armlinux交叉編譯
「redhat9的內核2.4,我也升級到2.6了。」
這樣你的系統是不穩定的,在你學習的過程中會有很多很莫名其妙的問題出現的,用的話還是用你的2.4內核吧,要不,你直接用你內核是2.6的linux發行版,比如fedora 或者ubuntu等等。
首先前提是你有arm-linux-gcc的編譯工具。這套工具不同的版本用途不大一樣,有些用來編譯內核,有些用來編譯Qt應用程序。
關於Redhat 9.0裡面建立一個交叉編譯環境的方法如下:
把你的編譯工具(以下以arm-linux-gcc-2.95.3.tgz為例)放置某目錄。
1、解壓:tar -zxvf arm-linux-gcc-2.95.3.tgz
會在當前目錄產生上述包的解壓文件,在這個目錄裡面找到bin目錄,把這個bin目錄的絕對路徑記錄下載。
2、然後添加交叉編譯工具進入系統的環境變數:
gedit /root/.bashrc
編輯/root/.bashrc文件,在最後一行加上
export PATH=$PATH:xxx
xxx是你1、步驟的bin的路徑。接著重啟或者注銷一下就可以了。
重啟完成後打開終端輸入arm-linux-gcc -v 看看有沒有輸出相關的版本信息。
註:上述操作是以root身份登錄系統的。
祝你好運!!
『貳』 如何建立Linux下的ARM交叉編譯環境
首先安裝交叉編譯器,網路「arm-linux-gcc」就可以一個編譯器壓縮包。
把壓縮包放到linux系統中,解壓,這樣就算安裝好了交叉編譯器。
設置編譯器環境變數,具體方式網路。如打開 /etc/bash.bashrc,添加剛才安裝的編譯器路徑 export PATH=/home/。。。/4.4.3/bin:$PATH。這樣是為了方便使用,用arm-linux-gcc即可,不然既要帶全路徑/home//bin/arm-linux-gcc,這樣不方便使用。
編譯c文件。和gcc編譯相似,把gcc用arm-linu-gcc代替就是了。編譯出來的就可以放到arm上運行了。</ol>
『叄』 arm-linux 交叉編譯環境的建立,希望有清楚的人解答,復制的閃人
是這樣子的,計算機linux中原有的gcc是針對通用的X86等處理器而言的,編譯出來的可執行文件是只能在通用計算機上運行的,arm也是一種處理器,只不過其指令等和X86等CPU不同,所以需要有針對arm的編譯器來編譯源程序,才能在arm中運行。
我在arm9下做過linux,qt編程,需要先在PC上安裝linux,然後安裝arm-linux-gcc,同時為了可以使用arm-linux-gcc來編譯程序,需要指定環境變數,這個可以在.profile等文件中進行更改,具體辦法你查一下就知道了。或者使用export命令在終端中設置環境變數。兩種方法的結果有區別哦!
你想用2440的開發板的話就是arm9了,我還沒找到arm9的模擬工具,但是網上已經有arm7的模擬工具。
對於arm-linux-gcc,只要你安裝好並設置好了路徑(環境變數)後,在一個終端中輸入#arm-linux-gcc -v
那麼你一般可以看到你安裝的arm-linux-gcc 版本信息,到此你就可以使用它編譯你的源程序,然後將生成的可執行文件下載到arm開發板中就可以運行了。
還有什麼問題再說吧,我也是一個人摸索出來的,估計摸索了一個月才成功的在arm上運行了第一個自己的qt圖形界面程序,祝你好運!
我的建議:
一、熟悉linux 的各種操作命令(如export)
二、學會怎麼下載可執行文件到arm中
三、學會用pc控制arm上的linux
我只用過arm-linux-gcc,在你的安裝文件夾下可以找到
『肆』 交叉編譯器 arm-linux-gnueabi 和 arm-linux-gnueabihf 的區別
自己之前一直沒搞清楚這兩個交叉編譯器到底有什麼問題,特意google一番,總結如下,希望能幫到道上和我有同樣困惑的兄弟…..
一. 什麼是ABI和EABI
1) ABI: 二進制應用程序介面(Application Binary Interface (ABI) for the ARM Architecture)
在計算機中,應用二進制介面描述了應用程序(或者其他類型)和操作系統之間或其他應用程序的低級介面.
ABI涵蓋了各種細節,如:
數據類型的大小、布局和對齊;
調用約定(控制著函數的參數如何傳送以及如何接受返回值),例如,是所有的參數都通過棧傳遞,還是部分參數通過寄存器傳遞;哪個寄存器用於哪個函數參數;通過棧傳遞的第一個函數參數是最先push到棧上還是最後;
系統調用的編碼和一個應用如何向操作系統進行系統調用;
以及在一個完整的操作系統ABI中,目標文件的二進制格式、程序庫等等。
一個完整的ABI,像Intel二進制兼容標准 (iBCS) ,允許支持它的操作系統上的程序不經修改在其他支持此ABI的操作體統上運行。
ABI不同於應用程序介面(API),API定義了源代碼和庫之間的介面,因此同樣的代碼可以在支持這個API的任何系統中編譯,ABI允許編譯好的目標代碼在使用兼容ABI的系統中無需改動就能運行。
2) EABI: 嵌入式ABI
嵌入式應用二進制介面指定了文件格式、數據類型、寄存器使用、堆積組織優化和在一個嵌入式軟體中的參數的標准約定。
開發者使用自己的匯編語言也可以使用EABI作為與兼容的編譯器生成的匯編語言的介面。
支持EABI的編譯器創建的目標文件可以和使用類似編譯器產生的代碼兼容,這樣允許開發者鏈接一個由不同編譯器產生的庫。
EABI與關於通用計算機的ABI的主要區別是應用程序代碼中允許使用特權指令,不需要動態鏈接(有時是禁止的),和更緊湊的堆棧幀組織用來節省內存。廣泛使用EABI的有Power PC和ARM.
二. gnueabi相關的兩個交叉編譯器: gnueabi和gnueabihf
在debian源里這兩個交叉編譯器的定義如下:
gcc-arm-linux-gnueabi – The GNU C compiler for armel architecture
gcc-arm-linux-gnueabihf – The GNU C compiler for armhf architecture
可見這兩個交叉編譯器適用於armel和armhf兩個不同的架構, armel和armhf這兩種架構在對待浮點運算採取了不同的策略(有fpu的arm才能支持這兩種浮點運算策略)
其實這兩個交叉編譯器只不過是gcc的選項-mfloat-abi的默認值不同. gcc的選項-mfloat-abi有三種值soft,softfp,hard(其中後兩者都要求arm里有fpu浮點運算單元,soft與後兩者是兼容的,但softfp和hard兩種模式互不兼容):
soft : 不用fpu進行浮點計算,即使有fpu浮點運算單元也不用,而是使用軟體模式。
softfp : armel架構(對應的編譯器為gcc-arm-linux-gnueabi)採用的默認值,用fpu計算,但是傳參數用普通寄存器傳,這樣中斷的時候,只需要保存普通寄存器,中斷負荷小,但是參數需要轉換成浮點的再計算。
hard : armhf架構(對應的編譯器gcc-arm-linux-gnueabihf)採用的默認值,用fpu計算,傳參數也用fpu中的浮點寄存器傳,省去了轉換, 性能最好,但是中斷負荷高。
把以下測試使用的c文件內容保存成mfloat.c:
#include <stdio.h>
int main(void)
{
double a,b,c;
a = 23.543;
b = 323.234;
c = b/a;
printf(「the 13/2 = %f\n」, c);
printf(「hello world !\n」);
return 0;
}
1)使用arm-linux-gnueabihf-gcc編譯,使用「-v」選項以獲取更詳細的信息:
# arm-linux-gnueabihf-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=hard』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=hard,可看出使用hard硬體浮點模式。
2)使用arm-linux-gnueabi-gcc編譯:
# arm-linux-gnueabi-gcc -v mfloat.c
COLLECT_GCC_OPTIONS=』-v』 『-march=armv7-a』 『-mfloat-abi=softfp』 『-mfpu=vfpv3-d16′ 『-mthumb』
-mfloat-abi=softfp,可看出使用softfp模式。
三. 拓展閱讀
下文闡述了ARM代碼編譯時的軟浮點(soft-float)和硬浮點(hard-float)的編譯以及鏈接實現時的不同。從VFP浮點單元的引入到軟浮點(soft-float)和硬浮點(hard-float)的概念
VFP (vector floating-point)
從ARMv5開始,就有可選的 Vector Floating Point (VFP) 模塊,當然最新的如 Cortex-A8, Cortex-A9 和 Cortex-A5 可以配置成不帶VFP的模式供晶元廠商選擇。
VFP經過若干年的發展,有VFPv2 (一些 ARM9 / ARM11)、 VFPv3-D16(只使用16個浮點寄存器,默認為32個)和VFPv3+NEON (如大多數的Cortex-A8晶元) 。對於包含NEON的ARM晶元,NEON一般和VFP公用寄存器。
硬浮點Hard-float
編譯器將代碼直接編譯成發射給硬體浮點協處理器(浮點運算單元FPU)去執行。FPU通常有一套額外的寄存器來完成浮點參數傳遞和運算。
使用實際的硬體浮點運算單元FPU當然會帶來性能的提升。因為往往一個浮點的函數調用需要幾個或者幾十個時鍾周期。
軟浮點 Soft-float
編譯器把浮點運算轉換成浮點運算的函數調用和庫函數調用,沒有FPU的指令調用,也沒有浮點寄存器的參數傳遞。浮點參數的傳遞也是通過ARM寄存器或者堆棧完成。
現在的Linux系統默認編譯選擇使用hard-float,即使系統沒有任何浮點處理器單元,這就會產生非法指令和異常。因而一般的系統鏡像都採用軟浮點以兼容沒有VFP的處理器。
armel ABI和armhf ABI
在armel中,關於浮點數計算的約定有三種。以gcc為例,對應的-mfloat-abi參數值有三個:soft,softfp,hard。
soft是指所有浮點運算全部在軟體層實現,效率當然不高,會存在不必要的浮點到整數、整數到浮點的轉換,只適合於早期沒有浮點計算單元的ARM處理器;
softfp是目前armel的默認設置,它將浮點計算交給FPU處理,但函數參數的傳遞使用通用的整型寄存器而不是FPU寄存器;
hard則使用FPU浮點寄存器將函數參數傳遞給FPU處理。
需要注意的是,在兼容性上,soft與後兩者是兼容的,但softfp和hard兩種模式不兼容。
默認情況下,armel使用softfp,因此將hard模式的armel單獨作為一個abi,稱之為armhf。
而使用hard模式,在每次浮點相關函數調用時,平均能節省20個CPU周期。對ARM這樣每個周期都很重要的體系結構來說,這樣的提升無疑是巨大的。
在完全不改變源碼和配置的情況下,在一些應用程序上,使用armhf能得到20%——25%的性能提升。對一些嚴重依賴於浮點運算的程序,更是可以達到300%的性能提升。
Soft-float和hard-float的編譯選項
在CodeSourcery gcc的編譯參數上,使用-mfloat-abi=name來指定浮點運算處理方式。-mfpu=name來指定浮點協處理的類型。
可選類型如fpa,fpe2,fpe3,maverick,vfp,vfpv3,vfpv3-fp16,vfpv3-d16,vfpv3-d16-fp16,vfpv3xd,vfpv3xd-fp16,neon,neon-fp16,vfpv4,vfpv4-d16,fpv4-sp-d16,neon-vfpv4等。
使用-mfloat-abi=hard (等價於-mhard-float) -mfpu=vfp來選擇編譯成硬浮點。使用-mfloat-abi=softfp就能兼容帶VFP的硬體以及soft-float的軟體實現,運行時的連接器ld.so會在執行浮點運算時對於運算單元的選擇,
是直接的硬體調用還是庫函數調用,是執行/lib還是/lib/vfp下的libm。-mfloat-abi=soft (等價於-msoft-float)直接調用軟浮點實現庫。
在ARM RVCT工具鏈下,定義fpu模式:
–fpu softvfp
–fpu softvfp+vfpv2
–fpu softvfp+vfpv3
–fpu softvfp+vfpv_fp16
–fpu softvfp+vfpv_d16
–fpu softvfp+vfpv_d16_fp16.
定義浮點運算類型
–fpmode ieee_full : 所有單精度float和雙精度double的精度都要和IEEE標准一致,具體的模式可以在運行時動態指定;
–fpmode ieee_fixed : 舍入到最接近的實現的IEEE標准,不帶不精確的異常;
–fpmode ieee_no_fenv :舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode std :非規格數flush到0、舍入到最接近的實現的IEEE標准,不帶異常;
–fpmode fast : 更積極的優化,可能會有一點精度損失。
『伍』 如何建立針對arm-linux的交叉編譯環境
採用交叉編譯的主要原因在於,多數嵌入式目標系統不能提供足夠的資源供編譯過程使用,因而只好將編譯工程轉移到高性能的主機中進行。
linux下的交叉編譯環境重要包括以下幾個部分:
1.對目標系統的編譯器gcc
2.對目標系統的二進制工具binutils
3.目標系統的標准c庫glibc
4.目標系統的linux內核頭文件
交叉編譯環境的建立步驟
一、下載源代碼 下載包括binutils、gcc、glibc及linux內核的源代碼(需要注意的是,glibc和內核源代碼的版本必須與目標機上實際使用的版本保持一致),並設定shell變數PREFIX指定可執行程序的安裝路徑。
二、編譯binutils 首先運行configure文件,並使用--prefix=$PREFIX參數指定安裝路徑,使用--target=arm-linux參數指定目標機類型,然後執行make install。
三、配置linux內核頭文件
首先執行make mrproper進行清理工作,然後執行make config ARCH=arm(或make menuconfig/xconfig ARCH=arm)進行配置(注意,一定要在命令行中使用ARCH=arm指定cpu架構,因為預設架構為主機的cpu架構),這一步需要根據目標機的實際情況進行詳細的配置,筆者進行的實驗中目標機為HP的ipaq-hp3630 PDA,因而設置system type為SA11X0,SA11X0 Implementations中選擇Compaq iPAQ H3600/H3700。
配置完成之後,需要將內核頭文件拷貝到安裝目錄: cp -dR include/asm-arm $PREFIX/arm-linux/include/asm cp -dR include/linux $PREFIX/arm-linux/include/linux
四、第一次編譯gcc
首先運行configure文件,使用--prefix=$PREFIX參數指定安裝路徑,使用--target=arm-linux參數指定目標機類型,並使用--disable-threads、--disable-shared、--enable-languages=c參數,然後執行make install。這一步將生成一個最簡的gcc。由於編譯整個gcc是需要目標機的glibc庫的,它現在還不存在,因此需要首先生成一個最簡的gcc,它只需要具備編譯目標機glibc庫的能力即可。
五、交叉編譯glibc
這一步驟生成的代碼是針對目標機cpu的,因此它屬於一個交叉編譯過程。該過程要用到linux內核頭文件,默認路徑為$PREFIX/arm-linux/sys-linux,因而需要在$PREFIX/arm-linux中建立一個名為sys-linux的軟連接,使其內核頭文件所在的include目錄;或者,也可以在接下來要執行的configure命令中使用--with-headers參數指定linux內核頭文件的實際路徑。
configure的運行參數設置如下(因為是交叉編譯,所以要將編譯器變數CC設為arm-linux-gcc): CC=arm-linux-gcc ./configure --prefix=$PREFIX/arm-linux --host=arm-linux --enable-add-ons 最後,按以上配置執行configure和make install,glibc的交叉編譯過程就算完成了,這里需要指出的是,glibc的安裝路徑設置為$PREFIXARCH=arm/arm-linux,如果此處設置不當,第二次編譯gcc時可能找不到glibc的頭文件和庫。
六、第二次編譯gcc
運行configure,參數設置為--prefix=$PREFIX --target=arm-linux --enable-languages=c,c++。
運行make install。
到此為止整個交叉編譯環境就完全生成了。
幾點注意事項
第一點、在第一次編譯gcc的時候可能會出現找不到stdio.h的錯誤,解決辦法是修改gcc/config/arm/t-linux文件,在TARGET_LIBGCC2_CFLAGS變數的設定中增加-Dinhibit_libc和-D__gthr_posix_h。
『陸』 qt的程序在arm-linux-g++下怎麼交叉編譯
你找下,是不是在哪個makefile腳本或類似config.mk的腳本里有個變數,變數值為編譯器名字的。
它可能是這樣的:
cross_compile
:=
arm-linux-
hostcxx
=
g++
這兩個名字拼起來才是交叉編譯器的名字,如果只用了hostcxx或者cross_compile為空,它就用的g++了
『柒』 bootloader和ARM linux gcc交叉編譯有關系嗎
首先這兩者之間沒有一個直接的聯系。
在做嵌入式開發的時候,如果是ARM平台,那麼相應的bootloader也是需要使用ARM平台的交叉編譯工具進行編譯的,因為每一個架構的匯編指令(其實更准確來說,應該是機器碼)是不一樣的,因此需要針對於此架構的編譯器進行編譯,生成ARM平台可用的bootloader。
舉個例子:
A代碼 --> 經過 intel 架構的 gcc 編譯工具 ---> B 格式的程序(可以在支持B格式的intel架構的設備上運行)
A代碼 --> 經過 ARM 架構的 交叉gcc 編譯工具 ---> C 格式的程序(可以在支持C格式的ARM架構的設備上運行)
bootloader 類似於PC上的BIOS,是在啟動操作系統之前,做一些硬體初始化的工具,以保證可以正常載入內核進行啟動。
『捌』 linux arm 交叉編譯怎麼使用
交叉編譯器通常以 arm-none-linux-gnueabi.tar.bz2 這樣的名稱發布(不同廠家的不同開發平台,交叉編譯工具鏈的實際名稱可能有所差別,請以實際為准),解壓命令: vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2 如果希望解壓...
