pythonsvgpng
① python可視化神器——pyecharts庫
無意中從今日頭條中看到的一篇文章,可以生成簡單的圖表。據說一些大數據開發們也是經常用類似的圖表庫,畢竟有現成的,改造下就行,誰會去自己造輪子呢。
pyecharts是什麼?
pyecharts 是一個用於生成 Echarts 圖表的類庫。Echarts 是網路開源的一個數據可視化 JS 庫。用 Echarts 生成的圖可視化效果非常棒, pyecharts 是為了與 Python 進行對接,方便在 Python 中直接使用數據生成圖 。使用pyecharts可以生成獨立的網頁,也可以在flask、django中集成使用。
安裝很簡單:pip install pyecharts
如需使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可,同時兼容 Python2 和 Python3 的 Jupyter Notebook 環境。所有圖表均可正常顯示,與瀏覽器一致的交互體驗,簡直不要太強大。
參考自pyecharts官方文檔: http://pyecharts.org
首先開始來繪制你的第一個圖表
使用 Jupyter Notebook 來展示圖表,只需要調用自身實例即可
add() 主要方法,用於添加圖表的數據和設置各種配置項
render() 默認將會在根目錄下生成一個 render.html 的文件,文件用瀏覽器打開。
使用主題
自 0.5.2+ 起,pyecharts 支持更換主體色系
使用 pyecharts-snapshot 插件
如果想直接將圖片保存為 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用該插件請確保你的系統上已經安裝了 Nodejs 環境。
安裝 phantomjs $ npm install -g phantomjs-prebuilt
安裝 pyecharts-snapshot $ pip install pyecharts-snapshot
調用 render 方法 bar.render(path='snapshot.png') 文件結尾可以為 svg/jpeg/png/pdf/gif。請注意,svg 文件需要你在初始化 bar 的時候設置 renderer='svg'。
圖形繪制過程
基本上所有的圖表類型都是這樣繪制的:
chart_name = Type() 初始化具體類型圖表。
add() 添加數據及配置項。
render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。
add() 數據一般為兩個列表(長度一致)。如果你的數據是字典或者是帶元組的字典。可利用 cast() 方法轉換。
多次顯示圖表
從 v0.4.0+ 開始,pyecharts 重構了渲染的內部邏輯,改善效率。推薦使用以下方式顯示多個圖表。如果使是 Numpy 或者 Pandas,可以參考這個示例
當然你也可以採用更加酷炫的方式,使用 Jupyter Notebook 來展示圖表,matplotlib 有的,pyecharts 也會有的
Note: 從 v0.1.9.2 版本開始,廢棄 render_notebook() 方法,現已採用更加 pythonic 的做法。直接調用本身實例就可以了。
比如這樣
還有這樣
如果使用的是自定義類,直接調用自定義類示例即可
圖表配置
圖形初始化
通用配置項
xyAxis:平面直角坐標系中的 x、y 軸。(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 組件 用於區域縮放,從而能自由關注細節的數據信息,或者概覽數據整體,或者去除離群點的影響。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)
legend:圖例組件。圖例組件展現了不同系列的標記(symbol),顏色和名字。可以通過點擊圖例控制哪些系列不顯示。
label:圖形上的文本標簽,可用於說明圖形的一些數據信息,比如值,名稱等。
lineStyle:帶線圖形的線的風格選項(Line、Polar、Radar、Graph、Parallel)
grid3D:3D笛卡爾坐標系組配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
axis3D:3D 笛卡爾坐標系 X,Y,Z 軸配置項,適用於 3D 圖形。(Bar3D, Line3D, Scatter3D)
visualMap:是視覺映射組件,用於進行『視覺編碼』,也就是將數據映射到視覺元素(視覺通道)
markLine&markPoint:圖形標記組件,用於標記指定的特殊數據,有標記線和標記點兩種。(Bar、Line、Kline)
tooltip:提示框組件,用於移動或點擊滑鼠時彈出數據內容
toolbox:右側實用工具箱
圖表詳細
Bar(柱狀圖/條形圖)
Bar3D(3D 柱狀圖)
Boxplot(箱形圖)
EffectScatter(帶有漣漪特效動畫的散點圖)
Funnel(漏斗圖)
Gauge(儀表盤)
Geo(地理坐標系)
GeoLines(地理坐標系線圖)
Graph(關系圖)
HeatMap(熱力圖)
Kline/Candlestick(K線圖)
Line(折線/面積圖)
Line3D(3D 折線圖)
Liquid(水球圖)
Map(地圖)
Parallel(平行坐標系)
Pie(餅圖)
Polar(極坐標系)
Radar(雷達圖)
Sankey(桑基圖)
Scatter(散點圖)
Scatter3D(3D 散點圖)
ThemeRiver(主題河流圖)
TreeMap(矩形樹圖)
WordCloud(詞雲圖)
用戶自定義
Grid 類:並行顯示多張圖
Overlap 類:結合不同類型圖表疊加畫在同張圖上
Page 類:同一網頁按順序展示多圖
Timeline 類:提供時間線輪播多張圖
統一風格
註:pyecharts v0.3.2以後,pyecharts 將不再自帶地圖 js 文件。如用戶需要用到地圖圖表,可自行安裝對應的地圖文件包。
地圖文件被分成了三個 Python 包,分別為:
全球國家地圖:
echarts-countries-pypkg
中國省級地圖:
echarts-china-provinces-pypkg
中國市級地圖:
echarts-china-cities-pypkg
直接使用python的pip安裝
但是這里大家一定要注意,安裝完地圖包以後一定要重啟jupyter notebook,不然是無法顯示地圖的。
顯示如下:
總得來說,這是一個非常強大的可視化庫,既可以集成在flask、Django開發中,也可以在做數據分析的時候單獨使用,實在是居家旅行的必備神器啊
② python數據分析需要哪些庫
1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中Z出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的Z佳工具,以及用自然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。
③ Python實操:手把手教你用Matplotlib把數據畫出來
作者:邁克爾·貝耶勒(Michael Beyeler)
如需轉載請聯系華章 科技
如果已安裝Anaconda Python版本,就已經安裝好了可以使用的 Matplotlib。否則,可能要訪問官網並從中獲取安裝說明:
http://matplotlib.org
正如使用np作為 NumPy 的縮寫,我們將使用一些標準的縮寫來表示 Matplotlib 的引入:
在本書中,plt介面會被頻繁使用。
讓我們創建第一個繪圖。
假設想要畫出正弦函數sin(x)的線性圖。得到函數在x坐標軸上0≤x<10內所有點的值。我們將使用 NumPy 中的 linspace 函數來在x坐標軸上創建一個從0到10的線性空間,以及100個采樣點:
可以使用 NumPy 中的sin函數得到所有x點的值,並通過調用plt中的plot函數把結果畫出來:
你親自嘗試了嗎?發生了什麼嗎?有沒有什麼東西出現?
實際情況是,取決於你在哪裡運行腳本,可能無法看到任何東西。有下面幾種可能性:
1. 從.py腳本中繪圖
如果從一個腳本中運行 Matplotlib,需要加上下面的這行調用:
在腳本末尾調用這個函數,你的繪圖就會出現!
2. 從 IPython shell 中繪圖
這實際上是互動式地執行Matplotlib最方便的方式。為了讓繪圖出現,需要在啟動 IPython 後使用所謂的%matplotlib魔法命令。
接下來,無須每次調用plt.show()函數,所有的繪圖將會自動出現。
3. 從 Jupyter Notebook 中繪圖
如果你是從基於瀏覽器的 Jupyter Notebook 中看這段代碼,需要使用同樣的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入圖形,這會有兩種輸出選項:
在本書中,將會使用inline選項:
現在再次嘗試一下:
上面的命令會得到下面的繪圖輸出結果:
如果想要把繪圖保存下來留作以後使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
僅需要確保你使用了支持的文件後綴,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作為本章最後一個測試,讓我們對外部數據集進行可視化,比如scikit-learn中的數字數據集。
為此,需要三個可視化工具:
那麼開始引入這些包吧:
第一步是載入實際數據:
如果沒記錯的話,digits應該有兩個不同的數據域:data域包含了真正的圖像數據,target域包含了圖像的標簽。相對於相信我們的記憶,我們還是應該對digits稍加 探索 。輸入它的名字,添加一個點號,然後按Tab鍵:digits.<TAB>,這個操作將向我們展示digits也包含了一些其他的域,比如一個名為images的域。images和data這兩個域,似乎簡單從形狀上就可以區分。
兩種情況中,第一維對應的都是數據集中的圖像數量。然而,data中所有像素都在一個大的向量中排列,而images保留了各個圖像8×8的空間排列。
因此,如果想要繪制出一副單獨的圖像,使用images將更加合適。首先,使用NumPy的數組切片從數據集中獲取一幅圖像:
這里是從1797個元素的數組中獲取了它的第一行數據,這行數據對應的是8×8=64個像素。下面就可以使用plt中的imshow函數來繪制這幅圖像:
上面的命令得到下面的輸出:
此外,這里也使用cmap參數指定了一個顏色映射。默認情況下,Matplotlib 使用MATLAB默認的顏色映射jet。然而,在灰度圖像的情況下,gray顏色映射更有效。
最後,可以使用plt的subplot函數繪制全部數字的樣例。subplot函數與MATLAB中的函數一樣,需要指定行數、列數以及當前的子繪圖索引(從1開始計算)。我們將使用for 循環在數據集中迭代出前十張圖像,每張圖像都分配到一個單獨的子繪圖中。
這會得到下面的輸出結果:
關於作者:Michael Beyeler,華盛頓大學神經工程和數據科學專業的博士後,主攻仿生視覺計算模型,用以為盲人植入人工視網膜(仿生眼睛),改善盲人的視覺體驗。 他的工作屬於神經科學、計算機工程、計算機視覺和機器學習的交叉領域。同時他也是多個開源項目的積極貢獻者。
本文摘編自《機器學習:使用OpenCV和Python進行智能圖像處理》,經出版方授權發布。
④ python 的dash和pycharts哪個好
我理解你是想問Plotly的dash和pychart的對比吧。
Plotly』s 『Dash』 functionality allows you to use Python to build rich analytic web apps to work with your platform。Plotly is great for Data Analysts and Data Scientists. But will also be suitable for users of mixed abilities.
如果你需要使用SQL來讀取數據的話,用dash比較好。
Pychart 也是一個輕量級的python圖形庫,支持線狀圖、柱狀圖、餅狀圖、范圍圖,以及Encapsulated Postscript, PDF, PNG, SVG 等多種格式。圖表外觀樸素不花哨,已經夠用了。
我覺得如果是專業應用的話,考慮用dash比較好一些,pychart的話可以平常簡單應用的場景使用。