vc中哪個編譯選項控制位元組對齊
㈠ VC++不是按4位元組邊界進行對齊嗎char 不是佔4個位元組嗎
你好,char是佔一個位元組的
給你推薦一個文檔,不懂可我
http://www.cppblog.com/snailcong/archive/2009/03/16/76705.html
謝謝,望採納
㈡ C++位元組對齊問題
給你個詳細的參考。。看了就應該可也明白了。。太亂的話。。直接看參考資料給的鏈接吧。。
C/C++內存對齊
一、什麼是位元組對齊,為什麼要對齊?
現代計算機中內存空間都是按照byte劃分的,從理論上講似乎對任何類型的變數的訪問可以從任何地址開始,但實際情況是在訪問特定類型變數的時候經常在特 定的內存地址訪問,這就需要各種類型數據按照一定的規則在空間上排列,而不是順序的一個接一個的排放,這就是對齊。
對齊的作用和原因:各個硬體平台對存儲空間的處理上有很大的不同。一些平台對某些特定類型的數據只能從某些特定地址開始存取。比如有些架構的CPU在訪問 一個沒有進行對齊的變數的時候會發生錯誤,那麼在這種架構下編程必須保證位元組對齊.其他平台可能沒有這種情況,但是最常見的是如果不按照適合其平台要求對 數據存放進行對齊,會在存取效率上帶來損失。比如有些平台每次讀都是從偶地址開始,如果一個int型(假設為32位系統)如果存放在偶地址開始的地方,那 么一個讀周期就可以讀出這32bit,而如果存放在奇地址開始的地方,就需要2個讀周期,並對兩次讀出的結果的高低位元組進行拼湊才能得到該32bit數 據。顯然在讀取效率上下降很多。
二、請看下面的結構:
struct MyStruct
{
double dda1;
char dda;
int type
};
對結構MyStruct採用sizeof會出現什麼結果呢?sizeof(MyStruct)為多少呢?也許你會這樣求:
sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13
但是當在VC中測試上面結構的大小時,你會發現sizeof(MyStruct)為16。你知道為什麼在VC中會得出這樣一個結果嗎?
其實,這是VC對變數存儲的一個特殊處理。為了提高CPU的存儲速度,VC對一些變數的起始地址做了「對齊」處理。在默認情況下,VC規定各成員變數存放的起始地址相對於結構的起始地址的偏移量必須為該變數的類型所佔用的位元組數的倍數。下面列出常用類型的對齊方式(vc6.0,32位系統)。
類型
對齊方式(變數存放的起始地址相對於結構的起始地址的偏移量)
Char
偏移量必須為sizeof(char)即1的倍數
int
偏移量必須為sizeof(int)即4的倍數
float
偏移量必須為sizeof(float)即4的倍數
double
偏移量必須為sizeof(double)即8的倍數
Short
偏移量必須為sizeof(short)即2的倍數
各成員變數在存放的時候根據在結構中出現的順序依次申請空間,同時按照上面的對齊方式調整位置,空缺的位元組VC會自動填充。同時VC為了確保結構的大小為結構的位元組邊界數(即該結構中佔用最大空間的類型所佔用的位元組數)的倍數,所以在為最後一個成員變數申請空間後,還會根據需要自動填充空缺的位元組。
下面用前面的例子來說明VC到底怎麼樣來存放結構的。
struct MyStruct
{
double dda1;
char dda;
int type
};
為上面的結構分配空間的時候,VC根據成員變數出現的順序和對齊方式,先為第一個成員dda1分配空間,其起始地址跟結構的起始地址相同(剛好偏移量0剛好為sizeof(double)的倍數),該成員變數佔用sizeof(double)=8個位元組;接下來為第二個成員dda分配空間,這時下一個可以分配的地址對於結構的起始地址的偏移量為8,是sizeof(char)的倍數,所以把dda存放在偏移量為8的地方滿足對齊方式,該成員變數佔用 sizeof(char)=1個位元組;接下來為第三個成員type分配空間,這時下一個可以分配的地址對於結構的起始地址的偏移量為9,不是sizeof (int)=4的倍數,為了滿足對齊方式對偏移量的約束問題,VC自動填充3個位元組(這三個位元組沒有放什麼東西),這時下一個可以分配的地址對於結構的起始地址的偏移量為12,剛好是sizeof(int)=4的倍數,所以把type存放在偏移量為12的地方,該成員變數佔用sizeof(int)=4個位元組;這時整個結構的成員變數已經都分配了空間,總的佔用的空間大小為:8+1+3+4=16,剛好為結構的位元組邊界數(即結構中佔用最大空間的類型所佔用的位元組數sizeof(double)=8)的倍數,所以沒有空缺的位元組需要填充。所以整個結構的大小為:sizeof(MyStruct)=8+1+ 3+4=16,其中有3個位元組是VC自動填充的,沒有放任何有意義的東西。
下面再舉個例子,交換一下上面的MyStruct的成員變數的位置,使它變成下面的情況:
struct MyStruct
{
char dda;
double dda1;
int type
};
這個結構佔用的空間為多大呢?在VC6.0環境下,可以得到sizeof(MyStruc)為24。結合上面提到的分配空間的一些原則,分析下VC怎麼樣為上面的結構分配空間的。(簡單說明)
struct MyStruct
{
char dda; //偏移量為0,滿足對齊方式,dda佔用1個位元組;
double dda1;//下一個可用的地址的偏移量為1,不是sizeof(double)=8
//的倍數,需要補足7個位元組才能使偏移量變為8(滿足對齊
//方式),因此VC自動填充7個位元組,dda1存放在偏移量為8
//的地址上,它佔用8個位元組。
int type; //下一個可用的地址的偏移量為16,是sizeof(int)=4的倍
//數,滿足int的對齊方式,所以不需要VC自動填充,type存
//放在偏移量為16的地址上,它佔用4個位元組。
};//所有成員變數都分配了空間,空間總的大小為1+7+8+4=20,不是結構
//的節邊界數(即結構中佔用最大空間的類型所佔用的位元組數sizeof
//(double)=8)的倍數,所以需要填充4個位元組,以滿足結構的大小為
//sizeof(double)=8的倍數。
所以該結構總的大小為:sizeof(MyStruc)為1+7+8+4+4=24。其中總的有7+4=11個位元組是VC自動填充的,沒有放任何有意義的東西。
VC對結構的存儲的特殊處理確實提高CPU存儲變數的速度,但是有時候也帶來了一些麻煩,我們也屏蔽掉變數默認的對齊方式,自己可以設定變數的對齊方式。
VC 中提供了#pragma pack(n)來設定變數以n位元組對齊方式。n位元組對齊就是說變數存放的起始地址的偏移量有兩種情況:第一、如果n大於等於該變數所佔用的位元組數,那麼偏移量必須滿足默認的對齊方式,第二、如果n小於該變數的類型所佔用的位元組數,那麼偏移量為n的倍數,不用滿足默認的對齊方式。結構的總大小也有個約束條件,分下面兩種情況:如果n大於所有成員變數類型所佔用的位元組數,那麼結構的總大小必須為佔用空間最大的變數佔用的空間數的倍數;
否則必須為n的倍數。下面舉例說明其用法。
#pragma pack(push) //保存對齊狀態
#pragma pack(4)//設定為4位元組對齊
struct test
{
char m1;
double m4;
int m3;
};
#pragma pack(pop)//恢復對齊狀態
以上結構的大小為16,下面分析其存儲情況,首先為m1分配空間,其偏移量為0,滿足我們自己設定的對齊方式(4位元組對齊),m1佔用1個位元組。接著開始為 m4分配空間,這時其偏移量為1,需要補足3個位元組,這樣使偏移量滿足為n=4的倍數(因為sizeof(double)大於n),m4佔用8個位元組。接著為m3分配空間,這時其偏移量為12,滿足為4的倍數,m3佔用4個位元組。這時已經為所有成員變數分配了空間,共分配了16個位元組,滿足為n的倍數。如果把上面的#pragma pack(4)改為#pragma pack(16),那麼我們可以得到結構的大小為24。(請讀者自己分析)
三、再看下面這個例子
#pragma pack(8)
struct S1{
char a;
long b;
};
struct S2 {
char c;
struct S1 d;
long long e;
};
#pragma pack()
sizeof(S2)結果為24.
成員對齊有一個重要的條件,即每個成員分別對齊.即每個成員按自己的方式對齊.
也就是說上面雖然指定了按8位元組對齊,但並不是所有的成員都是以8位元組對齊.其對齊的規則是,每個成員按其類型的對齊參數(通常是這個類型的大小)和指定對齊參數(這里是8位元組)中較小的一個對齊.並且結構的長度必須為所用過的所有對齊參數的整數倍,不夠就補空位元組.
S1中,成員a是1位元組默認按1位元組對齊,指定對齊參數為8,這兩個值中取1,a按1位元組對齊;成員b是4個位元組,默認是按4位元組對齊,這時就按4位元組對齊,所以sizeof(S1)應該為8;
S2 中,c和S1中的a一樣,按1位元組對齊,而d 是個結構,它是8個位元組,它按什麼對齊呢?對於結構來說,它的默認對齊方式就是它的所有成員使用的對齊參數中最大的一個,S1的就是4.所以,成員d就是按4位元組對齊.成員e是8個位元組,它是默認按8位元組對齊,和指定的一樣,所以它對到8位元組的邊界上,這時,已經使用了12個位元組了,所以又添加了4個位元組的空,從第16個位元組開始放置成員e.這時,長度為24,已經可以被8(成員e按8位元組對齊)整除.這樣,一共使用了24個位元組.
a b
S1的內存布局:11**,1111,
c S1.a S1.b d
S2的內存布局:1***,11**,1111,****11111111
這里有三點很重要:
1.每個成員分別按自己的方式對齊,並能最小化長度。
2.復雜類型(如結構)的默認對齊方式是它最長的成員的對齊方式,這樣在成員是復雜類型時,可以最小化長度。
3.對齊後的長度必須是成員中最大的對齊參數的整數倍,這樣在處理數組時可以保證每一項都邊界對齊。
Win32平台下的微軟 編譯器(cl.exe for 80×86)的對齊策略:
1) 結構體變數的首地址能夠被其最寬基本類型成員的大小所整除;
備註:編譯器在給結構體開辟空間時,首先找到結構體中最寬的基本數據類型,然後尋找內存地址能被該基本數據類型所整除的位置,作為結構體的首地址。將這個最寬的基本數據類型的大小作為上面介紹的對齊模數。
2) 結構體每個成員相對於結構體首地址的偏移量(offset)都是成員大小的整數倍,如有需要編譯器會在成員之間加上填充位元組(internal adding);
備注:為結構體的一個成員開辟空間之前,編譯器首先檢查預開辟空間的首地址相對於結構體首地址的偏移是否是本成員的整數倍,若是,則存放本成員,反之,則在本成員和上一個成員之間填充一定的位元組,以達到整數倍的要求,也就是將預開辟空間的首地址後移幾個位元組。
3) 結構體的總大小為結構體最寬基本類型成員大小的整數倍,如有需要,編譯器會在最末一個成員之後加上填充位元組(trailing padding)。
備註:結構體總大小是包括填充位元組,最後一個成員滿足上面兩條以外,還必須滿足第三條,否則就必須在最後填充幾個位元組以達到本條要求。
㈢ vc++位元組對齊問題
VC默認的為8位元組
=4+4(補)+8+1+7(補)
其實,這是VC對變數存儲的一個特殊處理。為了提高CPU的存儲速度,VC對一些變數的起始地址做了「對齊」處理。在默認情況下,VC規定各成員變數存放的起始地址相對於結構的起始地址的偏移量必須為該變數的類型所佔用的位元組數的倍數。下面列出常用類型的對齊方式(vc6.0,32位系統)。
類型
對齊方式(變數存放的起始地址相對於結構的起始地址的偏移量)
Char
偏移量必須為sizeof(char)即1的倍數
int
偏移量必須為sizeof(int)即4的倍數
float
偏移量必須為sizeof(float)即4的倍數
double
偏移量必須為sizeof(double)即8的倍數
Short
偏移量必須為sizeof(short)即2的倍數
㈣ 怎麼查看c++編譯器是幾位元組對齊
給你個詳細的參考。。看了就應該可也明白了。。太亂的話。。直接看參考資料給的鏈接吧。。C/C++內存對齊一、什麼是位元組對齊,為什麼要對齊? 現代計算機中內存空間都是按照byte劃分的,從理論上講似乎對任何類型的變數的訪問可以從任何地址開始,但實際情況是在訪問特定類型變數的時候經常在特 定的內存地址訪問,這就需要各種類型數據按照一定的規則在空間上排列,而不是順序的一個接一個的排放,這就是對齊。 對齊的作用和原因:各個硬體平台對存儲空間的處理上有很大的不同。一些平台對某些特定類型的數據只能從某些特定地址開始存取。比如有些架構的CPU在訪問 一個沒有進行對齊的變數的時候會發生錯誤,那麼在這種架構下編程必須保證位元組對齊.其他平台可能沒有這種情況,但是最常見的是如果不按照適合其平台要求對 數據存放進行對齊,會在存取效率上帶來損失。比如有些平台每次讀都是從偶地址開始,如果一個int型(假設為32位系統)如果存放在偶地址開始的地方,那 么一個讀周期就可以讀出這32bit,而如果存放在奇地址開始的地方,就需要2個讀周期,並對兩次讀出的結果的高低位元組進行拼湊才能得到該32bit數 據。顯然在讀取效率上下降很多。二、請看下面的結構:struct MyStruct { double dda1; char dda; int type }; 對結構MyStruct採用sizeof會出現什麼結果呢?sizeof(MyStruct)為多少呢?也許你會這樣求: sizeof(MyStruct)=sizeof(double)+sizeof(char)+sizeof(int)=13 但是當在VC中測試上面結構的大小時,你會發現sizeof(MyStruct)為16。你知道為什麼在VC中會得出這樣一個結果嗎? 其實,這是VC對變數存儲的一個特殊處理。為了提高CPU的存儲速度,VC對一些變數的起始地址做了「對齊」處理。在默認情況下,VC規定各成員變數存放的起始地址相對於結構的起始地址的偏移量必須為該變數的類型所佔用的位元組數的倍數。下面列出常用類型的對齊方式(vc6.0,32位系統)。 類型 對齊方式(變數存放的起始地址相對於結構的起始地址的偏移量) Char 偏移量必須為sizeof(char)即1的倍數 int 偏移把type
㈤ VC6.0 中如何對齊零亂的代碼
1、首先,我們必須打開Microsoft Visual C++ 6.0這個軟體,寫入自己的代碼。

㈥ vc如何在程序中設置編輯框的align text,就是設置左對齊,右對齊
HWNDhWnd=::GetDlgItem(m_hWnd,IDC_MYEDIT);
longstyle=::GetWindowLong(hWnd,GWL_STYLE);
::SetWindowLong(hWnd,GWL_STYLE,ES_LEFT|(style&~(ES_CENTER|ES_RIGHT)));//左對齊
::SetWindowLong(hWnd,GWL_STYLE,ES_RIGHT|(style&~(ES_CENTER|ES_LEFT)));//右對齊
::SetWindowLong(hWnd,GWL_STYLE,ES_CENTER|(style&~(ES_LEFT|ES_RIGHT)));//居中對齊
㈦ C語言位元組對齊問題
目前編譯器上(我是說visual c++)如果沒有特別設置的話, 默認的對齊方式按下面幾個規律
1. 每個成員對齊到它長度的整數倍
2. 整個結構的長度對齊到它最長成員長度的整數倍
3. 上面所說的長度,超過4的按4算。
就這個來說, b欄位會被對齊到2位元組位置, 最後整個會被對齊到6位元組長
我不知道這幾點是標准還是實現, 以後會不會有變化
㈧ VC6.0中那個編譯選項是控制位元組對齊的位元組對齊在圖像處理的那些方面體現了出來為了預防
#pragma pack( [ show ] | [ push | pop ] [, identifier ] , n )
具體使用方法參考MSDN
圖像處理不大明白和這個有什麼關系
㈨ C語言結構體長度位元組對齊問題
因為當結構體中有多個數據類型時,結構體的長度對齊是按數據類型長度最長的那個來對齊的,double類型佔8個位元組,所以每個成員變數都按8個位元組的長度來算,就是5*8=40,驗證程序如下:
#include<stdio.h>
structchji
{
charname[9];
intnumber;
charsex;
doublescore;
floataa;
};
structchjistu;
intmain()
{
printf("sizeof(structchji)=%d ",sizeof(structchji));
return0;
}
運行結果:sizeof(struct chji)=40
如果要按單個位元組的長度來對齊的話,代碼如下:
#include<stdio.h>
#pragmapack(1)
structchji
{
charname[9];//9
intnumber;//4
charsex;//1
doublescore;//8
floataa;//4
};
structchjistu;
#pragmapack()
intmain()
{
printf("sizeof(structchji)=%d ",sizeof(structchji));
return0;
}
運行結果:sizeof(struct chji)=26
即9+4+1+8+4=26,你可以查下#pragma pack()相關的資料的,就會清楚了。
㈩ 問下,機器位元組對齊問題,是不是有個默認對齊值啊,struct{char a;double b;}
VC和GCC默認的都是4位元組對齊,編程中可以使用#pragma pack(n)指定對齊模數。出現以上差異的原因在於,VC和GCC中對於double類型的對齊方式不同。
Win32平台下的微軟VC編譯器在默認情況下採用如下的對齊規則: 任何基本數據類型T的對齊模數就是T的大小,即sizeof(T)。比如對於double類型(8位元組),就要求該類型數據的地址總是8的倍數,而char類型數據(1位元組)則可以從任何一個地址開始。
Linux下的GCC奉行的是另外一套規則:任何2位元組大小(包括單位元組嗎?)的數據類型(比如short)的對齊模數是2,而其它所有超過2位元組的數據類型(比如long,double)都以4為對齊模數。
復雜類型(如結構)的默認對齊方式是它最長的成員的對齊方式,這樣在成員是復雜類型時,可以最小化長度。
struct{char a;double b;}
在VC中,因為結構中存在double和char,按照最長數據類型對齊,char只佔1B,但是加上後面的double所佔空間超過8B,所以char獨佔8B;而double佔8B,一共16Byte。
在GCC中,double長度超過4位元組,按照4位元組對齊,原理同上,不過char佔4位元組,double占兩個4位元組,一共12Byte。
