原創基因密碼是什麼意思
❶ 有關基因工程的詳解
基因工程是生物工程的一個重要分支,它和細胞工程、酶工程、蛋白質工程和微生物工程共同組成了生物工程。 所謂基因工程(genetic engineering)是在分子水平上對基因進行操作的復雜技術,是將外源基因通過體外重組後導入受體細胞內,使這個基因能在受體細胞內復制、轉錄、翻譯表達的操作。它是用人為的方法將所需要的某一供體生物的遺傳物質——DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的復制和表達,從而獲得新物種的一種嶄新技術。
基因工程是在分子生物學和分子遺傳學綜合發展基礎上於本世紀70年代誕生的一門嶄新的生物技術科學。一般來說,基因工程是指在基因水平上的遺傳工程,它是用人為方法將所需要的某一供體生物的遺傳物質--DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源遺傳物質在其中"安家落戶",進行正常復制和表達,從而獲得新物種的一種嶄新的育種技術。 這個定義表明,基因工程具有以下幾個重要特徵:首先,外源核酸分子在不同的寄主生物中進行繁殖,能夠跨越天然物種屏障,把來自任何一種生物的基因放置到新的生物中,而這種生物可以與原來生物毫無親緣關系,這種能力是基因工程的第一個重要特徵。第二個特徵是,一種確定的DNA小片段在新的寄主細胞中進行擴增,這樣實現很少量DNA樣品"拷貝"出大量的DNA,而且是大量沒有污染任何其它DNA序列的、絕對純凈的DNA分子群體。科學家將改變人類生殖細胞DNA的技術稱為「基因系治療」(germlinetherapy),通常所說的「基因工程」則是針對改變動植物生殖細胞的。無論稱謂如何,改變個體生殖細胞的DNA都將可能使其後代發生同樣的改變。
誠然,仍有許多基因的功能及其協同工作的方式不為人類所知,但想到利用基因工程可使番茄具有抗癌作用、使鮭魚長得比自然界中的大幾倍、使寵物不再會引起過敏,許多人便希望也可以對人類基因做類似的修改。畢竟,胚胎遺傳病篩查、基因修復和基因工程等技術不僅可用於治療疾病,也為改變諸如眼睛的顏色、智力等其他人類特性提供了可能。目前我們還遠不能設計定做我們的後代,但已有藉助胚胎遺傳病篩查技術培育人們需求的身體特性的例子。比如,運用此技術,可使患兒的父母生一個和患兒骨髓匹配的孩子,然後再通過骨髓移植來治癒患兒。
隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 RNA轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。 如果將一種生物的 DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型,這與過去培育生物繁殖後代的傳統做法完全不同。 這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
基因工程的前景,科學界預言,21世紀是一個基因工程世紀。基因工程是在分子水平對生物遺傳作人為干預,要認識它,我們先從生物工程談起:生物工程又稱生物技術,是一門應用現代生命科學原理和信息及化工等技術,利用活細胞或其產生的酶來對廉價原材料進行不同程度的加工,提供大量有用產品的綜合性工程技術。
生物工程的基礎是現代生命科學、技術科學和信息科學。生物工程的主要產品是為社會提供大量優質發酵產品,例如生化葯物、化工原料、能源、生物防治劑以及食品和飲料,還可以為人類提供治理環境、提取金屬、臨床診斷、基因治療和改良農作物品種等社會服務。
生物工程主要有基因工程、細胞工程、酶工程、蛋白質工程和微生物工程等5個部分。其中基因工程就是人們對生物基因進行改造,利用生物生產人們想要的特殊產品。隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。
美國的吉爾伯特是鹼基排列分析法的創始人,他率先支持人類基因組工程 如果將一種生物的DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,不就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型嗎?這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為「基因工程」,或者稱之為「遺傳工程」。
人類基因工程走過的主要歷程怎樣呢?1866年,奧地利遺傳學家孟德爾神父發現生物的遺傳基因規律;1868年,瑞士生物學家弗里德里希發現細胞核內存有酸性和蛋白質兩個部分。酸性部分就是後來的所謂的DNA;1882年,德國胚胎學家瓦爾特弗萊明在研究蠑螈細胞時發現細胞核內的包含有大量的分裂的線狀物體,也就是後來的染色體;1944年,美國科研人員證明DNA是大多數有機體的遺傳原料,而不是蛋白質;1953年,美國生化學家華森和英國物理學家克里克宣布他們發現了DNA的雙螺旋結果,奠下了基因工程的基礎;1980年,第一隻經過基因改造的老鼠誕生;1996年,第一隻克隆羊誕生;1999年,美國科學家破解了人類第 22組基因排序列圖;未來的計劃是可以根據基因圖有針對性地對有關病症下葯。
人類基因組研究是一項生命科學的基礎性研究。有科學家把基因組圖譜看成是指路圖,或化學中的元素周期表;也有科學家把基因組圖譜比作字典,但不論是從哪個角度去闡釋,破解人類自身基因密碼,以促進人類健康、預防疾病、延長壽命,其應用前景都是極其美好的。人類10萬個基因的信息以及相應的染色體位置被破譯後,破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。將成為醫學和生物制葯產業知識和技術創新的源泉。美國的貝克維茲正在觀察器皿中的菌落,他曾對人類基因組工程提出警告。
科學研究證明,一些困擾人類健康的主要疾病,例如心腦血管疾病、糖尿病、肝病、癌症等都與基因有關。依據已經破譯的基因序列和功能,找出這些基因並針對相應的病變區位進行葯物篩選,甚至基於已有的基因知識來設計新葯,就能「有的放矢」地修補或替換這些病變的基因,從而根治頑症。基因葯物將成為21世紀醫葯中的耀眼明星。基因研究不僅能夠為篩選和研製新葯提供基礎數據,也為利用基因進行檢測、預防和治療疾病提供了可能。比如,有同樣生活習慣和生活環境的人,由於具有不同基因序列,對同一種病的易感性就大不一樣。明顯的例子有,同為吸煙人群,有人就易患肺癌,有人則不然。醫生會根據各人不同的基因序列給予因人而異的指導,使其養成科學合理的生活習慣,最大可能地預防疾病。
人類基因工程的開展使破譯人類全部DNA指日可待。
信息技術的發展改變了人類的生活方式,而基因工程的突破將幫助人類延年益壽。目前,一些國家人口的平均壽命已突破80歲,中國也突破了70歲。有科學家預言,隨著癌症、心腦血管疾病等頑症的有效攻克,在2020至2030年間,可能出現人口平均壽命突破100歲的國家。到2050年,人類的平均壽命將達到90至95歲。
人類將挑戰生命科學的極限。1953年2月的一天,英國科學家弗朗西斯·克里克宣布:我們已經發現了生命的秘密。他發現DNA是一種存在於細胞核中的雙螺旋分子,決定了生物的遺傳。有趣的是,這位科學家是在劍橋的一家酒吧宣布了這一重大科學發現的。破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。1987年,美國科學家提出了「人類基因組計劃」,目標是確定人類的全部遺傳信息,確定人的基因在23對染色體上的具體位置,查清每個基因核苷酸的順序,建立人類基因庫。1999年,人的第22對染色體的基因密碼被破譯,「人類基因組計劃」邁出了成功的一步。可以預見,在今後的四分之一世紀里,科學家們就可能揭示人類大約5000種基因遺傳病的致病基因,從而為癌症、糖尿病、心臟病、血友病等致命疾病找到基因療法。
繼2000年6月26日科學家公布人類基因組"工作框架圖"之後,中、美、日、德、法、英等6國科學家和美國塞萊拉公司2001年2月12日聯合公布人類基因組圖譜及初步分析結果。這次公布的人類基因組圖譜是在原"工作框架圖"的基礎上,經過整理、分類和排列後得到的,它更加准確、清晰、完整。人類基因組蘊涵有人類生、老、病、死的絕大多數遺傳信息,破譯它將為疾病的診斷、新葯物的研製和新療法的探索帶來一場革命。人類基因組圖譜及初步分析結果的公布將對生命科學和生物技術的發展起到重要的推動作用。隨著人類基因組研究工作的進一步深入,生命科學和生物技術將隨著新的世紀進入新的紀元。
基因工程在20世紀取得了很大的進展,這至少有兩個有力的證明。一是轉基因動植物,一是克隆技術。轉基因動植物由於植入了新的基因,使得動植物具有了原先沒有的全新的性狀,這引起了一場農業革命。如今,轉基因技術已經開始廣泛應用,如抗蟲西紅柿、生長迅速的鯽魚等。1997年世界十大科技突破之首是克隆羊的誕生。這只叫「多利」母綿羊是第一隻通過無性繁殖產生的哺乳動物,它完全秉承了給予它細胞核的那隻母羊的遺傳基因。「克隆」一時間成為人們注目的焦點。盡管有著倫理和社會方面的憂慮,但生物技術的巨大進步使人類對未來的想像有了更廣闊的空間。
基因工程與農牧業、食品工業
運用基因工程技術,不但可以培養優質、高產、抗性好的農作物及畜、禽新品種,還可以培養出具有特殊用途的動、植物。
1.轉基因魚
生長快、耐不良環境、肉質好的轉基因魚(中國)。
2.轉基因牛
乳汁中含有人生長激素的轉基因牛(阿根廷)。
3.轉黃瓜抗青枯病基因的甜椒
4.轉魚抗寒基因的番茄
5.轉黃瓜抗青枯病基因的馬鈴薯
6.不會引起過敏的轉基因大豆
7.超級動物
導入貯藏蛋白基因的超級羊和超級小鼠
8.特殊動物
導入人基因具特殊用途的豬和小鼠
9.抗蟲棉
蘇雲金芽胞桿菌可合成毒蛋白殺死棉鈴蟲,把這部分基因導入棉花的離體細胞中,再組織培養就可獲得抗蟲棉。
基因工程與環境保護
基因工程做成的DNA探針能夠十分靈敏地檢測環境中的病毒、細菌等污染。
利用基因工程培育的指示生物能十分靈敏地反映環境污染的情況,卻不易因環境污染而大量死亡,甚至還可以吸收和轉化污染物。
基因工程與環境污染治理
基因工程做成的「超級細菌」能吞食和分解多種污染環境的物質。
(通常一種細菌只能分解石油中的一種烴類,用基因工程培育成功的「超級細菌」卻能分解石油中的多種烴類化合物。有的還能吞食轉化汞、鎘等重金屬,分解DDT等毒害物質。)
[編輯本段]基因治療可待 醫學革命到來
「基因」釋意 現在我們通用的「基因」一詞,是由「gene」音譯而來的。基因就是決定一個生物物種的所有生命現象的最基本的因子。科學家們認為這個詞翻譯得不僅音順,意義也貼切,是科學名詞外語漢譯的典範。基因作為機體內的遺傳單位,不僅可以決定我們的相貌、高矮,而且它的異常會不可避免地導致各種疾病的出現。某些缺陷基因可能會遺傳給後代,有些則不能。基因治療的提出最初是針對單基因缺陷的遺傳疾病,目的在於有一個正常的基因來代替缺陷基因或者來補救缺陷基因的致病因素。
用基因治病是把功能基因導入病人體內使之表達,並因表達產物——蛋白質發揮了功能使疾病得以治療。基因治療的結果就像給基因做了一次手術,治病治根,所以有人又把它形容為「分子外科」。
我們可以將基因治療分為性細胞基因和體細胞基因治療兩種類型。性細胞基因治療是在患者的性細胞中進行操作,使其後代從此再不會得這種遺傳疾病。體細胞基因治療是當前基因治療研究的主流。但其不足之處也很明顯,它並沒前改變病人已有單個或多個基因缺陷的遺傳背景,以致在其後代的子孫中必然還會有人要患這一疾病。
無論哪一種基因治療,目前都處於初期的臨床試驗階段,均沒有穩定的療效和完全的安全性,這是當前基因治療的研究現狀。
可以說,在沒有完全解釋人類基因組的運轉機制、充分了解基因調控機制和疾病的分子機理之前進行基因治療是相當危險的。增強基因治療的安全性,提高臨床試驗的嚴密性及合理性尤為重要。盡管基因治療仍有許多障礙有待克服,但總的趨勢是令人鼓舞的。據統計,截止1998年底,世界范圍內已有373個臨床法案被實施,累計3134人接受了基因轉移試驗,充分顯示了其巨大的開發潛力及應用前景。正如基因治療的奠基者們當初所預言的那樣,基因治療的出現將推動新世紀醫學的革命性變化。
基因工程將使傳統中葯進入新時代
5月13日 13日參加「中葯與天然葯物」國際研討會的中國專家認為,轉基因葯用植物或器官研究、有效次生代謝途徑關鍵酶基因的克隆研究、中葯DNA分子標記以及中葯基因晶元的研究等,已成為當今中葯研究的熱點,並將使傳統中葯進入一個嶄新的時代。
據北京大學天然葯物及仿生學葯物國家重點實驗室副主任果德安介紹,轉基因葯用植物或器官和組織研究是中國近幾年中葯生物技術比較活躍的領域之一。
在轉基因葯用植物的研究方面,中國醫學科學院葯用植物研究所分別通過發根農桿菌和根癌農桿菌誘導丹參形成毛狀根和冠癭瘤進而再分化形成植株,他們將其與栽培的丹參作了形態和化學成分比較研究,結果發現毛狀根再生的植株葉片皺縮、節間縮短、植株矮化、須根發達等;而冠癭組織再生的植株株形高大、根系發達、產量高,丹參酮的含量高於對照,這對丹參的良種繁育,提高葯材質量具有重要意義。
果德安說,研究中葯化學成分的生物合成途徑,不僅可以有助於這些化學成分的仿生合成,而且還可以人為地對這些化學成分的合成進行生物調控,有利於定向合成所需要的化學成分。國內有關這方面的研究已經開始起步。
據了解,中國在中葯研究中生物技術應用方面的研究已經漸漸興起,有些方面如葯用植物組織與細胞培養,已積累了二三十年的經驗,理論和技術都相當成熟,而且在全國范圍內已形成了一定的規模。其中,中葯材細胞工程研究正處於鼎盛時期。
果德安介紹說,面對許多野生植物瀕於滅絕,一些特殊環境下的植物引種困難等問題,中國科學工作者開始探索通過高等植物細胞、器官等的大量培養生產有用的次生代謝物。研究內容包括通過高產組織或細胞系的篩選與培養條件的優化和通過對次生代謝產物生物合成途徑的調控等,達到降低成本及提高次生代謝產物產量的目的。
此外,近來利用植物懸浮培養細胞或不定根、發狀根對外源化學成分進行生物轉化的研究也在悄然興起,並已取得了一定的進展。
不僅如此,科學工作者更加重視對次生代謝產物生物合成途徑調控的研究。這些研究都取得了令人興奮的成果,說明中國的葯用植物的細胞培養已進入一個嶄新的時代。
果德安認為,今後研究的主要方向應集中在價值大且瀕危的葯用植物的組織細胞培養;對次生代謝產物的產生進行調控;一些重要中葯化學成分的生物轉化。
基因工程與醫葯衛生
1.基因工程葯品的生產:
許多葯品的生產是從生物組織中提取的。受材料來源限制產量有限,其價格往往十分昂貴。
微生物生長迅速,容易控制,適於大規模工業化生產。若將生物合成相應葯物成分的基因導入微生物細胞內,讓它們產生相應的葯物,不但能解決產量問題,還能大大降低生產成本。
⑴基因工程胰島素
胰島素是治療糖尿病的特效葯,長期以來只能依靠從豬、牛等動物的胰腺中提取,100Kg胰腺只能提取4-5g的胰島素,其產量之低和價格之高可想而知。
將合成的胰島素基因導入大腸桿菌,每2000L培養液就能產生100g胰島素!大規模工業化生產不但解決了這種比黃金還貴的葯品產量問題,還使其價格降低了30%-50%!
⑵基因工程干擾素
干擾素治療病毒感染簡直是「萬能靈葯」!過去從人血中提取,300L血才提取1mg!其「珍貴」程度自不用多說。
基因工程人干擾素α-2b(安達芬) 是我國第一個全國產化基因工程人干擾素α-2b,具有抗病毒,抑制腫瘤細胞增生,調節人體免疫功能的作用,廣泛用於病毒性疾病治療和多種腫瘤的治療,是當前國際公認的病毒性疾病治療的首選葯物和腫瘤生物治療的主要葯物。
⑶其它基因工程葯物
人造血液、白細胞介素、乙肝疫苗等通過基因工程實現工業化生產,均為解除人類的病苦,提高人類的健康水平發揮了重大的作用。
2.基因診斷與基因治療:
運用基因工程設計製造的「DNA探針」檢測肝炎病毒等病毒感染及遺傳缺陷,不但准確而且迅速。通過基因工程給患有遺傳病的人體內導入正常基因可「一次性」解除病人的疾苦。
◆SCID的基因工程治療
重症聯合免疫缺陷(SCID)患者缺乏正常的人體免疫功能,只要稍被細菌或者病毒感染,就會發病死亡。這個病的機理是細胞的一個常染色體上編碼腺苷酸脫氨酶(簡稱ADA)的基因(ada)發生了突變。可以通過基因工程的方法治療。
[編輯本段]基因工程——產最高效葯物的轉基因動物
轉基因動物是一種個體表達反應系統,代表了當今時代葯物生產的最新成就,也是最復雜、最具有廣闊前景的生物反應系統。就通過轉基因動物家畜來生產基因葯物而言,最理想的表達場所是乳腺。因為乳腺是一個外泌器官,乳汁不進入體內循環,不會影響到轉基因動物本身的生理代謝反應。從轉基因動物的乳汁中獲取的基因產物,不但產量高、易提純,而且表達的蛋白經過充分的修飾加工,具有穩定的生物活性,因此又稱為「動物乳腺生物反應器」。1994年中科院曾邦哲發表轉基因禽類輸卵管生物反應器並採用蛋清蛋白基因側翼序列構表達載體(《生物技術通報》1997年第6期),1996年在北京舉辦了第一屆國際轉基因動物學術討論會,2007年中國國家863計劃列入指南。所以用轉基因牛、羊等家畜的乳腺表達人類所需蛋白基因,就相當於建一座大型制葯廠,這種葯物工廠顯然具有投資少、效益高、無公害等優點。
從生物學的觀點來看,生物機體對能量的利用和轉化的效率是當今世界上任何機械裝置所望塵莫及的。因此,通過轉基因動物來生產葯物是迄今為止人們所能想像得出的最為有效、最為先進的系統。
轉基因動物的乳腺可以源源不斷地提供目的基因的產生(葯物蛋白質),不但產量高,而且表達的產物已經過充分修飾和加工,具有穩定的生物活性。作為生物反應器的轉基因運動又可無限繁殖,故具有成本低、周期短和效益好的優點。一些由轉基因家畜乳汁中分離的葯物蛋白正用於臨床試驗。
目前,我國在轉基因動物的研究領域,已獲得了轉基因小鼠、轉基因兔、轉基因魚、轉基因豬、轉基因羊和轉基因牛。20世紀90年代,國家「863」高技術計劃已將轉基因羊——乳腺生物反應器的研究列為重大項目。
雖然目前通過轉基因動物(家畜)——乳腺生物反應器生產的葯物或珍貴蛋白尚未形成產業,但據國外經濟學家預測,大約10年後,轉基因運動生產的葯品就會鼎足於世界市場。那時,單是葯物的年銷售額就超過250億美元(還不包括營養蛋白和其他產品),從而使轉基因動物(家畜)——乳腺生物反應器產業成為最具有高額利潤的新型工業。
2000年12月25日,北京三隻轉基因羊的問世以及在此之前各種轉基因蔬菜、水稻、棉花等,使人們對轉基因技術備加關注,那麼轉基因技術到底是一種什麼樣的神秘技術呢?
北京市順義區三高科技農業試驗示範區的北京興綠原生物科技中心總畜牧師田雄傑先生介紹說,轉基因動物和轉基因羊的意義,不在於羊本身,而是它們身上產出的羊奶可以提取α抗胰蛋白酶,它們中的每一隻都可稱為一座天然基因葯物製造廠,價值連城。
中國工程院院士、上海兒童醫院上海醫學遺傳研究所所長曾溢滔先生認為,轉基因動物是指通過實驗方法,人工地把人們想要研究的動物或人類基因,或者是有經濟價值的葯物蛋白質基因,通常稱為外源基因,導入動物的受精卵(或早期胚胎細胞),使之與動物本身的基因組整合在一起,這樣外源基因能隨細胞的分裂而增殖,並能穩定地遺傳給下一代的一類動物。
田雄傑先生介紹,制備轉基因羊,就是將人的α抗胰蛋白酶基因通過顯微操作注進母羊受精卵的雄性細胞核,並使之與羊本身的基因整合起來,形成一體,這種新的基因組可以穩定地遺傳到出生的小羊身上。小山羊也成了人工創造的與它們母親不同的新品系,它們的後代也將帶有這種α抗胰蛋白酶基因。這個過程有些類植物的嫁接術。
制備轉基因動物是項復雜的工作。目前,在轉基因動物研製中,外源基因與動物本身的基因組整合率低,其表達往往不理想,外源基因應有的性質得不到充分表現或不表現。實驗運動如牛、羊和豬的整合率一般為1%左右。這種情況的原因可能是多方面的,首先是目的基因的問題,不同的外源基因表達水平不相同,因每個個體而異;其次是外源基因表達載體內部各個部分的組合和連接是否合理等;還有一點更重要,就是外源基因到達動物基因組內整合的位置是否合理。科學家還弄不清楚整合在哪個伴置表達高,哪個位置表達低,人們還無法控制外源基因整合的位置,而只能是隨機整合。因此,整合率低也就在所難免。
盡管轉基因動物還有一些技術亟待解決,但是轉基因動物研究所取得的巨大進展,特別是它在各個領域中的廣泛應用,已經對生物醫學、畜牧業和葯物產業產生了深刻影響。
基因工程——基因晶元——可預測「未病之病」
「21世紀生物技術」論壇上,中國第一片應用型晶元發明人———青年科學家馬文麗和鄭文嶺兩教授受到與會專家的高度關注。他們發明的基因晶元將引導21世紀的醫學模式從疾病診治向「亞健康狀態」的診治過渡。
青年科學家馬文麗和鄭文嶺在昨天的論壇上介紹了基因晶元(又稱為DNA晶元、生物晶元)的研製開發過程以及它的應用前景。所有生物都有自己特有的DNA,後者是存在於細胞里的遺傳物質,決定該物種的特性。基因晶元可以檢測任何生物的DNA,比現在所有的檢測手段都要靈敏、准確和快速,因而它的應用前景非常廣闊:可以加速人類基因組計劃(又稱之為「第二次阿波羅計劃」)和後基因組計劃的研究進展;可以通過檢測空氣里的微生物,對環境污染進行監控;可以准確快速地對各種動植物進行檢疫;可以篩選新葯、鑒別假葯、識別中葯的有效成分,促進中葯現代化的實現;……目前基因晶元在臨床疾病的診斷上最具有市場前景。馬文麗、鄭文嶺兩位科學家指出,羅馬不是一天建成的,疾病也不是一天發生的。例如腫瘤的病人,當他從健康狀態發展到疾病狀態之間,有一個「亞健康狀態」,這一階段的人可以不發生任何身體上的不適,或者已經出現了容易疲勞、注意力不集中、便秘、不明原因的失眠等情況,但到醫院用儀器和其他檢驗方法又找不到異常。在「亞健康」階段用基因晶元進行檢測可以發現,血液里的基因已經發生改變——例如癌基因被激活,正常的基因發生丟失、突變或者數量上的增減。通過基因晶元靈敏快速的檢測結果,我們可以實現中國古語中「上醫治未病」的理想,對疾病作出前瞻性的診斷,這就是「基因診斷」。
基因晶元的發明改變了現有的醫學模式:人們不是在發生疾病後才去醫院治療,平時定期使用基因晶元進行體檢,可以預先診斷出幾年甚至十幾年以後才發生的疾病(包括腫瘤、艾滋病、心血管病等),提早進行基因治療、基因預防。據介紹,基因診斷的技術問題已經解決,按照目前的市場預測,在5年以內可以進入臨床使用階段。
著名的《財富》雜志曾這樣評價基因晶元的歷史意義:「在20世紀的科學史上,有兩件大事值得大寫特寫,一個是計算機的發明,它改變了我們的經濟和文化;第二是生物晶元的發明,它將變更整個生命醫學,極大地提高人類的健康水平。」
作為改變人類生命發展進程的一種工具,基因晶元具有不可估量的經濟價值。據國際權威調查機構預測,僅2000年之後的第一個五年內,全世界基因晶元的銷售可望超過50億美元,而在第二個五年中將超過400億美元。馬文麗和鄭文嶺兩位科學家的發明,使得中國在繼「工業革命」和「信息技術革命」後的「基因組革命」與世界同步。
❷ 18. 基因工程 名詞解釋
基因工程genetic engineering
基因工程又稱基因拼接技術和DNA重組技術,是以分子遺傳學為理論基礎, 以分子生物學和微生物學的現代方法為手段, 將不同來源的基因(DNA分子),按預先設計的藍圖, 在體外構建雜種DNA分子, 然後導入活細胞, 以改變生物原有的遺傳特性、獲得新品種、 生產新產品。基因工程技術為基因的結構和功能的研究提供了有力的手段。
什麼是基因工程?【簡介】
基因工程是生物工程的一個重要分支,它和細胞工程、酶工程、蛋白質工程和微生物工程共同組成了生物工程。 所謂基因工程(genetic engineering)是在分子水平上對基因進行操作的復雜技術,是將外源基因通過體外重組後導入受體細胞內,使這個基因能在受體細胞內復制、轉錄、翻譯表達的操作。它是用人為的方法將所需要的某一供體生物的遺傳物質——DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的復制和表達,從而獲得新物種的一種嶄新技術。
基因工程是在分子生物學和分子遺傳學綜合發展基礎上於本世紀70年代誕生的一門嶄新的生物技術科學。一般來說,基因工程是指在基因水平上的遺傳工程,它是用人為方法將所需要的某一供體生物的遺傳物質--DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源遺傳物質在其中"安家落戶",進行正常復制和表達,從而獲得新物種的一種嶄新的育種技術。 這個定義表明,基因工程具有以下幾個重要特徵:首先,外源核酸分子在不同的寄主生物中進行繁殖,能夠跨越天然物種屏障,把來自任何一種生物的基因放置到新的生物中,而這種生物可以與原來生物毫無親緣關系,這種能力是基因工程的第一個重要特徵。第二個特徵是,一種確定的DNA小片段在新的寄主細胞中進行擴增,這樣實現很少量DNA樣品"拷貝"出大量的DNA,而且是大量沒有污染任何其它DNA序列的、絕對純凈的DNA分子群體。科學家將改變人類生殖細胞DNA的技術稱為「基因系治療」(germlinetherapy),通常所說的「基因工程」則是針對改變動植物生殖細胞的。無論稱謂如何,改變個體生殖細胞的DNA都將可能使其後代發生同樣的改變。
迄今為止,基因工程還沒有用於人體,但已在從細菌到家畜的幾乎所有非人生命物體上做了實驗,並取得了成功。事實上,所有用於治療糖尿病的胰島素都來自一種細菌,其DNA中被插入人類可產生胰島素的基因,細菌便可自行復制胰島素。基因工程技術使得許多植物具有了抗病蟲害和抗除草劑的能力;在美國,大約有一半的大豆和四分之一的玉米都是轉基因的。目前,是否該在農業中採用轉基因動植物已成為人們爭論的焦點:支持者認為,轉基因的農產品更容易生長,也含有更多的營養(甚至葯物),有助於減緩世界范圍內的飢荒和疾病;而反對者則認為,在農產品中引入新的基因會產生副作用,尤其是會破壞環境。
誠然,仍有許多基因的功能及其協同工作的方式不為人類所知,但想到利用基因工程可使番茄具有抗癌作用、使鮭魚長得比自然界中的大幾倍、使寵物不再會引起過敏,許多人便希望也可以對人類基因做類似的修改。畢竟,胚胎遺傳病篩查、基因修復和基因工程等技術不僅可用於治療疾病,也為改變諸如眼睛的顏色、智力等其他人類特性提供了可能。目前我們還遠不能設計定做我們的後代,但已有藉助胚胎遺傳病篩查技術培育人們需求的身體特性的例子。比如,運用此技術,可使患兒的父母生一個和患兒骨髓匹配的孩子,然後再通過骨髓移植來治癒患兒。
隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 RNA轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。 如果將一種生物的 DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型,這與過去培育生物繁殖後代的傳統做法完全不同。 這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
【基因工程的基本操作步驟】
1.獲取目的基因是實施基因工程的第一步。
2.基因表達載體的構建是實施基因工程的第二步,也是基因工程的核心。
3.將目的基因導入受體細胞是實施基因工程的第三步。
4.目的基因導入受體細胞後,是否可以穩定維持和表達其遺傳特性,只有通過檢測與鑒定才能知道。這是基因工程的第四步工作。
基因工程的前景科學界預言,21世紀是一個基因工程世紀。基因工程是在分子水平對生物遺傳作人為干預,要認識它,我們先從生物工程談起:生物工程又稱生物技術,是一門應用現代生命科學原理和信息及化工等技術,利用活細胞或其產生的酶來對廉價原材料進行不同程度的加工,提供大量有用產品的綜合性工程技術。
生物工程的基礎是現代生命科學、技術科學和信息科學。生物工程的主要產品是為社會提供大量優質發酵產品,例如生化葯物、化工原料、能源、生物防治劑以及食品和飲料,還可以為人類提供治理環境、提取金屬、臨床診斷、基因治療和改良農作物品種等社會服務。
生物工程主要有基因工程、細胞工程、酶工程、蛋白質工程和微生物工程等5個部分。其中基因工程就是人們對生物基因進行改造,利用生物生產人們想要的特殊產品。隨著DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。
美國的吉爾伯特是鹼基排列分析法的創始人,他率先支持人類基因組工程 如果將一種生物的DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,不就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型嗎?這與過去培育生物繁殖後代的傳統做法完全不同,它很像技術科學的工程設計,即按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就被稱為「基因工程」,或者稱之為「遺傳工程」。
人類基因工程走過的主要歷程怎樣呢?1866年,奧地利遺傳學家孟德爾神父發現生物的遺傳基因規律;1868年,瑞士生物學家弗里德里希發現細胞核內存有酸性和蛋白質兩個部分。酸性部分就是後來的所謂的DNA;1882年,德國胚胎學家瓦爾特弗萊明在研究蠑螈細胞時發現細胞核內的包含有大量的分裂的線狀物體,也就是後來的染色體;1944年,美國科研人員證明DNA是大多數有機體的遺傳原料,而不是蛋白質;1953年,美國生化學家華森和英國物理學家克里克宣布他們發現了DNA的雙螺旋結果,奠下了基因工程的基礎;1980年,第一隻經過基因改造的老鼠誕生;1996年,第一隻克隆羊誕生;1999年,美國科學家破解了人類第 22組基因排序列圖;未來的計劃是可以根據基因圖有針對性地對有關病症下葯。
人類基因組研究是一項生命科學的基礎性研究。有科學家把基因組圖譜看成是指路圖,或化學中的元素周期表;也有科學家把基因組圖譜比作字典,但不論是從哪個角度去闡釋,破解人類自身基因密碼,以促進人類健康、預防疾病、延長壽命,其應用前景都是極其美好的。人類10萬個基因的信息以及相應的染色體位置被破譯後,破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。將成為醫學和生物制葯產業知識和技術創新的源泉。美國的貝克維茲正在觀察器皿中的菌落,他曾對人類基因組工程提出警告。
科學研究證明,一些困擾人類健康的主要疾病,例如心腦血管疾病、糖尿病、肝病、癌症等都與基因有關。依據已經破譯的基因序列和功能,找出這些基因並針對相應的病變區位進行葯物篩選,甚至基於已有的基因知識來設計新葯,就能「有的放矢」地修補或替換這些病變的基因,從而根治頑症。基因葯物將成為21世紀醫葯中的耀眼明星。基因研究不僅能夠為篩選和研製新葯提供基礎數據,也為利用基因進行檢測、預防和治療疾病提供了可能。比如,有同樣生活習慣和生活環境的人,由於具有不同基因序列,對同一種病的易感性就大不一樣。明顯的例子有,同為吸煙人群,有人就易患肺癌,有人則不然。醫生會根據各人不同的基因序列給予因人而異的指導,使其養成科學合理的生活習慣,最大可能地預防疾病。
人類基因工程的開展使破譯人類全部DNA指日可待。
信息技術的發展改變了人類的生活方式,而基因工程的突破將幫助人類延年益壽。目前,一些國家人口的平均壽命已突破80歲,中國也突破了70歲。有科學家預言,隨著癌症、心腦血管疾病等頑症的有效攻克,在2020至2030年間,可能出現人口平均壽命突破100歲的國家。到2050年,人類的平均壽命將達到90至95歲。
人類將挑戰生命科學的極限。1953年2月的一天,英國科學家弗朗西斯·克里克宣布:我們已經發現了生命的秘密。他發現DNA是一種存在於細胞核中的雙螺旋分子,決定了生物的遺傳。有趣的是,這位科學家是在劍橋的一家酒吧宣布了這一重大科學發現的。破譯人類和動植物的基因密碼,為攻克疾病和提高農作物產量開拓了廣闊的前景。1987年,美國科學家提出了「人類基因組計劃」,目標是確定人類的全部遺傳信息,確定人的基因在23對染色體上的具體位置,查清每個基因核苷酸的順序,建立人類基因庫。1999年,人的第22對染色體的基因密碼被破譯,「人類基因組計劃」邁出了成功的一步。可以預見,在今後的四分之一世紀里,科學家們就可能揭示人類大約5000種基因遺傳病的致病基因,從而為癌症、糖尿病、心臟病、血友病等致命疾病找到基因療法。
繼2000年6月26日科學家公布人類基因組"工作框架圖"之後,中、美、日、德、法、英等6國科學家和美國塞萊拉公司2001年2月12日聯合公布人類基因組圖譜及初步分析結果。這次公布的人類基因組圖譜是在原"工作框架圖"的基礎上,經過整理、分類和排列後得到的,它更加准確、清晰、完整。人類基因組蘊涵有人類生、老、病、死的絕大多數遺傳信息,破譯它將為疾病的診斷、新葯物的研製和新療法的探索帶來一場革命。人類基因組圖譜及初步分析結果的公布將對生命科學和生物技術的發展起到重要的推動作用。隨著人類基因組研究工作的進一步深入,生命科學和生物技術將隨著新的世紀進入新的紀元。
基因工程在20世紀取得了很大的進展,這至少有兩個有力的證明。一是轉基因動植物,一是克隆技術。轉基因動植物由於植入了新的基因,使得動植物具有了原先沒有的全新的性狀,這引起了一場農業革命。如今,轉基因技術已經開始廣泛應用,如抗蟲西紅柿、生長迅速的鯽魚等。1997年世界十大科技突破之首是克隆羊的誕生。這只叫「多利」母綿羊是第一隻通過無性繁殖產生的哺乳動物,它完全秉承了給予它細胞核的那隻母羊的遺傳基因。「克隆」一時間成為人們注目的焦點。盡管有著倫理和社會方面的憂慮,但生物技術的巨大進步使人類對未來的想像有了更廣闊的空間。
基因工程大事記
1860至1870年 奧地利學者孟德爾根據豌豆雜交實驗提出遺傳因子概念,並總結出孟德爾遺傳定律。
1909年 丹麥植物學家和遺傳學家約翰遜首次提出「基因」這一名詞,用以表達孟德爾的遺傳因子概念。
1944年 3位美國科學家分離出細菌的DNA(脫氧核糖核酸),並發現DNA是攜帶生命遺傳物質的分子。
1953年 美國人沃森和英國人克里克通過實驗提出了DNA分子的雙螺旋模型。
1969年 科學家成功分離出第一個基因。
1980年 科學家首次培育出世界第一個轉基因動物轉基因小鼠。
1983年 科學家首次培育出世界第一個轉基因植物轉基因煙草。
1988年 K.Mullis發明了PCR技術。
1990年10月 被譽為生命科學「阿波羅登月計劃」的國際人類基因組計劃啟動。
1998年 一批科學家在美國羅克威爾組建塞萊拉遺傳公司,與國際人類基因組計劃展開競爭。
1998年12月 一種小線蟲完整基因組序列的測定工作宣告完成,這是科學家第一次繪出多細胞動物的基因組圖譜。
1999年9月 中國獲准加入人類基因組計劃,負責測定人類基因組全部序列的1%。中國是繼美、英、日、德、法之後第6個國際人類基因組計劃參與國,也是參與這一計劃的惟一發展中國家。
1999年12月1日 國際人類基因組計劃聯合研究小組宣布,完整破譯出人體第22對染色體的遺傳密碼,這是人類首次成功地完成人體染色體完整基因序列的測定。
2000年4月6日 美國塞萊拉公司宣布破譯出一名實驗者的完整遺傳密碼,但遭到不少科學家的質疑。
2000年4月底 中國科學家按照國際人類基因組計劃的部署,完成了1%人類基因組的工作框架圖。
2000年5月8日 德、日等國科學家宣布,已基本完成了人體第21對染色體的測序工作。
2000年6月26日 科學家公布人類基因組工作草圖,標志著人類在解讀自身「生命之書」的路上邁出了重要一步。
2000年12月14日 美英等國科學家宣布繪出擬南芥基因組的完整圖譜,這是人類首次全部破譯出一種植物的基因序列。
2001年2月12日 中、美、日、德、法、英6國科學家和美國塞萊拉公司聯合公布人類基因組圖譜及初步分析結果。
科學家首次公布人類基因組草圖「基因信息」。
❸ 基因工程
基因工程
基因工程
jī yīn ɡōnɡ chénɡ
1. genetic engineering
什麼是基因工程?
隨著 DNA的內部結構和遺傳機制的秘密一點一點呈現在人們眼前,特別是當人們了解到遺傳密碼是由 RNA轉錄表達的以後,生物學家不再僅僅滿足於探索、提示生物遺傳的秘密,而是開始躍躍欲試,設想在分子的水平上去干預生物的遺傳特性。
如果將一種生物的 DNA中的某個遺傳密碼片斷連接到另外一種生物的DNA鏈上去,將DNA重新組織一下,就可以按照人類的願望,設計出新的遺傳物質並創造出新的生物類型,這與過去培育生物繁殖後代的傳統做法完全不同。
這種做法就像技術科學的工程設計,按照人類的需要把這種生物的這個「基因」與那種生物的那個「基因」重新「施工」,「組裝」成新的基因組合,創造出新的生物。這種完全按照人的意願,由重新組裝基因到新生物產生的生物科學技術,就稱為「基因工程」,或者說是「遺傳工程」。
基因工程是生物工程的一個重要分支,它和細胞工程、酶工程、蛋白質工程和微生物工程共同組成了生物工程。
所謂基因工程(genetic engineering)是在分子水平上對基因進行操作的復雜技術,是將外源基因通過體外重組後導入受體細胞內,使這個基因能在受體細胞內復制、轉錄、翻譯表達的操作。它是用人為的方法將所需要的某一供體生物的遺傳物質——DNA大分子提取出來,在離體條件下用適當的工具酶進行切割後,把它與作為載體的DNA分子連接起來,然後與載體一起導入某一更易生長、繁殖的受體細胞中,以讓外源物質在其中「安家落戶」,進行正常的復制和表達,從而獲得新物種的一種嶄新技術。
❹ 為什麼要做基因檢測
做基因檢測的意義在於:
1、用於疾病的診斷
如對結核桿菌感染的診斷,採用基因診斷的方法,不僅敏感性大大提高,而且在短時間內就能得到結果。
2、了解自身是否有家族性疾病的致病基因,預測患病風險
如具有癌症或多基因遺傳病(如老年痴呆、高血壓、糖尿病等)的人可找出致病的遺傳基因,就能夠有針對性地調整生活方式,預防或者延緩疾病的發生。
3、正確選擇葯物,避免濫用葯物和葯物不良反應
由於個體遺傳基因上的差異,不同的人對外來物質產生的反應也會有所不同,因根據基因檢測的結果,可制定特定的治療方案,從而科學地指導使用葯物,避免葯物毒副反應。
基因是遺傳的基本單元,攜帶有遺傳信息的DNA或RNA序列,通過復制,把遺傳信息傳遞給下一代,指導蛋白質的合成來表達自己所攜帶的遺傳信息,從而控制生物個體的性狀表達。
(4)原創基因密碼是什麼意思擴展閱讀:
基因檢測的分類:
1、基因篩檢
主要是針對特定團體或全體人群進行檢測。大多數通過產前或新生兒的基因檢測以達到篩檢的目的。
2、生殖性基因檢測
在進行體外人工授精階段可運用,篩檢出胚胎是否帶有基因變異,避免胎兒患有遺傳性疾病。
3、診斷性檢測
多數用來協助臨床用葯指導。
4、基因攜帶檢測
基因攜帶者如果與某些特殊基因相結合,可能會導致下一代患基因疾病,通過基因攜帶者的檢測可篩檢出此種可能,作為基因攜帶者婚前檢查、生育時的參考。
5、症狀出現前的檢測
檢測目的是了解目前健康良好者是否帶有某種突變基因,而此基因與特定疾病的發生有密切的聯系。
參考資料來源:網路-基因檢測
❺ 什麼是遺傳信息,遺傳密碼和同源染色體
遺傳信息
遺傳信息 genetic information
遺傳信息 genetic information 指生物為復制與自己相同的東西、由親代傳遞給子代、或各細胞每次分裂時由細胞傳遞給細胞的信息。從歷史上看,首先是由G.J.Mendel(1866)的研究形成了概念,即相應於生物各種性狀的因素(現在稱為基因)中包含著相應的信息(以後G.Beadle等人(1941)所開創了遺傳生物化學的研究,描繪出這樣一個輪廓:基因和決定生物結構與功能的蛋白質之間具有一對一的對應關系。關於基因的化學本質方面,根據O.T.Avery等(1944)進行的轉化實驗,以及A.Hershey和M.Chase(1952)用大腸桿菌噬菌體的DNA進行的性狀表達實驗,已闡明DNA是遺傳信息的載體。附著DNA結構研究的進展,現在已經確立了這樣的概念,即基因所具有的信息可將DNA的鹼基排列進行符號化。信息在表達時,DNA的鹼基排列首先被轉錄成RNA的鹼基排列,然後再根據這種排列合成蛋白質。有的病毒的遺傳信息的載體不是DNA,而是RNA。遺傳信息不僅有相應於蛋白質的基因信息,也包括對信息解讀所必需的信息、控制信息表達所必需的信息,以及生物為了復制與自己相同結構所必需的一切信息。
遺傳密碼
遺傳密碼(genetic code):核酸中的核苷酸殘基序列與蛋白質中的氨基酸殘基序列之間的對應關系。;連續的3個核苷酸殘基序列為一個密碼子,特指一個氨基酸。標準的遺傳密碼是由64個密碼子組成的,幾乎為所有生物通用。
同源染色體
【英文翻譯】homologous chromosomes
【定 義】形態、結構、遺傳組成基本相同和在減數分裂中彼此聯會的一對染色體,一個來自母方,另一個來自父方。一般在同源染色體上有相同的基因座位,因此是二倍體細胞中的基因都有兩份。
同源染色體(homologous chromosomes)有絲分裂中期看到的長度和著絲粒位置相同的兩個染色體,或減數分裂時看到的兩兩配對的染色體。同源染色體一個來自父本,一個來自母本;它們的形態、大小和結構相同。由於每種生物染色體的數目是一定的,所以它們的同源染色體的對數也有一定。例如豌豆有14條染色體,7對同源染色體。同源染色體上常含有不同的等位基因,減數分裂時又進行了交換並隨機地分配到不同的性細胞中去,這對於遺傳重組有重要意義。
在生物體的有性生殖過程中,有性生殖細胞是通過有絲分裂的一種——減數分裂形成的。在減數分裂的分裂間期,精原細胞的體積略微增大,染色體進行復制,成為初級精母細胞。復制後的每條染色體都含有兩條姐妹染色體,這兩條姐妹染色單體並列在一起,由同一個著絲點連接著。分裂期開始後不久,初級精母細胞中原來分散存在的染色體進行配對。
❻ 人的DNA有可能改變嗎遇到什麼問題會改變
20世紀50年代,DNA雙螺旋結構被闡明,揭開了生命科學的新篇章,開創了科學技術的新時代。隨後,遺傳的分子機理――DNA復制、遺傳密碼、遺傳信息傳遞的中心法則、作為遺傳的基本單位和細胞工程藍圖的基因以及基因表達的調控相繼被認識。至此,人們已完全認識到掌握所有生物命運的東西就是DNA和它所包含的基因,生物的進化過程和生命過程的不同,就是因為DNA和基因運作軌跡不同所致。 知道DNA的重大作用和價值後,生命科學家首先想到能否在某些與人類利益密切相關的方面打破自然遺傳的鐵律,讓患病者的基因改邪歸正以達治病目的,把不同來源的基因片段進行「嫁接」以產生新品種和新品質……於是,一個充滿了誘惑力的科學幻想奇跡般地成為現實。這是發生在20世紀70年代初的事情。 實現這一科學奇跡的科技手段就是DNA重組技術。1972年,美國科學家保羅?伯格首次成功地重組了世界上第一批DNA分子,標志著DNA重組技術――基因工程作為現代生物工程的基礎,成為現代生物技術和生命科學的基礎與核心。 DNA重組技術的具體內容就是採用人工手段將不同來源的含某種特定基因的DNA片段進行重組,以達到改變生物基因類型和獲得特定基因產物的目的的一種高科學技術。 到了20世紀70年代中後期,由於出現了工程菌以及實現DNA重組和後處理都有工程化的性質,基因工程或遺傳工程作為DNA重組技術的代名詞被廣泛使用。現在,基因工程還包括基因組的改造、核酸序列分析、分子進化分析、分子免疫學、基因克隆、基因診斷和基因治療等內容。可以說,DNA重組技術創立近 30多年來所獲得的豐碩成果已經把人們帶進了一個不可思議的夢幻般的科學世界,使人類獲得了打開生命奧秘和防病治病「魔盒」的金鑰匙。 目前,DNA重組技術已經取得的成果是多方面的。到20世紀末,DNA重組技術最大的應用領域在醫葯方面,包括活性多肽、蛋白質和疫苗的生產,疾病發生機理、診斷和治療,新基因的分離以及環境監測與凈化。 許多活性多肽和蛋白質都具有治療和預防疾病的作用,它們都是從相應的基因中產生的。但是由於在組織細胞內產量極微,所以採用常規方法很難獲得足夠量供臨床應用。 基因工程則突破了這一局限性,能夠大量生產這類多肽和蛋白質,迄今已成功地生產出治療糖尿病和精神分裂症的胰島素,對血癌和某些實體腫瘤有療效的抗病毒劑――干擾素,治療侏儒症的人體生長激素,治療肢端肥大症和急性胰腺炎的生長激素釋放抑制因子等100多種產品。 基因工程還可將有關抗原的DNA導入活的微生物,這種微生物在受免疫應激後的宿主體內生長可產生弱毒活疫苗,具有抗原刺激劑量大、且持續時間長等優點。目前正在研製的基因工程疫苗就有數十種之多,在對付細菌方面有針對麻風桿菌、百日咳桿菌、淋球菌、腦膜炎雙球菌等的疫苗;在對付病毒方面有針對甲型肝炎、乙型肝炎、巨細胞病毒、單純皰疹、流感、人體免疫缺陷病毒等的疫苗……。我國乙肝病毒攜帶者和乙肝患者多達一二億,這一情況更促使了我國科學家自行成功研製出乙肝疫苗,取得了巨大的社會效益和經濟效益。 抗體是人體免疫系統防病抗病的主要武器之一,20世紀70年代創立的單克隆抗體技術在防病抗病方面雖然發揮了重要作用,但由於人源性單抗很難獲得,使得單抗在臨床上的應用受到限制。為解決此問題,近年來科學家採用DNA重組技術已獲得了人源性抗體,這種抗體既可保證它與抗原結合的專一性和親合力,又能保證正常功能的發揮。目前,已有多種這樣的抗體進行了臨床試驗,如抗HER-2人源化單抗治療乳腺癌已進入Ⅲ期試驗,抗IGE人源化單抗治療哮喘病已進入Ⅱ期試驗。 抗生素在治療疾病上起到了重要作用,隨著抗生素數量的增加,用傳統方法發現新抗生素的幾率越來越低。為了獲取更多的新型抗生素,採用DNA重組技術已成為重要手段之一。目前人們已獲得數十種基因工程「雜合」的抗生素,為臨床應用開辟了新的治療途徑。 值得指出的是,以上所述基因工程多肽、蛋白質、疫苗、抗生素等防治葯物不僅在有效控制疾病,而且在避免毒副作用方面也往往優於以傳統方法生產的同類葯品,因而更受人們青睞。 人類疾病都直接或間接與基因相關,在基因水平上對疾病進行診斷和治療,則既可達到病因診斷的准確性和原始性,又可使診斷和治療工作達到特異性強、靈敏度高、簡便快速的目的。於基因水平進行診斷和治療在專業上稱為基因診斷和基因治療。目前基因診斷作為第四代臨床診斷技術已被廣泛應用於對遺傳病、腫瘤、心腦血管疾病、病毒細菌寄生蟲病和職業病等的診斷;而基因治療的目標則是通過DNA重組技術創建具有特定功能的基因重組體,以補償失去功能的基因的作用,或是增加某種功能以利對異常細胞進行矯正或消滅。 在理論上,基因治療是治本治癒而無任何毒副作用的療法。不過,盡管至今國際上已有100多個基因治療方案正處於臨床試驗階段,但基因治療在理論和技術上的一些難題仍使這種治療方法離大規模應用還有一段很長的距離。不論是確定基因病因還是實施基因診斷、基因治療、研究疾病發生機理,關鍵的先決條件是要了解特定疾病的相關基因。隨著「人類基因組計劃」的臨近完成,科學家們對人體全部基因將會獲得全面的了解,這就為運用基因重組技術造逼於人類健康事業創造了條件。 不過,雖然基因技術向人類展示了它奇妙的「魔術師」般的魅力,但也有大量的科學家對這種技術的發展予以人類倫理和生態演化的自然法則的沖擊表示出極大的擔憂。從理論上來講,這種技術發展的一個極致就是使人類擁有了創造任何生命形態或從未有過的生物的能力。人們能夠想像這將是怎樣的結果嗎? 科學家在DNA中發現除基因密碼之外的新密碼 據台灣媒體報道,美國與以色列科學家相信,他們已在DNA(去氧核醣核酸)之中找到除了基因密碼之外的第二種密碼。新發現的密碼負責決定核體─亦即DNA所環繞的微型蛋白質線軸─之位置。這些線軸同時保護與控制通往DNA本身的途徑。 這項發現若獲得證實,可能開啟有關控制基因更高位階的機制新知。譬如,每一種人體細胞得以激活其所需基因,卻又無法觸及其它種類細胞所使用的基因等既關鍵又神秘的過程。 以色列魏茲曼研究院的塞格爾與美國西北大學的威頓及其同僚,在這一期「自然」科學期刊中,撰文描述這種DNA新密碼。 每一個人體細胞里都有約三千萬個核體。之所以需要這么多的核體,是因為DNA線包覆每一個核體僅一.六五次,每個DNA螺旋就包含一百四十七個單位,而且單一染色體里的DNA分子在長度上可能就有高達二億二千五百萬個單位。 生物學家多年來一直懷疑,DNA上的某些位置,特別是DNA最容易彎曲的那些位置,可能比其它位置更有利於核體的存在,但整體模式並不顯而易見。如今,塞格爾與威頓博士分析了酵母菌基因內約二百個位置的序列,這些都是既知核體糾結在一起的地方,兩人發現其中確實隱含一個模式存在。 透過了解此一模式,他們成功預測其它有機體大約五成核體的位置。這個模式乃是能讓DNA更容易彎曲,以及緊密包復核體的兩種序列結合而成。但在此一模式中,每一個核體糾結的位置僅需若干序列出現即可,因此並不明顯。正由於其形成條件鬆散,因此並不與基因密碼沖突。
❼ 植物的遺傳密碼可不可以修改
植物的遺傳密碼可以修改,科學家們就已研究出是植物細胞中的遺傳基因,這種物質叫做核酸,決定遺傳基因的分子有兩種,即脫氧核糖核酸(DNA)和核糖核酸(RNA)。
這兩者中的磷酸是沒有區別的,但糖有兩種,分別是脫氧核糖和(不脫氧的)核糖,脫氧核糖核酸的分子主要在細胞核里,核糖核酸在細胞核外。
(7)原創基因密碼是什麼意思擴展閱讀
大部分密碼子具有簡並性,即兩個或者多個密碼子編碼同一氨基酸。簡並的密碼子通常只有第三位鹼基不同,例如,GAA和GAG都編碼谷氨醯胺。如果不管密碼子的第三位為哪種核苷酸,都編碼同一種氨基酸,則稱之為四重簡並;
如果第三位有四種可能的核苷酸之中的兩種,而且編碼同一種氨基酸,則稱之為二重簡並,一般第三位上兩種等價的核苷酸同為嘌呤(A/G)或者嘧啶(C/T)。只有兩種氨基酸僅由一個密碼子編碼,一個是甲硫氨酸,由AUG編碼,同時也是起始密碼子;另一個是色氨酸,由UGG編碼。
❽ 什麼是密碼子改造
密碼子是在不改變氨基酸序列的前提下,按照植物基因密碼子選擇的偏向,人工改造了天然Bt基因的密碼子。人工設計、合成並建構了在植物中能高效表達的蛋白酶抑制基因,范雲六,分子生物學家,中國工程院院士。中國植物基因工程開創者之一,組成遺傳密碼的字碼單位。由DNA或RNA分子中相聯的三個核苷酸鹼基組成,或稱三聯體密碼。
大腸桿菌同義密碼子偏好性概述
目前生物醫葯研究和生物技術生產的主要方法是利用外源表達系統來表達目的蛋白,常用的外源表達系統有大腸桿菌表達系統,酵母表達系統,哺乳動物表達系統等。要實現目的基因在外源表達系統中的成功表達和盡可能地提高其表達量,可以通過增加目的基因劑量,目的基因密碼子優化,改善培養條件等方法實現,其中目的基因密碼子優化起到關鍵的作用。
❾ 人類的DNA隱藏著什麼密碼呢有關於人類來源的
5
人類在地球上誕生的時間也不短了,與地球在宇宙中的生存時間相比,卻顯得微不足道,整個宇宙存在太多的未解之謎,人類或許真的是外星人的試驗品。我們一直在外星人的操控范圍內,這些都只是猜測並沒有足夠的論證,你們認為人類是被創造出來的嗎?
❿ 4、遺傳密碼的基本特性是什麼
大自然將奧秘或法則隱匿於一套密碼之中,藉此創作出數以千萬計的物種,之後又將其銷毀,終而復始,生生不息。
1、方向性
密碼子是對mRNA分子的鹼基序列而言的,它的閱讀方向是與mRNA的合成方向或mRNA編碼方向一致的,即從5'端至3'端。
2、連續性
mRNA的讀碼方向從5'端至3'端方向,兩個密碼子之間無任何核苷酸隔開。mRNA鏈上鹼基的插入、缺失和重疊,均造成框移突變。
3、簡並性
指一個氨基酸具有兩個或兩個以上的密碼子。密碼子的第三位鹼基改變往往不影響氨基酸翻譯。
4、擺動性
mRNA上的密碼子與轉移RNA(tRNA)J上的反密碼子配對辨認時,大多數情況遵守鹼基互補配對原則,但也可出現不嚴格配對,尤其是密碼子的第三位鹼基與反密碼子的第一位鹼基配對時常出現不嚴格鹼基互補,這種現象稱為擺動配對。
5、通用性
蛋白質生物合成的整套密碼,從原核生物到人類都通用。但已發現少數例外,如動物細胞的線粒體、植物細胞的葉綠體。
(10)原創基因密碼是什麼意思擴展閱讀:
遺傳密碼的破譯:
1、通過簡單的排列組合推測遺傳密碼是三聯體
2、遺傳密碼的閱讀方式如何(重疊讀碼還是非重疊讀碼)
3、克里克通過T4噬菌體突變實驗證實了遺傳密碼是三聯體並採用非重疊的讀碼方式
4、遺傳密碼與氨基酸如何對應
5、尼倫伯格和馬太通過體外無細胞體系合成蛋白質的實驗破譯了UUU編碼苯丙氨酸
6、AAA和CCC也隨之被破譯
7、通過異聚核苷酸作為mRNA的體外合成蛋白實驗,找出了各種氨基酸密碼子的大體范圍,並證實了密碼子的簡並性
8、通過特定的三核苷酸能促進特定的氨醯-tRNA與核糖體結合的重大發現而破譯了61種編碼氨基酸的密碼子
9、通過對琥珀和赭石突變的回復突變實驗,破譯了UAG和UAA這兩個終止密碼
10、通過已經破譯的63種遺傳密碼發現了遺傳密碼的規律,間接證明了UGA是第三個終止密碼子,稱為蛋白石密碼子
參考資料來源:網路-遺傳密碼