當前位置:首頁 » 編程語言 » python怎麼讀csv

python怎麼讀csv

發布時間: 2023-05-20 01:45:54

python按時間讀取csv中的數據

我在這里做的小測試是可以的

你將會員卡號想像成你那表格里的時間,其他是一樣的。

❷ python—CSV的讀寫

1.寫入csv數據

import csv

header=['class','name','sex','height','year']

rows=[

[1,'xiaoming','male',168,23],

[1,'xiaohong','female',162,22],

[2,'xiaozhang','female',158,21],

[2,'xiaoli','male',158,21]

]

with open('csvdir.csv','w',newline='')as f:          #newline=" "是為了避免寫入之後有空行

        ff=csv.writer(f)

        ff.writerow(header)

        ff.writerows(rows)

2.在寫入字典序列類型數據的時候,需要傳入兩個參數,一個是文件對象——f,一個是欄位名稱——fieldnames,到時候要寫入表頭的時候,只需要調用writerheader方法,寫入一行字典系列數據調用writerrow方法,並傳入相應字典參數,寫入多行調用writerows  

import csv

headers = ['class','name','sex','height','year']

rows = [

        {'class':1,'name':'xiaoming','sex':'male','height':168,'year':23},

        {'class':1,'name':'xiaohong','sex':'female','height':162,'year':22},

        {'class':2,'name':'xiaozhang','sex':'female','height':163,'year':21},

        {'class':2,'name':'xiaoli','sex':'male','height':158,'year':21},

    ]

with open('test2.csv','w',newline='')as f:

      f_csv = csv.DictWriter(f,headers)

      f_csv.writeheader()

      f_csv.writerows(rows)

注意:列表和字典形式的數據寫入是不一樣的!!!!!!

3.csv的讀取,和讀取文件差不多:

import csv 

with open('test.csv')as f:

    f_csv = csv.reader(f)

    for row in f_csv:

        print(row)

❸ 怎麼用python讀取csv數據

python 自帶 csv 框架。

#讀取csv文件
importcsv
withopen('some.csv','rb')asf:#採用b的方式處理可以省去很多問題
reader=csv.reader(f)
forrowinreader:#dosomethingwithrow,suchasrow[0],row[1]

importcsv
withopen('some.csv','wb')asf:#採用b的方式處理可以省去很多問題
writer=csv.writer(f)
writer.writerows(someiterable)

❹ python 讀取CSV 文件

讀取一個CSV 文件

最全的

一個簡化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL類型包括:http, ftp, s3和文件。對於多文件正在准備中

本地文件讀取實例:://localhost/path/to/table.csv

**sep **: str, default 『,』

指定分隔符。如果不指定參數,則會嘗試使用逗號分隔。分隔符長於一個字元並且不是『s+』,將使用python的語法分析器。並且忽略數據中的逗號。正則表達式例子:' '

**delimiter **: str, default None

定界符,備選分隔符(如果指定該參數,則sep參數失效)

delim_whitespace : boolean, default False.

指定空格(例如』 『或者』 『)是否作為分隔符使用,等效於設定sep='s+'。如果這個參數設定為Ture那麼delimiter 參數失效。

在新版本0.18.1支持

header : int or list of ints, default 『infer』

指定行數用來作為列名,數據開始行數。如果文件中沒有列名,則默認為0,否則設置為None。如果明確設定header=0 就會替換掉原來存在列名。header參數可以是一個list例如:[0,1,3],這個list表示將文件中的這些行作為列標題(意味著每一列有多個標題),介於中間的行將被忽略掉。

注意:如果skip_blank_lines=True 那麼header參數忽略注釋行和空行,所以header=0表示第一行數據而不是文件的第一行。

**names **: array-like, default None

用於結果的列名列表,如果數據文件中沒有列標題行,就需要執行header=None。默認列表中不能出現重復,除非設定參數mangle_pe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列編號或者列名,如果給定一個序列則有多個行索引。

如果文件不規則,行尾有分隔符,則可以設定index_col=False 來是的pandas不適用第一列作為行索引。

usecols : array-like, default None

返回一個數據子集,該列表中的值必須可以對應到文件中的位置(數字可以對應到指定的列)或者是字元傳為文件中的列名。例如:usecols有效參數可能是 [0,1,2]或者是 [『foo』, 『bar』, 『baz』]。使用這個參數可以加快載入速度並降低內存消耗。

as_recarray : boolean, default False

不贊成使用:該參數會在未來版本移除。請使用pd.read_csv(...).to_records()替代。

返回一個Numpy的recarray來替代DataFrame。如果該參數設定為True。將會優先squeeze參數使用。並且行索引將不再可用,索引列也將被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,則返回一個Series

**prefix **: str, default None

在沒有列標題時,給列添加前綴。例如:添加『X』 成為 X0, X1, ...

**mangle_pe_cols **: boolean, default True

重復的列,將『X』...』X』表示為『X.0』...』X.N』。如果設定為false則會將所有重名列覆蓋。

dtype : Type name or dict of column -> type, default None

每列數據的數據類型。例如 {『a』: np.float64, 『b』: np.int32}

**engine **: {『c』, 『python』}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以選擇C或者是python。C引擎快但是Python引擎功能更加完備。

converters : dict, default None

列轉換函數的字典。key可以是列名或者列的序號。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符後的空白(默認為False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行數(從文件開始處算起),或需要跳過的行號列表(從0開始)。

skipfooter : int, default 0

從文件尾部開始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推薦使用:建議使用skipfooter ,功能一樣。

nrows : int, default None

需要讀取的行數(從文件頭開始算起)。

na_values : scalar, str, list-like, or dict, default None

一組用於替換NA/NaN的值。如果傳參,需要制定特定列的空值。默認為『1.#IND』, 『1.#QNAN』, 『N/A』, 『NA』, 『NULL』, 『NaN』, 『nan』`.

**keep_default_na **: bool, default True

如果指定na_values參數,並且keep_default_na=False,那麼默認的NaN將被覆蓋,否則添加。

**na_filter **: boolean, default True

是否檢查丟失值(空字元串或者是空值)。對於大文件來說數據集中沒有空值,設定na_filter=False可以提升讀取速度。

verbose : boolean, default False

是否列印各種解析器的輸出信息,例如:「非數值列中缺失值的數量」等。

skip_blank_lines : boolean, default True

如果為True,則跳過空行;否則記為NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果設定為True並且parse_dates 可用,那麼pandas將嘗試轉換為日期類型,如果可以轉換,轉換方法並解析。在某些情況下會快5~10倍。

**keep_date_col **: boolean, default False

如果連接多列解析日期,則保持參與連接的列。默認為False。

date_parser : function, default None

用於解析日期的函數,默認使用dateutil.parser.parser來做轉換。Pandas嘗試使用三種不同的方式解析,如果遇到問題則使用下一種方式。

1.使用一個或者多個arrays(由parse_dates指定)作為參數;

2.連接指定多列字元串作為一個列作為參數;

3.每行調用一次date_parser函數來解析一個或者多個字元串(由parse_dates指定)作為參數。

**dayfirst **: boolean, default False

DD/MM格式的日期類型

**iterator **: boolean, default False

返回一個TextFileReader 對象,以便逐塊處理文件。

chunksize : int, default None

文件塊的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {『infer』, 『gzip』, 『bz2』, 『zip』, 『xz』, None}, default 『infer』

直接使用磁碟上的壓縮文件。如果使用infer參數,則使用 gzip, bz2, zip或者解壓文件名中以『.gz』, 『.bz2』, 『.zip』, or 『xz』這些為後綴的文件,否則不解壓。如果使用zip,那麼ZIP包中國必須只包含一個文件。設置為None則不解壓。

新版本0.18.1版本支持zip和xz解壓

thousands : str, default None

千分位分割符,如「,」或者「."

decimal : str, default 『.』

字元中的小數點 (例如:歐洲數據使用』,『).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引號,用作標識開始和解釋的字元,引號內的分割符將被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引號常量。可選 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

雙引號,當單引號已經被定義,並且quoting 參數不是QUOTE_NONE的時候,使用雙引號表示引號內的元素作為一個元素使用。

escapechar : str (length 1), default None

當quoting 為QUOTE_NONE時,指定一個字元使的不受分隔符限值。

comment : str, default None

標識著多餘的行不被解析。如果該字元出現在行首,這一行將被全部忽略。這個參數只能是一個字元,空行(就像skip_blank_lines=True)注釋行被header和skiprows忽略一樣。例如如果指定comment='#' 解析『#empty a,b,c 1,2,3』 以header=0 那麼返回結果將是以』a,b,c'作為header。

encoding : str, default None

指定字元集類型,通常指定為'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果沒有指定特定的語言,如果sep大於一個字元則忽略。具體查看csv.Dialect 文檔

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那麼默認不會返回DataFrame ,如果設置成false,那麼會將改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,並且warn_bad_lines =True 那麼所有的「bad lines」將會被輸出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分塊載入到內存,再低內存消耗中解析。但是可能出現類型混淆。確保類型不被混淆需要設置為False。或者使用dtype 參數指定類型。注意使用chunksize 或者iterator 參數分塊讀入會將整個文件讀入到一個Dataframe,而忽略類型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推薦使用,這個參數將會在未來版本移除,因為他的值在解析器中不推薦使用

compact_ints : boolean, default False

不推薦使用,這個參數將會在未來版本移除

如果設置compact_ints=True ,那麼任何有整數類型構成的列將被按照最小的整數類型存儲,是否有符號將取決於use_unsigned 參數

use_unsigned : boolean, default False

不推薦使用:這個參數將會在未來版本移除

如果整數列被壓縮(i.e. compact_ints=True),指定被壓縮的列是有符號還是無符號的。

memory_map : boolean, default False

如果使用的文件在內存內,那麼直接map文件使用。使用這種方式可以避免文件再次進行IO操作。

ref:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

❺ python中怎麼讀取csv文件

Python讀取CSV文件方法如下:
如下是一個CVS文件
使用Python打開CSV可以直接使用open函數打開,然後使用reader函數讀取內容,實現代碼如下:
運行結果如下:
更多Python相關技術文章,請訪問Python教程欄目進行學習!以上就是小編分享的關於python中怎麼讀取csv文件的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

❻ 請教PYTHON讀取CSV文件方法

#!/usr/bin/python
#-*-coding:UTF-8-*-

fromLogimportLoginfo
importcgi,os,csv,sys,re
reload(sys)
sys.setdefaultencoding('utf8')

print"Content-Type:text/htmlcharset=utf-8 "

fileitem=''
defget_cgi_file():
''''''
globalfileitem,device_id,maxDeviceID,maxDriverID,channelid,ChannelDeviceType
form=cgi.FieldStorage()
#獲取文件名
fileitem=form['filename1']
#檢測文件是否上傳
iffileitem.filename:
#去掉文件路徑,獲取文件名稱
fn=os.path.basename(fileitem.filename)
open(global_var.uploadfile_path,'wb').write(fileitem.file.read())
#message='文件"'+fn+'"上傳成功!'
#printmessage
else:
message='沒有文件上傳!'
printmessage

defconvert_gbk2utf8():
data_list=[]
fd=open(global_var.uploadfile_path,'rb')
csvfd=csv.reader(fd)
forc1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14incsvfd:
c1_u=c1.decode('gb2312').encode('utf-8')
c2_u=c2.decode('gb2312').encode('utf-8')
c3_u=c3.decode('gb2312').encode('utf-8')
c4_u=c4.decode('gb2312').encode('utf-8')
c4_u=c4.decode('gb2312').encode('utf-8')
c5_u=c5.decode('gb2312').encode('utf-8')
c6_u=c6.decode('gb2312').encode('utf-8')
c7_u=c7.decode('gb2312').encode('utf-8')
c8_u=c8.decode('gb2312').encode('utf-8')
c9_u=c9.decode('gb2312').encode('utf-8')
c10_u=c10.decode('gb2312').encode('utf-8')
c11_u=c11.decode('gb2312').encode('utf-8')
c12_u=c12.decode('gb2312').encode('utf-8')
c13_u=c13.decode('gb2312').encode('utf-8')
c14_u=c14.decode('gb2312').encode('utf-8')
data_row_list=[c1_u,c2_u,c3_u,c4_u,c5_u,c6_u,c7_u,c8_u,c9_u,c10_u,c11_u,c12_u,c13_u,c14_u]
data_list.append(data_row_list)
fd.close()
#log.write_debug(data_list)
returndata_list

defanaly_csv_file(data_list):
forrownuminrange(len(data_list)):
ifrownum==0:
attrib=data_list[rownum]
else:
foriinrange(len(attrib)):
#這里循環取數據,依據是列名
ifattrib[i]=='你的列名':
printdata_list[rownum][i]

if__name__=='__main__':
log=Loginfo.Loginfo()
get_cgi_file()
try:
data_list=convert_gbk2utf8()
exceptExceptionase:
print("正在導入的表格列數不對,請檢查!")
deleteDevice()

刪了一些函數,這樣應該可以看得懂吧,c14_u是列,有多少列就多少個,這是轉換編碼。analy_csv_file(data_list)裡面對拿到的文件做處理

❼ python怎麼讀取csv文件

csv文件就是用逗號分隔的文本文件,和文本文件的讀取方式相同。
如果csv文件都是數值,想要將其轉為列表,可採用如下程序實現:
# csv_file
f=open('abc.txt','r')
lines=f.readlines()
print(lines)
f.close()
list1=[]
for line in lines:
for i in line.split(','):
list1.append(int(i))
print(list1)

❽ python中讀取csv文件

python中讀取csv方法有3種:
第一種,普通方法讀取(open函數打開,然後使用for循環讀取內容);
第二種,使用用CSV標准庫讀取;
第三種,用pandas模塊讀取。

❾ 怎麼用python讀取csv數據

這兩天剛好看到,Python CookBook上有說到。這里是三種讀取csv的方法。

文件格式是這樣的

Region,DATE_,RAW_ACU

zh_ch,Jan 27 2017,208172

importcsv


#withopen('data.csv')asf:
#f_csv=csv.reader(f)
#headers=next(f_csv)
#forrowinf_csv:
##print(row)
#print(row[0],row[1])


#withopen('data.csv',encoding='utf-8-sig')asf:
#f_csv=csv.reader(f)
#headers=next(f_csv)
#print(headers)
#Row=namedtuple('Row',headers)
#forrinf_csv:
#row=Row(*r)
#print(row.Region,row.DATE_)


withopen('data.csv',encoding='utf-8-sig')asf:
f_csv=csv.DictReader(f)
forrowinf_csv:
print(row['DATE_'],row)

具體可以看這個文檔。http://python3-cookbook.readthedocs.io/zh_CN/latest/c06/p01_read_write_csv_data.html。

❿ 如何用python 讀寫 csv

csv文件就是按逗號分隔的文本, 可以用python自帶的讀取文本的方式, 不過我推薦用pandas包, 讀寫都很方便

#coding=utf-8
#傳統方式
#讀
f1=open('1.csv','r').readlines()
result=map(lambdax:x.strip().split(','),f)
#寫
f2=open('1.csv','w')
f2.write('whatyouwanttowrite')
#pandas方法
importpandasaspd
#讀
result=pd.read_csv('1.csv')#result被轉化為DataFrame對象
#寫
#寫的時候可以操作result這個DataFrame對象,類似excel的表格,十分方便
result[0,0]=1
result.to_csv('2.csv')#將修改後的DataFrame保存為一個新的csv或者你想替換1.csv也可以

粗略介紹了一點, 如果有不懂的, 請追問.

熱點內容
登陸認證失敗請檢查伺服器地址 發布:2025-05-20 07:06:55 瀏覽:831
無限分類實現php 發布:2025-05-20 06:57:40 瀏覽:681
數據結構c語言版嚴蔚敏李冬梅 發布:2025-05-20 06:55:05 瀏覽:449
iphone快捷訪問 發布:2025-05-20 06:55:05 瀏覽:929
如何加密硬碟分區 發布:2025-05-20 06:52:29 瀏覽:363
反編譯gd 發布:2025-05-20 06:52:23 瀏覽:838
java源碼知乎 發布:2025-05-20 06:47:59 瀏覽:483
dos解壓縮命令 發布:2025-05-20 06:47:57 瀏覽:639
安卓傳數據給蘋果的軟體叫什麼 發布:2025-05-20 06:42:48 瀏覽:804
怎麼樣盤解壓力 發布:2025-05-20 06:37:08 瀏覽:85