python中reshape函數
① python resize和reshape的區別
0. reshape的參數
reshape的參數嚴格地說,應該是tuple類型(tuple of ints),似乎不是tuple也成(ints)。
>>> x = np.random.rand(2, 3)
>>> x.reshape((3, 2))
# 以tuple of ints
array([[ 0.19399632, 0.33569667],
[ 0.36343308, 0.7068406 ],
[ 0.89809989, 0.7316493 ]])
>>> x.reshape(3, 2)
array([[ 0.19399632, 0.33569667],
[ 0.36343308, 0.7068406 ],
[ 0.89809989, 0.7316493 ]])
1. .reshape 實現維度的提升
(3, ) (3, 1):前者表示一維數組(無行和列的概念),後者則表示一個特殊的二維數組,也即是一個列向量;
>> x = np.ones(3)
>> x
array([ 1., 1., 1.])
>> x.reshape(3, 1)
array([[ 1.],
[ 1.],
[ 1.]])
>> x.reshape(1, 3)
array([[ 1., 1., 1.]])
2. .reshape 與 .resize
reshape:有返回值,所謂有返回值,即不對原始多維數組進行修改;
resize:無返回值,所謂有返回值,即會對原始多維數組進行修改;
>> X = np.random.randn(2, 3)
>> X
array([[ 1.23077478, -0.70550605, -0.37017735],
[-0.61543319, 1.1188644 , -1.05797142]])
>> X.reshape((3, 2))
array([[ 1.23077478, -0.70550605],
[-0.37017735, -0.61543319],
[ 1.1188644 , -1.05797142]])
>> X
array([[ 1.23077478, -0.70550605, -0.37017735],
[-0.61543319, 1.1188644 , -1.05797142]])
>> X.resize((3, 2))
>> X
array([[ 1.23077478, -0.70550605],
[-0.37017735, -0.61543319],
[ 1.1188644 , -1.05797142]])
② python中怎麼將一個數據集中的每條數據轉換成相應的矩陣
python的一個很重要的包是numpy包,這個包可以很方便的做數據科學計算。numpy中有很多方法,array,matrix,對於數據集的每一條數據,可以通過matrix函數來將其轉換為矩陣形式,並且還有reshape方法,可以調整矩陣的行和列。
③ python中numpy矩陣重排列是按行還是按列
Numpy可以使用reshape()函數進行矩陣重排列,默認按行排列(C語言風格),通過修改order參數可以改為按列排列(Fortran風格)。參考例子:
In[1]:importnumpyasnp
In[2]:a=np.array([[1,2,3],[4,5,6]])
In[3]:printa
[[123]
[456]]
In[4]:b=a.reshape((3,2))#默認按行排列
In[5]:printb
[[12]
[34]
[56]]
In[6]:c=a.reshape((3,2),order='F')#改為Fortran風格的按列排列
In[7]:printc
[[15]
[43]
[26]]
④ python基礎之numpy.reshape詳解
這個方法是在不改變數據內容的情況下,改變一個數組的格式,參數及返回值,官網介紹:
a:數組--需要處理的數據
newshape:新的格式--整數或整數數組,如(2,3)表示2行3列,新的形狀應該與原來的形狀兼容,即行數和列數相乘後等於a中元素的數量
order:
首先做出翻譯: order : 可選范圍為{『C』, 『F』, 『A』}。使用索引順序讀取a的元素,並按照索引順序將元素放到變換後的的數組中。如果不進行order參數的設置,默認參數為C。
(1)「C」指的是用類C寫的讀/索引順序的元素,最後一個維度變化最快,第一個維度變化最慢。以二維數組為例,簡單來講就是橫著讀,橫著寫,優先讀/寫一行。
(2)「F」是指用FORTRAN類索引順序讀/寫元素,最後一個維度變化最慢,第一個維度變化最快。豎著讀,豎著寫,優先讀/寫一列。注意,「C」和「F」選項不考慮底層數組的內存布局,只引用索引的順序。
(3)「A」選項所生成的數組的效果與原數組a的數據存儲方式有關,如果數據是按照FORTRAN存儲的話,它的生成效果與」F「相同,否則與「C」相同。這里可能聽起來有點模糊,下面會給出示例。
二、示例解釋
1、首先隨機生成一個4行3列的數組
2、使用reshape,這里有兩種使用方法,可以使用np.reshape(r,(-1,1),order='F'),也可以使用r1=r.reshape((-1,1),order='F'),這里我選擇使用第二種方法。通過示例可以觀察不同的order參數效果。
通過例子可以看出來,F是優先對列信息進行操作,而C是優先行信息操作。如果未對r的格式進行設置,那麼我們rashape的時候以「A」的順序進行order的話,它的效果和「C」相同。
3、我們將r的存儲方式進行修改,修改為類Fortan的方式進行存儲。並做與第2步類似的操作。
基礎操作樣例:
1.引入numpy,名稱為np
2.接下來創建一個數組a,可以看到這是一個一維的數組
3.使用reshape()方法來更改數組的形狀,可以看到看數組d成為了一個二維數組
4.通過reshape生成的新數組和原始數組公用一個內存,也就是說,假如更改一個數組的元素,另一個數組也將發生改變
5.同理還可以得到一個三維數組
reshape(-1,1)什麼意思:
大意是說,數組新的shape屬性應該要與原來的配套,如果等於-1的話,那麼Numpy會根據剩下的維度計算出數組的另外一個shape屬性值。
舉例:
同理,只給定行數,newshape等於-1,Numpy也可以自動計算出新數組的列數。
⑤ python svm 怎麼訓練模型
支持向量機SVM(Support Vector Machine)是有監督的分類預測模型,本篇文章使用機器學習庫scikit-learn中的手寫數字數據集介紹使用Python對SVM模型進行訓練並對手寫數字進行識別的過程。
准備工作
手寫數字識別的原理是將數字的圖片分割為8X8的灰度值矩陣,將這64個灰度值作為每個數字的訓練集對模型進行訓練。手寫數字所對應的真實數字作為分類結果。在機器學習sklearn庫中已經包含了不同數字的8X8灰度值矩陣,因此我們首先導入sklearn庫自帶的datasets數據集。然後是交叉驗證庫,SVM分類演算法庫,繪制圖表庫等。
12345678910#導入自帶數據集from sklearn import datasets#導入交叉驗證庫from sklearn import cross_validation#導入SVM分類演算法庫from sklearn import svm#導入圖表庫import matplotlib.pyplot as plt#生成預測結果准確率的混淆矩陣from sklearn import metrics讀取並查看數字矩陣
從sklearn庫自帶的datasets數據集中讀取數字的8X8矩陣信息並賦值給digits。
12#讀取自帶數據集並賦值給digitsdigits = datasets.load_digits()查看其中的數字9可以發現,手寫的數字9以64個灰度值保存。從下面的8×8矩陣中很難看出這是數字9。
12#查看數據集中數字9的矩陣digits.data[9]以灰度值的方式輸出手寫數字9的圖像,可以看出個大概輪廓。這就是經過切割並以灰度保存的手寫數字9。它所對應的64個灰度值就是模型的訓練集,而真實的數字9是目標分類。我們的模型所要做的就是在已知64個灰度值與每個數字對應關系的情況下,通過對模型進行訓練來對新的手寫數字對應的真實數字進行分類。
1234#繪制圖表查看數據集中數字9的圖像plt.imshow(digits.images[9], cmap=plt.cm.gray_r, interpolation='nearest')plt.title('digits.target[9]')plt.show()
從混淆矩陣中可以看到,大部分的數字SVM的分類和預測都是正確的,但也有個別的數字分類錯誤,例如真實的數字2,SVM模型有一次錯誤的分類為1,還有一次錯誤分類為7。
⑥ Python基礎 numpy中的常見函數有哪些
有些Python小白對numpy中的常見函數不太了解,今天小編就整理出來分享給大家。
Numpy是Python的一個科學計算的庫,提供了矩陣運算的功能,其一般與Scipy、matplotlib一起使用。其實,list已經提供了類似於矩陣的表示形式,不過numpy為我們提供了更多的函數。
數組常用函數
1.where()按條件返回數組的索引值
2.take(a,index)從數組a中按照索引index取值
3.linspace(a,b,N)返回一個在(a,b)范圍內均勻分布的數組,元素個數為N個
4.a.fill()將數組的所有元素以指定的值填充
5.diff(a)返回數組a相鄰元素的差值構成的數組
6.sign(a)返回數組a的每個元素的正負符號
7.piecewise(a,[condlist],[funclist])數組a根據布爾型條件condlist返回對應元素結果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改變數組維度
a.ravel(),a.flatten():將數組a展平成一維數組
a.shape=(m,n),a.reshape(m,n):將數組a轉換成m*n維數組
a.transpose,a.T轉置數組a
數組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數組a,b沿豎直方向組合
3.row_stack((a,b))將數組a,b按行方向組合
4.column_stack((a,b))將數組a,b按列方向組合
數組分割
1.split(a,n,axis=0),vsplit(a,n)將數組a沿垂直方向分割成n個數組
2.split(a,n,axis=1),hsplit(a,n)將數組a沿水平方向分割成n個數組
數組修剪和壓縮
1.a.clip(m,n)設置數組a的范圍為(m,n),數組中大於n的元素設定為n,小於m的元素設定為m
2.a.compress()返回根據給定條件篩選後的數組
數組屬性
1.a.dtype數組a的數據類型
2.a.shape數組a的維度
3.a.ndim數組a的維數
4.a.size數組a所含元素的總個數
5.a.itemsize數組a的元素在內存中所佔的位元組數
6.a.nbytes整個數組a所佔的內存空間7.a.astype(int)轉換a數組的類型為int型
數組計算
1.average(a,weights=v)對數組a以權重v進行加權平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數組a的均值、最大值、最小值、中位數、方差、標准差
3.a.prod()數組a的所有元素的乘積
4.a.cumprod()數組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數組a和b的協方差、相關系數
6.a.diagonal()查看矩陣a對角線上的元素7.a.trace()計算矩陣a的跡,即對角線元素之和
以上就是numpy中的常見函數。更多Python學習推薦:PyThon學習網教學中心。
⑦ python處理圖片數據
目錄
1.機器是如何存儲圖像的?
2.在Python中讀取圖像數據
3.從圖像數據中提取特徵的方法#1:灰度像素值特徵
4.從圖像數據中提取特徵的方法#2:通道的平均像素值
5.從圖像數據中提取特徵的方法#3:提取邊緣
是一張數字8的圖像,仔細觀察就會發現,圖像是由小方格組成的。這些小方格被稱為像素。
但是要注意,人們是以視覺的形式觀察圖像的,可以輕松區分邊緣和顏色,從而識別圖片中的內容。然而機器很難做到這一點,它們以數字的形式存儲圖像。請看下圖:
機器以數字矩陣的形式儲存圖像,矩陣大小取決於任意給定圖像的像素數。
假設圖像的尺寸為180 x 200或n x m,這些尺寸基本上是圖像中的像素數(高x寬)。
這些數字或像素值表示像素的強度或亮度,較小的數字(接近0)表示黑色,較大的數字(接近255)表示白色。通過分析下面的圖像,讀者就會弄懂到目前為止所學到的知識。
下圖的尺寸為22 x 16,讀者可以通過計算像素數來驗證:
圖片源於機器學習應用課程
剛才討論的例子是黑白圖像,如果是生活中更為普遍的彩色呢?你是否認為彩色圖像也以2D矩陣的形式存儲?
彩色圖像通常由多種顏色組成,幾乎所有顏色都可以從三原色(紅色,綠色和藍色)生成。
因此,如果是彩色圖像,則要用到三個矩陣(或通道)——紅、綠、藍。每個矩陣值介於0到255之間,表示該像素的顏色強度。觀察下圖來理解這個概念:
圖片源於機器學習應用課程
左邊有一幅彩色圖像(人類可以看到),而在右邊,紅綠藍三個顏色通道對應三個矩陣,疊加三個通道以形成彩色圖像。
請注意,由於原始矩陣非常大且可視化難度較高,因此這些不是給定圖像的原始像素值。此外,還可以用各種其他的格式來存儲圖像,RGB是最受歡迎的,所以筆者放到這里。讀者可以在此處閱讀更多關於其他流行格式的信息。
用Python讀取圖像數據
下面開始將理論知識付諸實踐。啟動Python並載入圖像以觀察矩陣:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩陣有784個值,而且這只是整個矩陣的一小部分。用一個LIVE編碼窗口,不用離開本文就可以運行上述所有代碼並查看結果。
下面來深入探討本文背後的核心思想,並探索使用像素值作為特徵的各種方法。
方法#1:灰度像素值特徵
從圖像創建特徵最簡單的方法就是將原始的像素用作單獨的特徵。
考慮相同的示例,就是上面那張圖(數字『8』),圖像尺寸為28×28。
能猜出這張圖片的特徵數量嗎?答案是與像素數相同!也就是有784個。
那麼問題來了,如何安排這784個像素作為特徵呢?這樣,可以簡單地依次追加每個像素值從而生成特徵向量。如下圖所示:
下面來用Python繪制圖像,並為該圖像創建這些特徵:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
該圖像尺寸為650×450,因此特徵數量應為297,000。可以使用NumPy中的reshape函數生成,在其中指定圖像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
這里就得到了特徵——長度為297,000的一維數組。很簡單吧?在實時編碼窗口中嘗試使用此方法提取特徵。
但結果只有一個通道或灰度圖像,對於彩色圖像是否也可以這樣呢?來看看吧!
方法#2:通道的平均像素值
在讀取上一節中的圖像時,設置了參數『as_gray = True』,因此在圖像中只有一個通道,可以輕松附加像素值。下面刪除參數並再次載入圖像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
這次,圖像尺寸為(660,450,3),其中3為通道數量。可以像之前一樣繼續創建特徵,此時特徵數量將是660*450*3 = 891,000。
或者,可以使用另一種方法:
生成一個新矩陣,這個矩陣具有來自三個通道的像素平均值,而不是分別使用三個通道中的像素值。
下圖可以讓讀者更清楚地了解這一思路:
這樣一來,特徵數量保持不變,並且還能考慮來自圖像全部三個通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
現有一個尺寸為(660×450×3)的三維矩陣,其中660為高度,450為寬度,3是通道數。為獲取平均像素值,要使用for循環:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩陣具有相同的高度和寬度,但只有一個通道。現在,可以按照與上一節相同的步驟進行操作。依次附加像素值以獲得一維數組:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取邊緣特徵
請思考,在下圖中,如何識別其中存在的對象:
識別出圖中的對象很容易——狗、汽車、還有貓,那麼在區分的時候要考慮哪些特徵呢?形狀是一個重要因素,其次是顏色,或者大小。如果機器也能像這樣識別形狀會怎麼樣?
類似的想法是提取邊緣作為特徵並將其作為模型的輸入。稍微考慮一下,要如何識別圖像中的邊緣呢?邊緣一般都是顏色急劇變化的地方,請看下圖:
筆者在這里突出了兩個邊緣。這兩處邊緣之所以可以被識別是因為在圖中,可以分別看到顏色從白色變為棕色,或者由棕色變為黑色。如你所知,圖像以數字的形式表示,因此就要尋找哪些像素值發生了劇烈變化。
假設圖像矩陣如下:
圖片源於機器學習應用課程
該像素兩側的像素值差異很大,於是可以得出結論,該像素處存在顯著的轉變,因此其為邊緣。現在問題又來了,是否一定要手動執行此步驟?
當然不!有各種可用於突出顯示圖像邊緣的內核,剛才討論的方法也可以使用Prewitt內核(在x方向上)來實現。以下是Prewitt內核:
獲取所選像素周圍的值,並將其與所選內核(Prewitt內核)相乘,然後可以添加結果值以獲得最終值。由於±1已經分別存在於兩列之中,因此添加這些值就相當於獲取差異。
還有其他各種內核,下面是四種最常用的內核:
圖片源於機器學習應用課程
現在回到筆記本,為同一圖像生成邊緣特徵:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
⑧ Python Opencv中對圖像的reshape(1,48,48,1)轉換的意思
用的 opencv 先灰度模糊,再二值化,找到圖形輪廓最後確定中心點·~
⑨ python:定義函數,輸入一個m維數組X和一個整數n,輸出一個n*m的矩陣M,其中 M[i] [j]=
#Python3.6
importnumpyasnp
whileTrue:
x=input("輸入一個m維數組,元素以空格分開:")
try:
#splitinput
x=x.split()
s=[]
#iterate:str-->int
foriinx:
s.append(int(i))
x=s
break
except:
print("輸入有錯,請重新輸入。")
whileTrue:
n=input("整數n:")
try:
n=int(n)
break
except:
print("輸入有錯,請重新輸入。")
#mapobject-->listobject
lst=[iforiinx]
#listobject-->numpy.arrayobject
mtrx=np.array(lst)
#the1stlineofmatrixasatemplate
mtrx_1=np.(mtrx)
k=len(mtrx)
#reshape(k,)to(1,k)forconcatenate
mtrx=np.reshape(mtrx,(1,k))
#calculateleftlines
foriinrange(1,n):
tmp=np.power(mtrx_1,i+1)
tmp=np.reshape(tmp,(1,k))
mtrx=np.concatenate((mtrx,tmp),axis=0)
print(mtrx)
⑩ python 中怎麼用numpy定義reshape的float數組
Numpy的主要數據類型是ndarray,即多維數組。它有以下幾個屬性:ndarray.ndim:數組的維數
ndarray.shape:數組每一維的大小
ndarray.size:數組中全部元素的數量
ndarray.dtype:數組中元素的類型(numpy.int32, numpy.int16, and numpy.float64等)
ndarray.itemsize:每個元素占幾個位元組!