python爬蟲模塊
經過前面四章的學習,我們已經可以使用Requests庫、Beautiful Soup庫和Re庫,編寫基本的Python爬蟲程序了。那麼這一章就來學習一個專業的網路爬蟲框架--Scrapy。沒錯,是框架,而不是像前面介紹的函數功能庫。
Scrapy是一個快速、功能強大的網路爬蟲框架。
可能大家還不太了解什麼是框架,爬蟲框架其實是實現爬蟲功能的一個軟體結構和功能組件的集合。
簡而言之, Scrapy就是一個爬蟲程序的半成品,可以幫助用戶實現專業的網路爬蟲。
使用Scrapy框架,不需要你編寫大量的代碼,Scrapy已經把大部分工作都做好了,允許你調用幾句代碼便自動生成爬蟲程序,可以節省大量的時間。
當然,框架所生成的代碼基本是一致的,如果遇到一些特定的爬蟲任務時,就不如自己使用Requests庫搭建來的方便了。
PyCharm安裝
測試安裝:
出現框架版本說明安裝成功。
掌握Scrapy爬蟲框架的結構是使用好Scrapy的重中之重!
先上圖:
整個結構可以簡單地概括為: 「5+2」結構和3條數據流
5個主要模塊(及功能):
(1)控制所有模塊之間的數據流。
(2)可以根據條件觸發事件。
(1)根據請求下載網頁。
(1)對所有爬取請求進行調度管理。
(1)解析DOWNLOADER返回的響應--response。
(2)產生爬取項--scraped item。
(3)產生額外的爬取請求--request。
(1)以流水線方式處理SPIDER產生的爬取項。
(2)由一組操作順序組成,類似流水線,每個操作是一個ITEM PIPELINES類型。
(3)清理、檢查和查重爬取項中的HTML數據並將數據存儲到資料庫中。
2個中間鍵:
(1)對Engine、Scheler、Downloader之間進行用戶可配置的控制。
(2)修改、丟棄、新增請求或響應。
(1)對請求和爬取項進行再處理。
(2)修改、丟棄、新增請求或爬取項。
3條數據流:
(1):圖中數字 1-2
1:Engine從Spider處獲得爬取請求--request。
2:Engine將爬取請求轉發給Scheler,用於調度。
(2):圖中數字 3-4-5-6
3:Engine從Scheler處獲得下一個要爬取的請求。
4:Engine將爬取請求通過中間件發送給Downloader。
5:爬取網頁後,Downloader形成響應--response,通過中間件發送給Engine。
6:Engine將收到的響應通過中間件發送給Spider處理。
(3):圖中數字 7-8-9
7:Spider處理響應後產生爬取項--scraped item。
8:Engine將爬取項發送給Item Pipelines。
9:Engine將爬取請求發送給Scheler。
任務處理流程:從Spider的初始爬取請求開始爬取,Engine控制各模塊數據流,不間斷從Scheler處獲得爬取請求,直至請求為空,最後到Item Pipelines存儲數據結束。
作為用戶,只需配置好Scrapy框架的Spider和Item Pipelines,也就是數據流的入口與出口,便可完成一個爬蟲程序的搭建。Scrapy提供了簡單的爬蟲命令語句,幫助用戶一鍵配置剩餘文件,那我們便來看看有哪些好用的命令吧。
Scrapy採用命令行創建和運行爬蟲
PyCharm打開Terminal,啟動Scrapy:
Scrapy基本命令行格式:
具體常用命令如下:
下面用一個例子來學習一下命令的使用:
1.建立一個Scrapy爬蟲工程,在已啟動的Scrapy中繼續輸入:
執行該命令,系統會在PyCharm的工程文件中自動創建一個工程,命名為pythonDemo。
2.產生一個Scrapy爬蟲,以教育部網站為例http://www.moe.gov.cn:
命令生成了一個名為demo的spider,並在Spiders目錄下生成文件demo.py。
命令僅用於生成demo.py文件,該文件也可以手動生成。
觀察一下demo.py文件:
3.配置產生的spider爬蟲,也就是demo.py文件:
4.運行爬蟲,爬取網頁:
如果爬取成功,會發現在pythonDemo下多了一個t20210816_551472.html的文件,我們所爬取的網頁內容都已經寫入該文件了。
以上就是Scrapy框架的簡單使用了。
Request對象表示一個HTTP請求,由Spider生成,由Downloader執行。
Response對象表示一個HTTP響應,由Downloader生成,有Spider處理。
Item對象表示一個從HTML頁面中提取的信息內容,由Spider生成,由Item Pipelines處理。Item類似於字典類型,可以按照字典類型來操作。
『貳』 python爬蟲項目實戰:爬取用戶的所有信息,如性別、年齡等
python爬蟲項目實戰:
爬取糗事網路用戶的所有信息,包括用戶名、性別、年齡、內容等等。
10個步驟實現項目功能,下面開始實例講解:
1.導入模塊
import re
import urllib.request
from bs4 import BeautifulSoup
2.添加頭文件,防止爬取過程被咐跡鏈拒絕衡孫鏈接
def qiuShi(url,page):
################### 模擬成高仿度瀏覽器的行為 ##############
heads ={
'Connection':'keep-alive',
'Accept-Language':'zh-CN,zh;q=0.9',
'Accept':'text/html,application/xhtml+xml,application/xml;
q=0.9,image/webp,image/apng, / ;q=0.8',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36',
}
headall = []
for key,value in heads.items():
items = (key,value)
headall.append(items)
opener = urllib.request.build_opener()
opener.addheaders = headall
urllib.request.install_opener(opener)
data = opener.open(url).read().decode()
################## end ########################################
3.創建soup解析器對象
soup = BeautifulSoup(data,'lxml')
x = 0
4.開始使用BeautifulSoup4解析器提取用州鉛戶名信息
############### 獲取用戶名 ########################
name = []
unames = soup.find_all('h2')
for uname in unames:
name.append(uname.get_text())
#################end#############################
5.提取發表的內容信息
############## 發表的內容 #########################
cont = []
data4 = soup.find_all('div',class_='content')
data4 = str(data4)
soup3 = BeautifulSoup(data4,'lxml')
contents = soup3.find_all('span')
for content in contents:
cont.append(content.get_text())
##############end####################################
6.提取搞笑指數
#################搞笑指數##########################
happy = []
data2 = soup.find_all('span',class_="stats-vote")
data2 = str(data2) # 將列表轉換成字元串形式才可以使用
soup1 = BeautifulSoup(data2,'lxml')
happynumbers = soup1.find_all('i',class_="number")
for happynumber in happynumbers:
happy.append(happynumber.get_text())
##################end#############################
7.提取評論數
############## 評論數 ############################
comm = []
data3 = soup.find_all('a',class_='qiushi_comments')
data3 = str(data3)
soup2 = BeautifulSoup(data3,'lxml')
comments = soup2.find_all('i',class_="number")
for comment in comments:
comm.append(comment.get_text())
############end#####################################
8.使用正則表達式提取性別和年齡
######## 獲取性別和年齡 ##########################
pattern1 = '<div class="articleGender (w ?)Icon">(d ?)</div>'
sexages = re.compile(pattern1).findall(data)
9.設置用戶所有信息輸出的格局設置
################## 批量輸出用戶的所以個人信息 #################
print()
for sexage in sexages:
sa = sexage
print(' ' 17, '= = 第', page, '頁-第', str(x+1) + '個用戶 = = ',' ' 17)
print('【用戶名】:',name[x],end='')
print('【性別】:',sa[0],' 【年齡】:',sa[1])
print('【內容】:',cont[x])
print('【搞笑指數】:',happy[x],' 【評論數】:',comm[x])
print(' ' 25,' 三八分割線 ',' ' 25)
x += 1
###################end##########################
10.設置循環遍歷爬取13頁的用戶信息
for i in range(1,14):
url = ' https://www.qiushike.com/8hr/page/'+str(i)+'/'
qiuShi(url,i)
運行結果,部分截圖:
『叄』 精通Python網路爬蟲之網路爬蟲學習路線
欲精通Python網路爬蟲,必先了解網路爬蟲學習路線,本篇經驗主要解決這個問題。部分內容參考自書籍《精通Python網路爬蟲》。
作者:韋瑋
轉載請註明出處
隨著大數據時代的到來,人們對數據資源的需求越來越多,而爬蟲是一種很好的自動採集數據的手段。
那麼,如何才能精通Python網路爬蟲呢?學習Python網路爬蟲的路線應該如何進行呢?在此為大傢具體進行介紹。
1、選擇一款合適的編程語言
事實上,Python、PHP、JAVA等常見的語言都可以用於編寫網路爬蟲,你首先需要選擇一款合適的編程語言,這些編程語言各有優勢,可以根據習慣進行選擇。在此筆者推薦使用Python進行爬蟲項目的編寫,其優點是:簡潔、掌握難度低。
2、掌握Python的一些基礎爬蟲模塊
當然,在進行這一步之前,你應當先掌握Python的一些簡單語法基礎,然後才可以使用Python語言進行爬蟲項目的開發。
在掌握了Python的語法基礎之後,你需要重點掌握一個Python的關於爬蟲開發的基礎模塊。這些模塊有很多可以供你選擇,比如urllib、requests等等,只需要精通一個基礎模塊即可,不必要都精通,因為都是大同小異的,在此推薦的是掌握urllib,當然你可以根據你的習慣進行選擇。
3、深入掌握一款合適的表達式
學會了如何爬取網頁內容之後,你還需要學會進行信息的提取。事實上,信息的提取你可以通過表達式進行實現,同樣,有很多表達式可以供你選擇使用,常見的有正則表達式、XPath表達式、BeautifulSoup等,這些表達式你沒有必要都精通,同樣,精通1-2個,其他的掌握即可,在此建議精通掌握正則表達式以及XPath表達式,其他的了解掌握即可。正則表達式可以處理的數據的范圍比較大,簡言之,就是能力比較強,XPath只能處理XML格式的數據,有些形式的數據不能處理,但XPath處理數據會比較快。
4、深入掌握抓包分析技術
事實上,很多網站都會做一些反爬措施,即不想讓你爬到他的數據。最常見的反爬手段就是對數據進行隱藏處理,這個時候,你就無法直接爬取相關的數據了。作為爬蟲方,如果需要在這種情況下獲取數據,那麼你需要對相應的數據進行抓包分析,然後再根據分析結果進行處理。一般推薦掌握的抓包分析工具是Fiddler,當然你也可以用其他的抓包分析工具,沒有特別的要求。
5、精通一款爬蟲框架
事實上,當你學習到這一步的時候,你已經入門了。
這個時候,你可能需要深入掌握一款爬蟲框架,因為採用框架開發爬蟲項目,效率會更加高,並且項目也會更加完善。
同樣,你可以有很多爬蟲框架進行選擇,比如Scrapy、pySpider等等,一樣的,你沒必要每一種框架都精通,只需要精通一種框架即可,其他框架都是大同小異的,當你深入精通一款框架的時候,其他的框架了解一下事實上你便能輕松使用,在此推薦掌握Scrapy框架,當然你可以根據習慣進行選擇。
6、掌握常見的反爬策略與反爬處理策略
反爬,是相對於網站方來說的,對方不想給你爬他站點的數據,所以進行了一些限制,這就是反爬。
反爬處理,是相對於爬蟲方來說的,在對方進行了反爬策略之後,你還想爬相應的數據,就需要有相應的攻克手段,這個時候,就需要進行反爬處理。
事實上,反爬以及反爬處理都有一些基本的套路,萬變不離其宗,這些後面作者會具體提到,感興趣的可以關注。
常見的反爬策略主要有:
IP限制
UA限制
Cookie限制
資源隨機化存儲
動態載入技術
……
對應的反爬處理手段主要有:
IP代理池技術
用戶代理池技術
Cookie保存與處理
自動觸發技術
抓包分析技術+自動觸發技術
……
這些大家在此先有一個基本的思路印象即可,後面都會具體通過實戰案例去介紹。
7、掌握PhantomJS、Selenium等工具的使用
有一些站點,通過常規的爬蟲很難去進行爬取,這個時候,你需要藉助一些工具模塊進行,比如PhantomJS、Selenium等,所以,你還需要掌握PhantomJS、Selenium等工具的常規使用方法。
8、掌握分布式爬蟲技術與數據去重技術
如果你已經學習或者研究到到了這里,那麼恭喜你,相信現在你爬任何網站都已經不是問題了,反爬對你來說也只是一道形同虛設的牆而已了。
但是,如果要爬取的資源非常非常多,靠一個單機爬蟲去跑,仍然無法達到你的目的,因為太慢了。
所以,這個時候,你還應當掌握一種技術,就是分布式爬蟲技術,分布式爬蟲的架構手段有很多,你可以依據真實的伺服器集群進行,也可以依據虛擬化的多台伺服器進行,你可以採用urllib+redis分布式架構手段,也可以採用Scrapy+redis架構手段,都沒關系,關鍵是,你可以將爬蟲任務部署到多台伺服器中就OK。
至於數據去重技術,簡單來說,目的就是要去除重復數據,如果數據量小,直接採用資料庫的數據約束進行實現,如果數據量很大,建議採用布隆過濾器實現數據去重即可,布隆過濾器的實現在Python中也是不難的。
以上是如果你想精通Python網路爬蟲的學習研究路線,按照這些步驟學習下去,可以讓你的爬蟲技術得到非常大的提升。
至於有些朋友問到,使用Windows系統還是Linux系統,其實,沒關系的,一般建議學習的時候使用Windows系統進行就行,比較考慮到大部分朋友對該系統比較數據,但是在實際運行爬蟲任務的時候,把爬蟲部署到Linux系統中運行,這樣效率比較高。由於Python的可移植性非常好,所以你在不同的平台中運行一個爬蟲,代碼基本上不用進行什麼修改,只需要學會部署到Linux中即可。所以,這也是為什麼說使用Windows系統還是Linux系統進行學習都沒多大影響的原因之一。
本篇文章主要是為那些想學習Python網路爬蟲,但是又不知道從何學起,怎麼學下去的朋友而寫的。希望通過本篇文章,可以讓你對Python網路爬蟲的研究路線有一個清晰的了解,這樣,本篇文章的目的就達到了,加油!
本文章由作者韋瑋原創,轉載請註明出處。
『肆』 Python中的爬蟲框架有哪些呢
實現爬蟲技術的編程環境有很多種,Java、Python、C++等都可以用來爬蟲。但很多人選擇Python來寫爬蟲,為什麼呢?因為Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。那麼,Python爬蟲一般用什麼框架比較好?
一般來講,只有在遇到比較大型的需求時,才會使用Python爬蟲框架。這樣的做的主要目的,是為了方便管理以及擴展。本文我將向大家推薦十個Python爬蟲框架。
1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
2、Crawley:高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
3、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。
4、newspaper:可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。作者從requests庫的簡潔與強大得到靈感,使用Python開發的可用於提取文章內容的程序。支持10多種語言並且所有的都是unicode編碼。
5、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
6、Beautiful Soup:名氣大,整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
7、mechanize:它的優點是可以載入JS。當然它也有缺點,比如文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
9、cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
10、PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。
『伍』 Python爬蟲筆記(二)requests模塊get,post,代理
import requests
base_url = 'https://www..com'
response = requests.get(base_url)
url=請求url,
headers =請求頭字典,
params = 請求參數字典。
timeout = 超時時長,
)---->response對象
伺服器響應包含:狀態行(協議,狀態碼)、響應頭,空行,響應正文
字元串格式:response.text
bytes類型:response.content
response.headers['cookie']
response.text獲取到的字元串類型的響應正文,
其實是通過下面的步驟獲取的:
response.text = response.content.decode(response.encoding)
產生的原因:編碼和解碼的編碼格式不一致造成的。
str.encode('編碼')---將字元串按指定編碼解碼成bytes類型
bytes.decode('編碼')---將bytes類型按指定編碼編碼成字元串。
a、response.content.decode('頁面正確的編碼格式')
<meta http-equiv="content-type" content="text/html;charset=utf-8">
b、找到正確的編碼,設置到response.encoding中
response.encoding = 正確的編碼
response.text--->正確的頁面內容。
a、沒有請求參數的情況下,只需要確定url和headers字典。
b、get請求是有請求參數。
在chrome瀏覽器中,下面找query_string_params,
將裡面的參數封裝到params字典中。
c、分頁主要是查看每頁中,請求參數頁碼欄位的變化,
找到變化規律,用for循環就可以做到分頁。
requests.post(
url=請求url,
headers = 請求頭字典,
data=請求數據字典
timeout=超時時長
)---response對象
post請求一般返回數據都是json數據。
(1)response.json()--->json字元串所對應的python的list或者dict
(2)用 json 模塊。
json.loads(json_str)---->json_data(python的list或者dict)
json.mps(json_data)--->json_str
post請求能否成功,關鍵看**請求參數**。
如何查找是哪個請求參數在影響數據獲取?
--->通過對比,找到變化的參數。
變化參數如何找到參數的生成方式,就是解決這個ajax請求數據獲取的途徑。
**尋找的辦法**有以下幾種:
(1)寫死在頁面。
(2)寫在js中。
(3)請求參數是在之前的一條ajax請求的數據裡面提前獲取好的。
代理形象的說,他是網路信息中轉站。
實際上就是在本機和伺服器之間架了一座橋。
a、突破自身ip訪問現實,可以訪問一些平時訪問不到網站。
b、訪問一些單位或者團體的資源。
c、提高訪問速度。代理的伺服器主要作用就是中轉,
所以一般代理服務裡面都是用內存來進行數據存儲的。
d、隱藏ip。
ftp代理伺服器---21,2121
HTTP代理伺服器---80,8080
SSL/TLS代理:主要用訪問加密網站。埠:443
telnet代理 :主要用telnet遠程式控制制,埠一般為23
高度匿名代理:數據包會原封不動轉化,在服務段看來,就好像一個普通用戶在訪問,做到完全隱藏ip。
普通匿名代理:數據包會做一些改動,伺服器有可能找到原ip。
透明代理:不但改動數據,還會告訴服務,是誰訪問的。
間諜代理:指組織或者個人用於記錄用戶傳輸數據,然後進行研究,監控等目的的代理。
proxies = {
'代理伺服器的類型':'代理ip'
}
response = requests.get(proxies = proxies)
代理伺服器的類型:http,https,ftp
代理ip:http://ip:port