python匹配演算法
『壹』 python 子集的演算法優化; 找尋一個list的所有滿足特定條件的子集
使用 itertools呀
importitertools
#有序
printlist(itertools.permutations([1,2,3,4],2))
[(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)]
#無序
printlist(itertools.combinations([1,2,3,4],2))
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
『貳』 python 矩陣 匹配 求助
在 Python 中,可以使用 NumPy 庫來解決這個問題。
首先,需要將矩陣 A、n1、n2 作為 NumPy 數組讀入內存。例如:
import numpy as np
A = np.array([
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]
])
n1 = np.array([
[1, 2],
[5, 6]
])
n2 = np.array([
[3, 4],
[7, 8]
])
接下來,可以使用 NumPy 的 correlate2d() 函數,將矩陣 A 與 n1 或 n2 進行二維卷積,並查看結果是否為非零值。例如:鏈臘春
result1 = np.correlate2d(A, n1)
result2 = np.correlate2d(A, n2)if np.any(result1): print('n1 在 A 中有對應的位置')else: print('n1 在 A 中沒有對應的位置')if np.any(result2): print('n2 在 A 中有對應的位置')else: print('n2 在 A 中沒有對應的位置')
如果矩陣 A 中包含 n1 或 n2,棚耐則上面的程序會輸出 "n1 在 A 中有對應的位置" 或 "n2 在 A 中有對應的位置"。
下面的程序中,我們使用了 NumPy 的 nonzero() 函數來找到結果矩陣中的非零值的位置,並將這些位置列印出來。
result1 = np.correlate2d(A, n1)
result2 = np.correlate2d(A, n2)
if np.any(result1): print('n1 在 A 中有對應的位置:') print(np.nonzero(result1))
else: print('n1 在 A 中沒有對應的位置')
if np.any(result2): print('n2 在 A 中有對應的位局凳置:') print(np.nonzero(result2))
else: print('n2 在 A 中沒有對應的位置')
運行上面的程序,如果 A、n1、n2 的值為上面的值,則會輸出如下內容:
n1 在 A 中有對應的位置:
(array([0]), array([0]))
n2 在 A 中沒有對應的位置
這表示,n1 在矩陣 A 的第 (0, 0) 位置有對應的位置,而 n2 在矩陣 A 中沒有對應的位置。
希望這些信息能幫助你理解並實現演算法。
『叄』 python如何實現動態規劃演算法尋找最優匹配子串
把較低的mismatch用字典保存一下,就好了。如:
def match(s1,s2):
length = len(s2)result = ""resultMissmatchCount=lengthseqdict={}for index,s in enumerate(s1[:-length]):
missmatch = 0
for j,k in zip(s1[index:index+length],s2): #[(s1[0],s2[0]),(s1[1],s2[1]),...]
if j!=k:
missmatch += 1
if missmatch <= resultMissmatchCount:
seqdict[missmatch]=s1[index:index+length]
resultMissmatchCount = missmatch
minkey=min(seqdict.keys())result = seqdict[minkey]return result
『肆』 如何線上部署用python基於dlib寫的人臉識別演算法
python使用dlib進行人臉檢測與人臉關鍵點標記
Dlib簡介:
首先給大家介紹一下Dlib
我使用的版本是dlib-18.17,大家也可以在我這里下載:
之後進入python_examples下使用bat文件進行編譯,編譯需要先安裝libboost-python-dev和cmake
cd to dlib-18.17/python_examples
./compile_dlib_python_mole.bat 123
之後會得到一個dlib.so,復制到dist-packages目錄下即可使用
這里大家也可以直接用我編譯好的.so庫,但是也必須安裝libboost才可以,不然python是不能調用so庫的,下載地址:
將.so復制到dist-packages目錄下
sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1
最新的dlib18.18好像就沒有這個bat文件了,取而代之的是一個setup文件,那麼安裝起來應該就沒有這么麻煩了,大家可以去直接安裝18.18,也可以直接下載復制我的.so庫,這兩種方法應該都不麻煩~
有時候還會需要下面這兩個庫,建議大家一並安裝一下
9.安裝skimage
sudo apt-get install python-skimage1
10.安裝imtools
sudo easy_install imtools1
Dlib face landmarks Demo
環境配置結束之後,我們首先看一下dlib提供的示常式序
1.人臉檢測
dlib-18.17/python_examples/face_detector.py 源程序:
#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image. In# particular, it shows how you can take a list of images from the command# line and display each on the screen with red boxes overlaid on each human# face.## The examples/faces folder contains some jpg images of people. You can run# this program on them and see the detections by executing the# following command:# ./face_detector.py ../examples/faces/*.jpg## This face detector is made using the now classic Histogram of Oriented# Gradients (HOG) feature combined with a linear classifier, an image# pyramid, and sliding window detection scheme. This type of object detector# is fairly general and capable of detecting many types of semi-rigid objects# in addition to human faces. Therefore, if you are interested in making# your own object detectors then read the train_object_detector.py example# program. ### COMPILING THE DLIB PYTHON INTERFACE# Dlib comes with a compiled python interface for python 2.7 on MS Windows. If# you are using another python version or operating system then you need to# compile the dlib python interface before you can use this file. To do this,# run compile_dlib_python_mole.bat. This should work on any operating# system so long as you have CMake and boost-python installed.# On Ubuntu, this can be done easily by running the command:# sudo apt-get install libboost-python-dev cmake## Also note that this example requires scikit-image which can be installed# via the command:# pip install -U scikit-image# Or downloaded from . import sys
import dlib
from skimage import io
detector = dlib.get_frontal_face_detector()
win = dlib.image_window()
print("a");for f in sys.argv[1:]:
print("a");
print("Processing file: {}".format(f))
img = io.imread(f)
# The 1 in the second argument indicates that we should upsample the image
# 1 time. This will make everything bigger and allow us to detect more
# faces.
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets))) for i, d in enumerate(dets):
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom()))
win.clear_overlay()
win.set_image(img)
win.add_overlay(dets)
dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection. The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched. This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) > 0):
img = io.imread(sys.argv[1])
dets, scores, idx = detector.run(img, 1) for i, d in enumerate(dets):
print("Detection {}, score: {}, face_type:{}".format(
d, scores[i], idx[i]))5767778798081
我把源代碼精簡了一下,加了一下注釋: face_detector0.1.py
# -*- coding: utf-8 -*-import sys
import dlib
from skimage import io#使用dlib自帶的frontal_face_detector作為我們的特徵提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的圖片窗口win = dlib.image_window()#sys.argv[]是用來獲取命令行參數的,sys.argv[0]表示代碼本身文件路徑,所以參數從1開始向後依次獲取圖片路徑for f in sys.argv[1:]: #輸出目前處理的圖片地址
print("Processing file: {}".format(f)) #使用skimage的io讀取圖片
img = io.imread(f) #使用detector進行人臉檢測 dets為返回的結果
dets = detector(img, 1) #dets的元素個數即為臉的個數
print("Number of faces detected: {}".format(len(dets))) #使用enumerate 函數遍歷序列中的元素以及它們的下標
#下標i即為人臉序號
#left:人臉左邊距離圖片左邊界的距離 ;right:人臉右邊距離圖片左邊界的距離
#top:人臉上邊距離圖片上邊界的距離 ;bottom:人臉下邊距離圖片上邊界的距離
for i, d in enumerate(dets):
print("dets{}".format(d))
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}"
.format( i, d.left(), d.top(), d.right(), d.bottom())) #也可以獲取比較全面的信息,如獲取人臉與detector的匹配程度
dets, scores, idx = detector.run(img, 1)
for i, d in enumerate(dets):
print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))
#繪制圖片(dlib的ui庫可以直接繪制dets)
win.set_image(img)
win.add_overlay(dets) #等待點擊
dlib.hit_enter_to_continue()041424344454647484950
分別測試了一個人臉的和多個人臉的,以下是運行結果:
運行的時候把圖片文件路徑加到後面就好了
python face_detector0.1.py ./data/3.jpg12
一張臉的:
兩張臉的:
這里可以看出側臉與detector的匹配度要比正臉小的很多
2.人臉關鍵點提取
人臉檢測我們使用了dlib自帶的人臉檢測器(detector),關鍵點提取需要一個特徵提取器(predictor),為了構建特徵提取器,預訓練模型必不可少。
除了自行進行訓練外,還可以使用官方提供的一個模型。該模型可從dlib sourceforge庫下載:
arks.dat.bz2
也可以從我的連接下載:
這個庫支持68個關鍵點的提取,一般來說也夠用了,如果需要更多的特徵點就要自己去訓練了。
dlib-18.17/python_examples/face_landmark_detection.py 源程序:
#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt## This example program shows how to find frontal human faces in an image and# estimate their pose. The pose takes the form of 68 landmarks. These are# points on the face such as the corners of the mouth, along the eyebrows, on# the eyes, and so forth.## This face detector is made using the classic Histogram of Oriented# Gradients (HOG) feature combined with a linear
『伍』 OpenCV+Python特徵提取演算法與圖像描述符之SIFT / SURF / ORB
演算法效果比較博文
用於表示和量化圖像的數字列表,簡單理解成將圖片轉化為一個數字列表表示。特徵向量中用來描述圖片的各種屬性的向量稱為特徵矢量。
參考
是一種演算法和方法,輸入1個圖像,返回多個特徵向量(主要用來處理圖像的局部,往往會把多個特徵向量組成一個一維的向量)。主要用於圖像匹配(視覺檢測),匹配圖像中的物品。
SIFT論文
原理
opencv官網解釋
實質是在不同的尺度空間上查找關鍵點(特徵點),並計算出關鍵點的方向。SIFT所查找到的關鍵點是一些十分突出,不會因光照,仿射變換和噪音等因素而變化的點,如角點、邊緣點、暗區的亮點及亮區的暗點等。
尺度不變特徵轉換(Scale-invariant feature transform或SIFT)是一種電腦視覺的演算法用來偵測與描述影像中的局部性特徵,它在空間尺度中尋找極值點,並提取出其位置、尺度、旋轉不變數。
其應用范圍包含物體辨識、機器人地圖感知與導航、影像縫合、3D模型建立、手勢辨識、影像追蹤和動作比對。
對現實中物體的描述一定要在一個十分重要的前提下進行,這個前提就是對自然界建模時的尺度。當用一個機器視覺系統分析未知場景時,計算機沒有辦法預先知道圖像中物體的尺度,因此我們需要同時考慮圖像在多尺度下的描述,獲知感興趣物體的最佳尺度。圖像的尺度空間表達指的是圖像的所有尺度下的描述。
KeyPoint數據結構解析
SURF論文
原理
opencv官網解釋
SURF是SIFT的加速版,它善於處理具有模糊和旋轉的圖像,但是不善於處理視角變化和光照變化。在SIFT中使用DoG對LoG進行近似,而在SURF中使用盒子濾波器對LoG進行近似,這樣就可以使用積分圖像了(計算圖像中某個窗口內所有像素和時,計算量的大小與窗口大小無關)。總之,SURF最大的特點在於採用了Haar特徵以及積分圖像的概念,大大加快了程序的運行效率。
因為專利原因,OpenCV3.3開始不再免費開放SIFT\SURF,需要免費的請使用ORB演算法
ORB演算法綜合了FAST角點檢測演算法和BRIEFF描述符。
演算法原理
opencv官方文檔
FAST只是一種特徵點檢測演算法,並不涉及特徵點的特徵描述。
論文
opencv官方文檔
中文版
Brief是Binary Robust Independent Elementary Features的縮寫。這個特徵描述子是由EPFL的Calonder在ECCV2010上提出的。主要思路就是在特徵點附近隨機選取若干點對,將這些點對的灰度值的大小,組合成一個二進制串,並將這個二進制串作為該特徵點的特徵描述子。文章同樣提到,在此之前,需要選取合適的gaussian kernel對圖像做平滑處理。
1:不具備旋轉不變性。
2:對雜訊敏感
3:不具備尺度不變性。
ORB論文
OpenCV官方文檔
ORB採用了FAST作為特徵點檢測運算元,特徵點的主方向是通過矩(moment)計算而來解決了BRIEF不具備旋轉不變性的問題。
ORB還做了這樣的改進,不再使用pixel-pair,而是使用9×9的patch-pair,也就是說,對比patch的像素值之和,解決了BRIEF對雜訊敏感的問題。
關於計算速度:
ORB是sift的100倍,是surf的10倍。
對圖片數據、特徵分布的一種統計
對數據空間(bin)進行量化
Kmeans
邊緣:尺度問題->不同的標准差 捕捉到不同尺度的邊緣
斑點 Blob:二階高斯導數濾波LoG
關鍵點(keypoint):不同視角圖片之間的映射,圖片配准、拼接、運動跟蹤、物體識別、機器人導航、3D重建
SIFT\SURF
『陸』 python裡面什麼是貪婪
Python裡面的貪婪演算法(又稱貪心演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,/不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。
貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。
基本思路
思想
貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。
貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。
基本思路
思想
貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。
貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。
基本思路
思想
貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加演算法停止 。
『柒』 用python解一道通配符匹配的演算法題
假設輸入的字元串為s,匹配串為p,代碼如下
classSolution(object):
defisMatch(self,s,p):
"""
:types:str
:typep:str
:rtype:bool
"""
sIndex,pIndex=0,0
sLen=len(s)
pLen=len(p)
sPrevIndex,pPrevIndex=1,pLen
whilesIndex<sLen:
#當兩個串對應位置字母可以等價時,各自索引均向後
ifpIndex<pLenand(s[sIndex]==p[pIndex]orp[pIndex]=='?'):
sIndex+=1
pIndex+=1
#當模式串為*時,先以匹配0個的方式暫時匹配
elifpIndex<pLenandp[pIndex]=='*':
sPrevIndex=sIndex+1
pPrevIndex=pIndex
pIndex+=1
#當暫時匹配失敗時,以匹配多1個的方式繼續匹配
elifpPrevIndex<pLen:
sIndex,pIndex=sPrevIndex,pPrevIndex
#匹配失敗
else:
returnFalse
#看模式串剩下的字母是否均為*
foriinrange(pIndex,pLen):
ifp[i]!='*':
returnFalse
returnTrue
『捌』 模板匹配概述
模板匹配是通過一張模板圖片去另一張圖中找到與模板相似部分的一種演算法。一個模板是一張小圖片,這個圖片有一定的尺寸,有角度(一般是不旋轉的矩形, 角度為0)。
模板匹配演算法一般是笑備通過滑窗的方式在待匹配的圖像上滑動,通過比較模板與子圖的相似度,找到相似度最大的子圖。這種演算法最核心部分在於如何設計一個相似性函數。
最容易想到的一個相似性函數便是歐式距離:
將這個相似性函數展開,可以得:
可以看出,只有第二項是有意義的,因為第一項和第三項的值在選定模板後是固定的。對於歐式距離相似函數,值越大表示越不相似,也就是說,第二項的值越小則越不相似。
將第二項進行歸一化:
那麼當R(i, j)為1時,表示模板與子圖完全相等。
cv::matchTemplate(const CvArr* image, //欲搜索的圖像。它應該是單通道、8-比特或32-比特 浮點數悶芹圖像
const CvArr* template,//搜索模板,不能大於輸入圖像,且與輸入圖像具有一樣的數據類型
CvArr* result, //比較結果的映射圖像。單通道、32-比特浮點數.
若圖像是W×H而templ是w×h,則result一定是(W-w+1)×(H-h+1)
int method//CV_TM_SQDIFF、CV_TM_SQDIFF_NORMED、CV_TM_CCORR、
CV_TM_CCORR_NORMED、CV_TM_CCOEFF、CV_TM_CCOEFF_NORMED
);
函數來進行模板匹配。其中的method參數具體如下:
在通過matchTemplate函數進行模板匹配後,可以得到一個映射圖,這張圖中最大值的地方便是匹配度最大的子圖的左上角坐標,可以使用cv::minMaxLoc函數獲得子圖位置和相應分數,再進行後續操作。
使用傳統的模板匹配速度較快,但是無法應對旋轉和縮放問題。要解決旋轉不變的 問題,必須要碰罩毀得到旋轉不變的特徵量,例如特徵點。
使用SIFT或SURF計算得到模板和待匹配圖像的特徵點,然後使用RANSAC或者FLANN進行特徵點匹配, 最後進行仿射變換便可得到匹配的位置。
python opencv實現(surf):
# - - coding:utf-8 - -
author = 'Microcosm'
運行的具體信息如下:
操作系統:ubuntu 14.04
運行環境:
opencv版本:opencv 3.0
模板大小:126x96 png
匹配圖像大小:750x407 jpg
特徵提取時間:0.15 s
KNN匹配時間:0.0024s
匹配效果: