當前位置:首頁 » 密碼管理 » 序列加密演算法

序列加密演算法

發布時間: 2022-07-03 16:22:05

❶ 什麼是分組密碼和序列密碼

  1. 分組密碼是將明文消息編碼表示後的數字(簡稱明文數字)序列,劃分成長度為n的組(可看成長度為n的矢量),每組分別在密鑰的控制下變換成等長的輸出數字(簡稱密文數字)序列。

  2. 序列密碼也稱為流密碼(Stream Cipher),它是對稱密碼演算法的一種。序列密碼具有實現簡單、便於硬體實施、加解密處理速度快、沒有或只有有限的錯誤傳播等特點,因此在實際應用中,特別是專用或機密機構中保持著優勢,典型的應用領域包括無線通信、外交通信。 1949年Shannon證明了只有一次一密的密碼體制是絕對安全的,這給序列密碼技術的研究以強大的支持,序列密碼方案的發展是模仿一次一密系統的嘗試,或者說「一次一密」的密碼方案是序列密碼的雛形。如果序列密碼所使用的是真正隨機方式的、與消息流長度相同的密鑰流,則此時的序列密碼就是一次一密的密碼體制。若能以一種方式產生一隨機序列(密鑰流),這一序列由密鑰所確定,則利用這樣的序列就可以進行加密,即將密鑰、明文表示成連續的符號或二進制,對應地進行加密,加解密時一次處理明文中的一個或幾個比特。

❷ 序列號保護加密的原理和驗證方法

(1)序列號保護機制

數學演算法一項都是密碼加密的核心,但在一般的軟體加密中,它似乎並不太為人們關心,因為大多數時候軟體加密本身實現的都是一種編程的技巧。但近幾年來隨著序列號加密程序的普及,數學演算法在軟體加密中的比重似乎是越來越大了。
我們先來看看在網路上大行其道的序列號加密的工作原理。當用戶從網路上下載某個shareware——共享軟體後,一般都有使用時間上的限制,當過了共享軟體的試用期後,你必須到這個軟體的公司去注冊後方能繼續使用。注冊過程一般是用戶把自己的私人信息(一般主要指名字)連同信用卡號碼告訴給軟體公司,軟體公司會根據用戶的信息計算出一個序列碼,在用戶得到這個序列碼後,按照注冊需要的步驟在軟體中輸入注冊信息和注冊碼,其注冊信息的合法性由軟體驗證通過後,軟體就會取消掉本身的各種限制,這種加密實現起來比較簡單,不需要額外的成本,用戶購買也非常方便,在互聯網上的軟體80%都是以這種方式來保護的。
我們注意到軟體驗證序列號的合法性過程,其實就是驗證用戶名和序列號之間的換算關系是否正確的過程。其驗證最基本的有兩種,一種是按用戶輸入的姓名來生成注冊碼,再同用戶輸入的注冊碼比較,公式表示如下:
序列號 = F(用戶名)
但這種方法等於在用戶軟體中再現了軟體公司生成注冊碼的過程,實際上是非常不安全的,不論其換算過程多麼復雜,解密者只需把你的換算過程從程序中提取出來就可以編制一個通用的注冊程序。

另外一種是通過注冊碼來驗證用戶名的正確性,公式表示如下:
用戶名稱 = F逆(序列號) (如ACDSEE,小樓注)
這其實是軟體公司注冊碼計算過程的反演算法,如果正向演算法與反向演算法不是對稱演算法的話,對於解密者來說,的確有些困難,但這種演算法相當不好設計。

於是有人考慮到一下的演算法:
F1(用戶名稱) = F2(序列號)
F1、F2是兩種完全不同的的演算法,但用戶名通過F1演算法的計算出的特徵字等於序列號通過F2演算法計算出的特徵字,這種演算法在設計上比較簡單,保密性相對以上兩種演算法也要好的多。如果能夠把F1、F2演算法設計成不可逆演算法的話,保密性相當的好;可一旦解密者找到其中之一的反演算法的話,這種演算法就不安全了。一元演算法的設計看來再如何努力也很難有太大的突破,那麼二元呢?

特定值 = F(用戶名,序列號)
這個演算法看上去相當不錯,用戶名稱與序列號之間的關系不再那麼清晰了,但同時也失去了用戶名於序列號的一一對應關系,軟體開發者必須自己維護用戶名稱與序列號之間的唯一性,但這似乎不是難以辦到的事,建個資料庫就好了。當然你也可以根據這一思路把用戶名稱和序列號分為幾個部分來構造多元的演算法。
特定值 = F(用戶名1,用戶名2,...序列號1,序列號2...)

現有的序列號加密演算法大多是軟體開發者自行設計的,大部分相當簡單。而且有些演算法作者雖然下了很大的功夫,效果卻往往得不到它所希望的結果。其實現在有很多現成的加密演算法可以用,如RSADES,MD4,MD5,只不過這些演算法是為了加密密文或密碼用的,於序列號加密多少有些不同。我在這里試舉一例,希望有拋磚引玉的作用:
1、在軟體程序中有一段加密過的密文S
2、密鑰 = F(用戶名、序列號) 用上面的二元演算法得到密鑰
3、明文D = F-DES(密文S、密鑰) 用得到的密鑰來解密密文得到明文D
4、CRC = F-CRC(明文D) 對得到的明文應用各種CRC統計
5、檢查CRC是否正確。最好多設計幾種CRC演算法,檢查多個CRC結果是否都正確
用這種方法,在沒有一個已知正確的序列號情況下是永遠推算不出正確的序列號的。

(2)如何攻擊序列號保護

要找到序列號,或者修改掉判斷序列號之後的跳轉指令,最重要的是要利用各種工具定位判斷序列號的代碼段。這些常用的API包括GetDlgItemInt, GetDlgItemTextA, GetTabbedTextExtentA, GetWindowTextA, Hmemcpy (僅僅Windows 9x), lstrcmp, lstrlen, memcpy (限於NT/2000)。

1)數據約束性的秘訣
這個概念是+ORC提出的,只限於用明文比較注冊碼的那種保護方式。在大多數序列號保護的程序中,那個真正的、正確的注冊碼或密碼(Password)會於某個時刻出現在內存中,當然它出現的位置是不定的,但多數情況下它會在一個范圍之內,即存放用戶輸入序列號的內存地址±0X90位元組的地方。這是由於加密者所用工具內部的一個Windows數據傳輸的約束條件決定的。

2)Hmemcpy函數(俗稱萬能斷點)
函數Hmemcpy是Windows9x系統的內部函數,位於KERNEL32.DLL中,它的作用是將內存中的一塊數據拷貝到另一個地方。由於Windows9x系統頻繁使用該函數處理各種字串,因此用它作為斷點很實用,它是Windows9x平台最常用的斷點。在Windows NT/2K中沒有這個斷點,因為其內核和Windows9x完全不同。

3)S命令
由於S命令忽略不在內存中的頁面,因此你可以使用32位平面地址數據段描述符30h在整個4GB(0~FFFFFFFFh )空間查找,一般用在Windows9x下面。具體步驟為:先輸入姓名或假的序列號(如: 78787878),按Ctrl+D切換到SoftICE下,下搜索命令:
s 30:0 L ffffffff '78787878'
會搜索出地址:ss:ssssssss(這些地址可能不止一個),然後用bpm斷點監視搜索到的假注冊碼,跟蹤一下程序如何處理輸入的序列號,就有可能找到正確的序列號。

4)利用消息斷點
在處理字串方面可以利用消息斷點WM_GETTEXT和WM_COMMAND。前者用來讀取某個控制項中的文本,比如拷貝編輯窗口中的序列號到程序提供的一個緩沖區里;後者則是用來通知某個控制項的父窗口的,比如當輸入序列號之後點擊OK按鈕,則該按鈕的父窗口將收到一個WM_COMMAND消息,以表明該按鈕被點擊。
BMSG xxxx WM_GETTEXT (攔截序列號)
BMSG xxxx WM_COMMAND (攔截OK按鈕)
可以用SoftICE提供的HWND命令獲得窗口句柄的信息,也可以利用Visual Studio中的Spy++實用工具得到相應窗口的句柄值,然後用BMSG設斷點攔截。例:
BMSG 0129 WM_COMMAND

❸ 簡述序列密碼演算法和分組密碼演算法的不同

分組密碼是把明文分成相對比較大的快,對於每一塊使用相同的加密函數進行處理,因此,分組密碼是無記憶的,相反,序列密碼處理的明文長度可以小到1bit,而且序列密碼是有記憶的,另外分組密碼演算法的實際關鍵在於加解密演算法,使之盡可能復雜,而序列密碼演算法的實際關鍵在於密鑰序列產生器,使之盡可能的不可預測性。

❹ 古典加密演算法有哪些 古典加密演算法

世界上最早的一種密碼產生於公元前兩世紀。是由一位希臘人提出的,人們稱之為
棋盤密碼,原因為該密碼將26個字母放在5×5的方格里,i,j放在一個格子里,具體情
況如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
這樣,每個字母就對應了由兩個數構成的字元αβ,α是該字母所在行的標號,β是列
標號。如c對應13,s對應43等。如果接收到密文為
43 15 13 45 42 15 32 15 43 43 11 22 15
則對應的明文即為secure message。
另一種具有代表性的密碼是凱撒密碼。它是將英文字母向前推移k位。如k=5,則密
文字母與明文與如下對應關系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
於是對應於明文secure message,可得密文為XJHZWJRJXXFLJ。此時,k就是密鑰。為了
傳送方便,可以將26個字母一一對應於從0到25的26個整數。如a對1,b對2,……,y對
25,z對0。這樣凱撒加密變換實際就是一個同餘式
c≡m+k mod 26
其中m是明文字母對應的數,c是與明文對應的密文的數。
隨後,為了提高凱撒密碼的安全性,人們對凱撒密碼進行了改進。選取k,b作為兩
個參數,其中要求k與26互素,明文與密文的對應規則為
c≡km+b mod 26
可以看出,k=1就是前面提到的凱撒密碼。於是這種加密變換是凱撒野加密變換的
推廣,並且其保密程度也比凱撒密碼高。
以上介紹的密碼體制都屬於單表置換。意思是一個明文字母對應的密文字母是確定
的。根據這個特點,利用頻率分析可以對這樣的密碼體制進行有效的攻擊。方法是在大
量的書籍、報刊和文章中,統計各個字母出現的頻率。例如,e出現的次數最多,其次
是t,a,o,I等等。破譯者通過對密文中各字母出現頻率的分析,結合自然語言的字母頻
率特徵,就可以將該密碼體制破譯。
鑒於單表置換密碼體制具有這樣的攻擊弱點,人們自然就會想辦法對其進行改進,
來彌補這個弱點,增加抗攻擊能力。法國密碼學家維吉尼亞於1586年提出一個種多表式
密碼,即一個明文字母可以表示成多個密文字母。其原理是這樣的:給出密鑰
K=k[1]k[2]…k[n],若明文為M=m[1]m[2]…m[n],則對應的密文為C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M為data security,密鑰k=best,將明
文分解為長為4的序列data security,對每4個字母,用k=best加密後得密文為
C=EELT TIUN SMLR
從中可以看出,當K為一個字母時,就是凱撒密碼。而且容易看出,K越長,保密程
度就越高。顯然這樣的密碼體制比單表置換密碼體制具有更強的抗攻擊能力,而且其加
密、解密均可用所謂的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼可用所謂
的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼曾被認為是三百年內破譯不了
的密碼,因而這種密碼在今天仍被使用著。
古典密碼的發展已有悠久的歷史了。盡管這些密碼大都比較簡單,但它在今天仍有
其參考價值。世界上最早的一種密碼產生於公元前兩世紀。是由一位希臘人提出的,人們稱之為
棋盤密碼,原因為該密碼將26個字母放在5×5的方格里,i,j放在一個格子里,具體情
況如下表所示
1 2 3 4 5
1 a b c 搜索d e
2 f g h i,j k
3 l m n o p
4 q r s t u
5 v w x y z
這樣,每個字母就對應了由兩個數構成的字元αβ,α是該字母所在行的標號,β是列
標號。如c對應13,s對應43等。如果接收到密文為
43 15 13 45 42 15 32 15 43 43 11 22 15
則對應的明文即為secure message。
另一種具有代表性的密碼是凱撒密碼。它是將英文字母向前推移k位。如k=5,則密
文字母與明文與如下對應關系
a b c d e f g h i j k l m n o p q r s t u v w x y z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
於是對應於明文secure message,可得密文為XJHZWJRJXXFLJ。此時,k就是密鑰。為了
傳送方便,可以將26個字母一一對應於從0到25的26個整數。如a對1,b對2,……,y對
25,z對0。這樣凱撒加密變換實際就是一個同餘式
c≡m+k mod 26
其中m是明文字母對應的數,c是與明文對應的密文的數。
隨後,為了提高凱撒密碼的安全性,人們對凱撒密碼進行了改進。選取k,b作為兩
個參數,其中要求k與26互素,明文與密文的對應規則為
c≡km+b mod 26
可以看出,k=1就是前面提到的凱撒密碼。於是這種加密變換是凱撒野加密變換的
推廣,並且其保密程度也比凱撒密碼高。
以上介紹的密碼體制都屬於單表置換。意思是一個明文字母對應的密文字母是確定
的。根據這個特點,利用頻率分析可以對這樣的密碼體制進行有效的攻擊。方法是在大
量的書籍、報刊和文章中,統計各個字母出現的頻率。例如,e出現的次數最多,其次
是t,a,o,I等等。破譯者通過對密文中各字母出現頻率的分析,結合自然語言的字母頻
率特徵,就可以將該密碼體制破譯。
鑒於單表置換密碼體制具有這樣的攻擊弱點,人們自然就會想辦法對其進行改進,
來彌補這個弱點,增加抗攻擊能力。法國密碼學家維吉尼亞於1586年提出一個種多表式
密碼,即一個明文字母可以表示成多個密文字母。其原理是這樣的:給出密鑰
K=k[1]k[2]…k[n],若明文為M=m[1]m[2]…m[n],則對應的密文為C=c[1]c[2]…c[n]。
其中C[i]=(m[i]+k[i]) mod 26。例如,若明文M為data security,密鑰k=best,將明
文分解為長為4的序列data security,對每4個字母,用k=best加密後得密文為
C=EELT TIUN SMLR
從中可以看出,當K為一個字母時,就是凱撒密碼。而且容易看出,K越長,保密程
度就越高。顯然這樣的密碼體制比單表置換密碼體制具有更強的抗攻擊能力,而且其加
密、解密均可用所謂的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼可用所謂
的維吉尼亞方陣來進行,從而在操作上簡單易行。該密碼曾被認為是三百年內破譯不了
的密碼,因而這種密碼在今天仍被使用著。
古典密碼的發展已有悠久的歷史了。盡管這些密碼大都比較簡單,但它在今天仍有
其參考價值。

❺ SM9是分組密碼還是序列密碼

國密SM9其實是一種非對稱加密演算法,它是分組密碼。
分組密碼是將明文消息編碼表示後的數字(簡稱明文數字)序列,劃分成長度為n的組(可看成長度為n的矢量),每組分別在密鑰的控制下變換成等長的輸出數字(簡稱密文數字)序列。
序列密碼也稱為流密碼(Stream Cipher),它是對稱密碼演算法的一種。序列密碼具有實現簡單、便於硬體實施、加解密處理速度快、沒有或只有有限的錯誤傳播等特點,因此在實際應用中,特別是專用或機密機構中保持著優勢,典型的應用領域包括無線通信、外交通信。

❻ 序列密碼加密和一次一密加密有什麼相同和不同

序列加密是分組,或者說排序。下一個序列的密鑰有上一個序列得出。所以只有能夠正確排序密文且獲得最開始的序列密文才能獲取後續序列的密鑰。
一次一密演算法是使用和消息等長的密鑰,密鑰和明文的二進制位數相同,按位異或,即每加密一位都使用一個密鑰

❼ 序列密碼演算法有幾種

5種演算法

❽ 典型現在加密演算法

1.
對稱型加密演算法
也稱私用密鑰演算法.對稱型加密演算法是從傳統的簡單換位代替密碼發展而來的,自1977年美國頒布DES密碼演算法作為美國數據加密標准以來,對稱密鑰密碼體制迅猛發展,得到了世界各國關注和普遍使用.對稱密鑰密碼體制從加密模式上可分為序列密碼和分組密碼兩大類.序列密碼一直是軍事和外交場合使用的主要密碼技術之一,它的主要原理是通過有限狀態機產生性能優良的偽隨機序列,使用該序列加密信息流,得到密文序列.分組密碼的工作方式是將明文分成固定長度的組,如64比特一組,用同一密鑰和演算法對每一組加密,輸出也是固定長度的密文.對稱性的加密演算法包括美國標准56位密鑰的DES,Triple-DES,3DES,變長度密鑰的RC2和RC4,瑞士人發明的128位密鑰的IDEA等.DES(Data Encryption Standard)是由IBM公司開發的最著名的數據加密演算法,它的核心是乘積變換.美國於1997年將其定為非機密數據的正式加密標准.在過去20多年中,DES加密演算法得到了廣泛的研究,比其他任何密鑰方案在硬體和軟體中都得到了更多的應用.DES對64位二進制數據加密,產生64位密文數據,實際密鑰長度為56位(有8位用於奇偶校驗,解密時的過程和加密時相似,但密鑰的順序正好相反),其可能的密鑰有256種,很難被破譯.在銀行業中的電子資金轉賬(EFT)領域中DES的應用獲得成功.現在DES也可由硬體實現,AT&T首先用LSI晶元實現了DES的全部工作模式,該產品稱為數據加密處理機DEP.
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2.
RC4演算法
RC4加密演算法
RC4加密演算法是大名鼎鼎的RSA三人組中的頭號人物Ron Rivest在1987年設計的密鑰長度可變的流加密演算法簇。之所以稱其為簇,是由於其核心部分的S-box長度可為任意,但一般為256位元組。該演算法的速度可以達到DES加密的10倍左右。
RC4演算法的原理很簡單,包括初始化演算法和偽隨機子密碼生成演算法兩大部分。假設S-box長度和密鑰長度均為為n。先來看看演算法的初始化部分(用類C偽代碼表示):
for (i=0; i<n; i++)
s[i]=i;
j=0;
for (i=0; i<n; i++)
{
j=(j+s[i]+k[i])%256;
swap(s[i], s[j]);
}
在初始化的過程中,密鑰的主要功能是將S-box攪亂,i確保S-box的每個元素都得到處理,j保證S-box的攪亂是隨機的。而不同的S-box在經過偽隨機子密碼生成演算法的處理後可以得到不同的子密鑰序列,並且,該序列是隨機的:
i=j=0;
while (明文未結束)
{
++i%=n;
j=(j+s[i])%n;
swap(s[i], s[j]);
sub_k=s((s[i]+s[j])%n);
}
得到的子密碼sub_k用以和明文進行xor運算,得到密文,解密過程也完全相同。
由於RC4演算法加密是採用的xor,所以,一旦子密鑰序列出現了重復,密文就有可能被破解。關於如何破解xor加密,請參看Bruce Schneier的Applied Cryptography一書的1.4節Simple XOR,在此我就不細說了。那麼,RC4演算法生成的子密鑰序列是否會出現重復呢?經過我的測試,存在部分弱密鑰,使得子密鑰序列在不到100萬位元組內就發生了完全的重復,如果是部分重復,則可能在不到10萬位元組內就能發生重復,因此,推薦在使用RC4演算法時,必須對加密密鑰進行測試,判斷其是否為弱密鑰。
但在2001年就有以色列科學家指出RC4加密演算法存在著漏洞,這可能對無線通信網路的安全構成威脅。
以色列魏茨曼研究所和美國思科公司的研究者發現,在使用「有線等效保密規則」(WEP)的無線網路中,在特定情況下,人們可以逆轉RC4演算法的加密過程,獲取密鑰,從而將己加密的信息解密。實現這一過程並不復雜,只需要使用一台個人電腦對加密的數據進行分析,經過幾個小時的時間就可以破譯出信息的全部內容。
專家說,這並不表示所有使用RC4演算法的軟體都容易泄密,但它意味著RC4演算法並不像人們原先認為的那樣安全。這一發現可能促使人們重新設計無線通信網路,並且使用新的加密演算法。

❾ 密碼分為哪三種

密碼大體上分為三類,涉及的知識點主要是資訊理論和數論

第一類:公開密鑰演算法:RSA

第二類:對稱演算法:AES,DES。Hitag2

第三類:單項序列演算法:MD5

而對稱演算法又可以分為分組加密和序列加密兩種

分組加密:AES,DES

序列加密:Hitag2,Keeloq

序列加密通常是硬體實現,因為每次加密1bit,對於硬體來說用移位寄存器來實現是很容易的,但對於最小存儲單位是1Byte(8bit)的上位機來說,頻繁的位操作並不方便。

加密演算法的理論基礎基本上來自於數論,數論主要是討論整形,基本上就是關於素數的研究,RSA的加密難度依據就是,兩個大素數的因式分解,但目前無法證明是否有方法能快速的因式分解兩個超大素數,所以也無法證明此演算法絕對安全,但同理無法證明它不安全。目前2048位的RSA公認是安全的。

資訊理論在本質上基本和密碼學等價,信息熵也影響一組加密數據其安全性,和其被攻破的難度。所以如何降低冗餘,隱藏明文也是密碼學必須考慮的問題。

熱點內容
阿里雲伺服器如何把c盤變成d盤 發布:2025-05-16 19:12:36 瀏覽:496
unix環境高級編程學習 發布:2025-05-16 19:11:49 瀏覽:421
如何將20的硝酸配置成5的 發布:2025-05-16 19:04:42 瀏覽:971
怎麼給一個文件夾設置時間開鎖 發布:2025-05-16 18:58:00 瀏覽:823
腳本存放目錄 發布:2025-05-16 18:57:20 瀏覽:566
cs16製作腳本 發布:2025-05-16 18:44:25 瀏覽:444
分油演算法 發布:2025-05-16 18:36:19 瀏覽:691
吃雞低配置手機如何開極致畫質 發布:2025-05-16 18:15:20 瀏覽:192
空密碼訪問 發布:2025-05-16 18:08:51 瀏覽:893
騰訊雲伺服器安全規則設置 發布:2025-05-16 17:51:33 瀏覽:652