sha加密解密
A. iOSRSA加密和SHA驗簽
RSA是一種非對稱加密演算法,常用來對傳輸數據進行加密,配合上數字摘要演算法,也可以進行文字簽名。
padding即填充方式,由於RSA加密演算法中要加密的明文是要比模數小的,padding就是通過一些填充方式來限制明文的長度。後面會詳細介紹padding的幾種模式以及分段加密。
加密:公鑰放在客戶端,並使用公鑰對數據進行加密,服務端拿到數據後用私鑰進行解密;
加簽:私鑰放在客戶端,並使用私鑰對數據進行加簽,服務端拿到數據後用公鑰進行驗簽。
前者完全為了加密;後者主要是為了防惡意攻擊,防止別人模擬我們的客戶端對我們的伺服器進行攻擊,導致伺服器癱瘓。
RSA使用「密鑰對」對數據進行加密解密,在加密解密前需要先生存公鑰(Public Key)和私鑰(Private Key)。
公鑰(Public key): 用於加密數據. 用於公開, 一般存放在數據提供方, 例如iOS客戶端。
私鑰(Private key): 用於解密數據. 必須保密, 私鑰泄露會造成安全問題。
iOS中的Security.framework提供了對RSA演算法的支持,這種方式需要對密匙對進行處理, 根據public key生成證書, 通過private key生成p12格式的密匙
首先我們要會生成RSA密鑰文件,現在一步步的來給大家展示一下,如何生成我們所需的公鑰和私鑰文件:
$ openssl genrsa -out private.pem 1024
openssl:是一個自由的軟體組織,專注做加密和解密的框架。
genrsa:指定了生成了演算法使用RSA
-out:後面的參數表示生成的key的輸入文件
1024:表示的是生成key的長度,單位位元組(bits)
$ openssl req -new -key private.pem -out rsacert.csr
可以拿著這個文件去數字證書頒發機構(即CA)申請一個數字證書。CA會給你一個新的文件cacert.pem,那才是你的數字證書。(要收費的)
$ openssl x509 -req -days 3650 -in rsacert.csr -signkey private.pem -out rsacert.crt
509是一種非常通用的證書格式。
將用上面生成的密鑰privkey.pem和rsacert.csr證書請求文件生成一個數字證書rsacert.crt。這個就是公鑰
$ openssl x509 -outform der -in rsacert.crt -out rsacert.der
注意: 在 iOS開發中,公鑰是不能使用base64編碼的,上面的命令是將公鑰的base64編碼字元串轉換成二進制數據
在iOS使用私鑰不能直接使用,需要導出一個p12文件。下面命令就是將私鑰文件導出為p12文件。
$ openssl pkcs12 -export -out p.p12 -inkey private.pem -in rsacert.crt
IOS客戶端的加解密首先我們需要導入Security.framework,
在ios中,我們主要關注四個函數
RSA演算法有2個作用一個是加密一個是加簽。從這幾個函數中,我們可以看到,我們第一種是使用公鑰能在客戶端:加密數據,以及伺服器端用私鑰解密。
第二個就是用私鑰在客戶端加簽,然後用公鑰在伺服器端用公鑰驗簽。第一種完全是為了加密,第二種是為了放抵賴,就是為了防止別人模擬我們的客戶端來攻擊我們的伺服器,導致癱瘓。
(1)獲取密鑰,這里是產生密鑰,實際應用中可以從各種存儲介質上讀取密鑰 (2)加密 (3)解密
(1)獲取密鑰,這里是產生密鑰,實際應用中可以從各種存儲介質上讀取密鑰 (2)獲取待簽名的Hash碼 (3)獲取簽名的字元串 (4)驗證
(1)私鑰用來進行解密和簽名,是給自己用的。
(2)公鑰由本人公開,用於加密和驗證簽名,是給別人用的。
(3)當該用戶發送文件時,用私鑰簽名,別人用他給的公鑰驗證簽名,可以保證該信息是由他發送的。當該用戶接受文件時,別人用他的公鑰加密,他用私鑰解密,可以保證該信息只能由他接收到。
使用事例:
Demo鏈接
B. RSA的公鑰和私鑰到底哪個才是用來加密和哪個用來解密
其實公鑰和私鑰都可以用來加密或解密---只要能保證用A加密,就用B解密就行。至於A是公鑰還是私鑰,其實可以根據不同的用途而定。
例如說,如果你想把某個消息秘密的發給某人,那你就可以用他的公鑰加密。因為只有他知道他的私鑰,所以這消息也就只有他本人能解開,於是你就達到了你的目的。
但是如果你想發布一個公告,需要一個手段來證明這確實是你本人發的,而不是其他人冒名頂替的。那你可以在你的公告開頭或者結尾附上一段用你的私鑰加密的內容(例如說就是你公告正文的一段話),那所有其他人都可以用你的公鑰來解密,看看解出來的內容是不是相符的。如果是的話,那就說明這公告確實是你發的---因為只有你的公鑰才能解開你的私鑰加密的內容,而其他人是拿不到你的私鑰的。
最後再說一下數字簽名。
數字簽名無非就兩個目的:
證明這消息是你發的;
證明這消息內容確實是完整的---也就是沒有經過任何形式的篡改(包括替換、缺少、新增)。
其實,上面關於「公告」那段內容,已經證明了第一點:證明這消息是你發的。
那麼要做到第二點,也很簡單,就是把你公告的原文做一次哈希(md5或者sha1都行),然後用你的私鑰加密這段哈希作為簽名,並一起公布出去。當別人收到你的公告時,他可以用你的公鑰解密你的簽名,如果解密成功,並且解密出來的哈希值確實和你的公告原文一致,那麼他就證明了兩點:這消息確實是你發的,而且內容是完整的。
其實概念很簡單:
小明想秘密給小英發送消息
小英手裡有一個盒子(public key),這個盒子只有小英手裡的鑰匙(private key)才打得開
小英把盒子送給小明(分發公鑰)
小明寫好消息放進盒子里,鎖上盒子(公鑰加密)
小明把盒子寄給小英(密文傳輸)
小英用手裡的鑰匙打開盒子,得到小明的消息(私鑰解密)
假設小剛劫持了盒子,因為沒有小英的鑰匙,他也打不開
C. 公鑰、私鑰、哈希、加密演算法基礎概念
生活中我們對文件要簽名,簽名的字跡每個人不一樣,確保了獨特性,當然這還會有模仿,那麼對於重要文件再加蓋個手印,指紋是獨一無二的,保證了這份文件是我們個人所簽署的。
那麼在區塊鏈世界裡,對應的就是數字簽名,數字簽名涉及到公鑰、私鑰、哈希、加密演算法這些基礎概念。
首先加密演算法分為對稱加密演算法、非對稱加密演算法、哈希函數加密演算法三類。
所謂非對稱加密演算法,是指加密和解密用到的公鑰和私鑰是不同的,非對稱加密演算法依賴於求解一數學問題困難而驗證一數學問題簡單。
非對稱加密系統,加密的稱為公鑰,解密的稱為私鑰,公鑰加密,私鑰解密、私鑰簽名,公鑰驗證。
比特幣加密演算法一共有兩類:非對稱加密演算法(橢圓曲線加密演算法)和哈希演算法(SHA256,RIMPED160演算法)
舉一個例子來說明這個加密的過程:A給B發一個文件,B怎麼知道他接收的文件是A發的原始文件?
A可以這樣做,先對文件進行摘要處理(又稱Hash,常見的哈希演算法有MD5、SHA等)得到一串摘要信息,然後用自己的私鑰將摘要信息加密同文件發給B,B收到加密串和文件後,再用A的公鑰來解密加密串,得到原始文件的摘要信息,與此同時,對接收到的文件進行摘要處理,然後兩個摘要信息進行對比,如果自己算出的摘要信息與收到的摘要信息一致,說明文件是A發過來的原始文件,沒有被篡改。否則,就是被改過的。
數字簽名有兩個作用:
一是能確定消息確實是由發送方簽名並發出來的;
二是數字簽名能確定消息的完整性。
私鑰用來創建一個數字簽名,公鑰用來讓其他人核對私人密鑰,
而數字簽名做為一個媒介,證明你擁有密碼,同時並不要求你將密碼展示出來。
以下為概念的定義:
哈希(Hash):
二進制輸入數據的一種數字指紋。
它是一種函數,通過它可以把任何數字或者字元串輸入轉化成一個固定長度的輸出,它是單向輸出,即非常難通過反向推導出輸入值。
舉一個簡單的哈希函數的例子,比如數字17202的平方根是131.15639519291463,通過一個簡單的哈希函數的輸出,它給出這個計算結果的後面幾位小數,如後幾位的9291463,通過結果9291463我們幾乎不可能推算出它是哪個輸入值的輸出。
現代加密哈希比如像SHA-256,比上面這個例子要復雜的多,相應它的安全性也更高,哈希用於指代這樣一個函數的輸出值。
私鑰(Private key):
用來解鎖對應(錢包)地址的一串字元,例如+。
公鑰(Public keycryptography):
加密系統是一種加密手段,它的每一個私鑰都有一個相對應的公鑰,從公鑰我們不能推算出私鑰,並且被用其中一個密鑰加密了的數據,可以被另外一個相對應的密鑰解密。這套系統使得你可以先公布一個公鑰給所有人,然後所有人就可以發送加密後的信息給你,而不需要預先交換密鑰。
數字簽名(Digital signature):
Digital signature數字簽名是這樣一個東西,它可以被附著在一條消息後面,證明這條消息的發送者就是和某個公鑰相對應的一個私鑰的所有人,同時可以保證私鑰的秘密性。某人在檢查簽名的時候,將會使用公鑰來解密被加密了的哈希值(譯者註:這個哈希值是數據通過哈希運算得到的),並檢查結果是否和這條信息的哈希值相吻合。如果信息被改動過,或者私鑰是錯誤的話,哈希值就不會匹配。在比特幣網路以外的世界,簽名常常用於驗證信息發送者的身份 – 人們公布他們自己的公鑰,然後發送可以被公鑰所驗證的,已經通過私鑰加密過的信息。
加密演算法(encryption algorithm):
是一個函數,它使用一個加密鑰匙,把一條信息轉化成一串不可閱讀的看似隨機的字元串,這個流程是不可逆的,除非是知道私鑰匙的人來操作。加密使得私密數據通過公共的網際網路傳輸的時候不需要冒嚴重的被第三方知道傳輸的內容的風險。
哈希演算法的大致加密流程
1、對原文進行補充和分割處理(一般分給為多個512位的文本,並進一步分割為16個32位的整數)。
2、初始化哈希值(一般分割為多個32位整數,例如SHA256就是256位的哈希值分解成8個32位整數)。
3、對哈希值進行計算(依賴於不同演算法進行不同輪數的計算,每個512位文本都要經過這些輪數的計算)。
區塊鏈中每一個數據塊中包含了一次網路交易的信息,產生相關聯數據塊所使用的就是非對稱加密技術。非對密加密技術的作用是驗證信息的有效性和生成下一個區塊,區塊鏈上網路交易的信息是公開透明的,但是用戶的身份信息是被高度加密的,只有經過用戶授權,區塊鏈才能得到該身份信息,從而保證了數據的安生性和個人信息的隱私性。
公鑰和私鑰在非對稱加密機制里是成對存在的,公鑰和私鑰可以去相互驗證對方,那麼在比特幣的世界裡面,我們可以把地址理解為公鑰,可以把簽名、輸密碼的過程理解為私鑰的簽名。
每個礦工在拿到一筆轉賬交易時候都可以驗證公鑰和私鑰到底是不是匹配的,如果他們是匹配的,這筆交易就是合法的,這樣每一個人只需要保管好TA自己的私鑰,知道自己的比特幣地址和對方的比特幣地址就能夠安全的將比特幣進行轉賬,不需要一個中心化的機構來驗證對方發的比特幣是不是真的。
D. 十大常見密碼加密方式
一、密鑰散列
採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。
二、對稱加密
採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。
三、非對稱加密
非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
四、數字簽名
數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。
五、直接明文保存
早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。
六、使用MD5、SHA1等單向HASH演算法保護密碼
使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。
七、特殊的單向HASH演算法
由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。
八、PBKDF2
該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。
九、BCrypt
BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。
十、SCrypt
SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。
E. php SHA256WithRSA簽名驗簽&加密解密
使用:
$pri_key ="";
$pub_key = "";
$char = '方方塊兒';//要加密的字元
$sign = $this->RsaEncrypt($char,$pri_key);//加密結果
$result = $this->RsaDecrypt($sign,$pub_key);//對加密結果進行解密
加密:
public function RsaEncrypt($str,$pri_key){
$pi_key =openssl_pkey_get_private($pri_key);
if(!$pi_key)return false;//秘鑰不可用
openssl_private_encrypt($str,$encrypted,$pi_key);
$encrypted =base64_encode($encrypted);
return $encrypted;
}
解密:
public function RsaDecrypt($str,$pub_key){
$pu_key =openssl_pkey_get_public($pub_key);
if(!$pu_key)return false;//秘鑰不可用
openssl_public_decrypt(base64_decode($str),$decrypted,$pu_key);
return $decrypted;
}
註:開啟PHP的php_openssl擴展
F. 12:字元串加密、解密
編碼: 將計算機中的字元串按照一定的順序表示成二進制數據的過程
各國字元編碼都不一樣:
1、計算機-> 表示[英文字母、數字、部分特殊符號]-> ascii編碼 [0~256]
2、萬國碼,統一字元編碼[號稱可以統一全球范圍內任何語言的表示方式]
任何語言中的任何數據,都可以使用一個字元來表示 unicode編碼
3、中國有GB2312-> GBK -> GB18030
4、數據傳輸編碼:unicode transfer format 8 bit [UTF-8]
python中的編碼解碼:
要命的規則:字元串的編碼解碼,一直都是任何語言中一個難點和重點
任何字元串->都是由位元組組成的!
python3中:字元:(str);位元組(bytes)
字元->位元組:encode 編碼:將一個字元串編碼成計算機可以操作的二進制數據
位元組->字元:decode 解碼:將一個二進制數據按照指定的編碼~解碼成自然數據
什麼是加密: 將一個明文數據,按照指定的演算法,運算得到一個其他的可以隱藏真實信息的密文數據,這個過程稱為加密;處理的演算法稱為加密演算法;用到的關鍵數據稱為密鑰
什麼是解密: 按照指定的演算法和關鍵數據,將一個密文數據進行逆向運算得到正確的明文數據的過程成為解密操作
(1)、單向加密演算法:只能加密,不能解密的演算法
如:用戶賬號密碼(單向加密)存儲,此時任何人都不能查看該用戶的明文密碼
流程->用戶輸入明文密碼->加密->和存儲的密文密碼進行比較->相等-成功
單向散列加密演算法-> MD5加密
單項哈希加密演算法-> SHAX加密
(2)、雙向加密演算法:可以加密,加密的數據可以解密得到明文數據
使用在更多的場景;數據進行加密傳輸->目標地址->解密得到明文數據進行處理
對稱加密:加密和解密使用相同的秘鑰;
非對稱加密:加密和解密使用不同的秘鑰;如HTTPS傳輸數據
hashlib主要提供字元加密功能,將md5和sha模塊整合到了一起,支持md5,sha1, sha224, sha256, sha384, sha512等演算法
注意: hashlib 加密啊的字元串類型為二進制編碼,直接加密字元串會報如下錯誤:
有兩種方式可以將字元串轉化為二進制數據
G. SHA MD5 Hmac演算法是不可逆的, 只有加密, 不能解密
常用的加密演算法:SHA、MD5、Hmac
常用的加密/解密演算法: AES、DES
常用的編碼解碼演算法: UrlDecode、Base64
H. sha256加密演算法的證書怎麼解密
1.瀏覽器將自己支持的一套加密規則發送給網站。
2.網站從中選出一組加密演算法與HASH演算法,並將自己的身份信息以證書的形式發回給瀏覽器。證書裡麵包含了網站地址,加密公鑰,以及證書的頒發機構等信息。
3.瀏覽器獲得網站證書之後瀏覽器要做以下工作:
a) 驗證證書的合法性(頒發證書的機構是否合法,證書中包含的網站地址是否與正在訪問的地址一致等),如果證書受信任,則瀏覽器欄裡面會顯示一個小鎖頭,否則會給出證書不受信的提示。
b) 如果證書受信任,或者是用戶接受了不受信的證書,瀏覽器會生成一串隨機數的密碼,並用證書中提供的公鑰加密。
c) 使用約定好的HASH演算法計算握手消息,並使用生成的隨機數對消息進行加密,最後將之前生成的所有信息發送給網站。
4.網站接收瀏覽器發來的數據之後要做以下的操作:
a) 使用自己的私鑰將信息解密取出密碼,使用密碼解密瀏覽器發來的握手消息,並驗證HASH是否與瀏覽器發來的一致。
b) 使用密碼加密一段握手消息,發送給瀏覽器。
5.瀏覽器解密並計算握手消息的HASH,如果與服務端發來的HASH一致,此時握手過程結束,之後所有的通信數據將由之前瀏覽器生成的隨機密碼並利用對稱加密演算法進行加密。
I. 在asp中如何解密SHA256加密函數
sha屬於單向加密,類似於md5,不能逆運算,沒有密鑰,所以不能解密。
當然暴力破解可以碰碰運氣,但成功率很低。
J. 字元串的加密與解密(3DES、sha1、MD5) - swift3.1
對於字元串的加密解密,可以給String類擴展方法,方便使用
Swift中使用3DES/sha1/MD5加密解密演算法 必須要引入這個庫 - 在橋接文件中
#import <CommonCrypto/CommonCrypto.h>
3DES的加密是可逆的, sha1和MD5的是不可逆的
使用方法:
直接在xib界面拖一個textFiled的控制項,然後放置3個按鈕,分別是進行MD5、sha1、3DES加密點擊方法,然後分別測試加密解密數據
可以參考文章 http://www.cnblogs.com/jukaiit/p/5039803.html
使用這個第三方來實現 JKEncrypt
** https://github.com/jukai9316/JKEncrypt 。**