀態
抓取環模型成熟穩定,模塊間相互獨立,通過消息隊列連接,從單進程到多機分布式靈活拓展
pyspider的架構主要分為 scheler(調度器), fetcher(抓取器), processor(腳本執行):
各個組件間使用消息隊列連接,除了scheler是單點的,fetcher 和 processor 都是可以多實例分布式部署的。 scheler 負責整體的調度控制
任務由 scheler 發起調度,fetcher 抓取網頁內容, processor 執行預先編寫的python腳本,輸出結果或產生新的提鏈任務(發往 scheler),形成閉環。
每個腳本可以靈活使用各種python庫對頁面進行解析,使用框架API控制下一步抓取動作,通過設置回調控制解析動作。
Scrapy
Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。
其最初是為了頁面抓取 (更確切來說, 網路抓取 )所設計的, 也可以應用在獲取API所返回的數據(例如 Amazon Associates Web Services ) 或者通用的網路爬蟲。Scrapy用途廣泛,可以用於數據挖掘、監測和自動化測試
Scrapy主要包括了以下組件:
引擎(Scrapy): 用來處理整個系統的數據流處理, 觸發事務(框架核心)
調度器(Scheler): 用來接受引擎發過來的請求, 壓入隊列中, 並在引擎再次請求的時候返回. 可以想像成一個URL(抓取網頁的網址或者說是鏈接)的優先隊列, 由它來決定下一個要抓取的網址是什麼, 同時去除重復的網址
下載器(Downloader): 用於下載網頁內容, 並將網頁內容返回給蜘蛛(Scrapy下載器是建立在twisted這個高效的非同步模型上的)
爬蟲(Spiders): 爬蟲是主要幹活的, 用於從特定的網頁中提取自己需要的信息, 即所謂的實體(Item)。用戶也可以從中提取出鏈接,讓Scrapy繼續抓取下一個頁面
項目管道(Pipeline): 負責處理爬蟲從網頁中抽取的實體,主要的功能是持久化實體、驗證實體的有效性、清除不需要的信息。當頁面被爬蟲解析後,將被發送到項目管道,並經過幾個特定的次序處理數據。
下載器中間件(Downloader Middlewares): 位於Scrapy引擎和下載器之間的框架,主要是處理Scrapy引擎與下載器之間的請求及響應。
爬蟲中間件(Spider Middlewares): 介於Scrapy引擎和爬蟲之間的框架,主要工作是處理蜘蛛的響應輸入和請求輸出。
調度中間件(Scheler Middewares): 介於Scrapy引擎和調度之間的中間件,從Scrapy引擎發送到調度的請求和響應。
Scrapy運行流程大概如下:
首先,引擎從調度器中取出一個鏈接(URL)用於接下來的抓取
引擎把URL封裝成一個請求(Request)傳給下載器,下載器把資源下載下來,並封裝成應答包(Response)
然後,爬蟲解析Response
若是解析出實體(Item),則交給實體管道進行進一步的處理。
若是解析出的是鏈接(URL),則把URL交給Scheler等待抓取