windowsc多線程編程
『壹』 c語言中 怎麼實現雙線程 或者 父子線程啊
運行一個程序,這個運行實體就是一個「進程」。
例如,用滑鼠雙擊IE瀏覽器的圖標,你運行了一個IE「進程」。第一個窗未關,你又用滑鼠雙擊IE瀏覽器的圖標,又出來一個瀏覽器的窗。這時,你運行了同一個程序的兩個進程。
對於自己寫的程序也如此。運行它,這個運行實體就是一個「進程」。同時運行兩個,就是兩個進程。計算機分別對兩個進程分配資源,直到進程結束,收回資源。
線程是進程里真真跑的線路,真真執行的運算,每個進程有一個主線程。進程里可以開第二第三條新的執行線路,gcc 用 pthread_create(),VC++ 用 CreateThread(), 這就叫雙線程和多線程。進程是線程的容器,同一進程的線程共享它們進程的資源。線程里建的線程就是父子線程。
兩個或多個進程協同工作時,需要互相交換信息,有些情況下進程間交換的少量信息,有些情況下進程間交換大批信息。這就要通訊。通訊方式不止一種。管道就是一種。VC++ 用 CreatePipe() 函數建立。
管道的實質是一個共享文件,可藉助於文件系統的機制實現,創建、打開、關閉和讀寫.
一個進程正在使用某個管道寫入或讀出數據時,另一個進程就必須等待. 發送者和接收者雙方必須知道對方是否存在,如果對方已經不存在,就沒有必要再發送信息.,發送信息和接收信息之間要協調,當寫進程把一定數量的數據寫入管道,就去睡眠等待,直到讀進程取走數據後,把它喚醒。
VC++ 線程例子:
#include <windows.h>
#include <iostream.h>
DWORD WINAPI fun1(LPVOID lp);
DWORD WINAPI fun2(LPVOID lp);
int piao=500;
int main()
{
HANDLE pthread1,pthread2;
pthread1=CreateThread(0,0,fun1,0,0,0);
pthread2=CreateThread(0,0,fun2,0,0,0);
CloseHandle(pthread1);
CloseHandle(pthread2);
Sleep(3000);
return 0;
}
DWORD WINAPI fun1(LPVOID lp)
{
while(1)
{
if(piao>0)
cout<< "thread-1-"<< piao--<<endl;
else
break;
}
return 0;
}
DWORD WINAPI fun2(LPVOID lp)
{
while(1)
{
if(piao>0)
cout<<"thread-2-"<<piao--<<endl;
else
break;
}
return 0;
}
===================================
建管道函數原形:
BOOL CreatePipe(
PHANDLE hReadPipe, // read handle
PHANDLE hWritePipe, // write handle
LPSECURITY_ATTRIBUTES lpPipeAttributes, // security attributes
DWORD nSize // pipe size
);
『貳』 什麼是多線程編程
多線程編程技術是java語言的重要特點。多線程編程的含義是將程序任務分成幾個並行的子任務。特別是在網路編程中,你會發現很多功能是可以並發執行的。 比如網路傳輸速度較慢、用戶輸入速度較慢,你可以用兩個獨立的線程去完成這兩個功能,而不影響正常的顯示或其它功能。 多線程是與單線程比較而言的,普通的Windows採用單線程程序結構,其工作原理是:主程序有一個消息循環,不斷從消息隊列中讀入消息來決定下一步所要乾的事情,一般是針對一個函數,只有等這個函數執行完之後,主程序才能接收另外的消息來執行。比如子函數功能是在讀一個網路數據,或讀一個文件,只有等讀完這個數據或文件才能接收下一個消息。在執行這個子函數過程中你什麼也不能幹。但往往讀網路數據和等待用戶輸入有很多時間處於等待狀態,多線程利用這個特點將任務分成多個並發任務後,就可以解決這個問題。Java中的線程類 1.擴展java.lang.Thread類,用它覆蓋Thread類的run方法。 2.生成實現java.lang.Runnable介面的類並將其它的實例與java.lang.Thread實例相關聯。 Thread類是負責向其它類提供線程支持的最主要的類,要使用一個類具有線程功能,在Java中只要簡單地從Thread類派生一個子類就可以了擴展Thread類,如printThread.java。 Thread類最重要的方法是run方法。run方法是新線程執行的方法,因此生成java.lang.Thread的子類時,必須有相應的run方法。 //PrintThread.java public class PrintThread extends Thread//繼承Tread類 private int count=0 //定義一個count變數用於統計列印的次數並共享變數 public static void mainString args//main方法開始 PrintThread p=new PrintThread//創建一個線程實例 p.start//執行線程 for{;;}//主線程main方法執行一個循環,for執行一個死循環count++ System.out.printcount+″:Main\n″//主線程中列印count +「main」變數的值,並換行 public void run//線程類必須有的run()方法for{;;}count++ System.out.printcount+″:Thread\n″ 上面這段程序便是繼承java.lang.Tread並覆蓋run的方法。用Java 虛擬機啟動程序時,這個程序會先生成一個線程並調用程序主類的main方法。這個程序中的main方法生成新線程,連接列印「Thread」。在啟動線程之後,主線程繼續列印「Main」。 編譯並執行這個程序,然後立即按「Ctrl+C」鍵中斷程序,你會看到上面所述的兩個線程不斷列印出:XXX:main…..XXX:Thread…. XXX代表的是數字,也就是上面count的值。在筆者的機器上,不同時刻這兩個線程列印的次數不一樣,先列印20個main(也就是先執行20次主線程)再列印出50次Thread,然後再列印main…… 提示:為了便於查看該程序的執行結果,你可以將執行結果導入一個文本文件,然後打開這個文件查看各線程執行的情況。如運行: javac PrintThread.java Java PrintThread1.txt 第一個命令javac PrintThread.java是編譯java程序,第二個是執行該程序並將結果導入1.txt文件。當然你可以直接執行命令:java
『叄』 用C語言在windows或者linux上面,編寫一個多線程程序
#include<stdio.h>
#include<stdlib.h>
#include<windows.h>
DWORD WINAPI ThreadProc(LPVOID lpParam)
{
int *pt=(int*)lpParam;
printf("I am tread %d\r\n",*pt);
}
int main()
{
const int Count=4;
int datas[Count];
DWORD dwThreadId[Count];
HANDLE hThread[Count];
int i;
for(i=0;i<Count;i++)
{
datas[i]=i+1;
hThread[i]=CreateThread(NULL,0,ThreadProc,&datas[i],0,&dwThreadId[i]);
}
WaitForMultipleObjects(Count,hThread,TRUE,INFINITE);
for(i=0;i<Count;i++)
{
CloseHandle(hThread[i]);
}
system("PAUSE");
return EXIT_SUCCESS;
}
『肆』 C語言,windows多線程編程
點量Http、ftp多線程斷點續傳下載組件(下載DLL)的開發目的是讓用戶可以無需關心Http/FTP協議的具體細節,只需要幾十行甚至幾行代碼,便可以實現一個功能完善的Http/FTP下載軟體。點量Http/FTP下載組件(DLL)支持多線程、斷點續傳、顯示詳細下載過程、自動查找鏡像網址、支持代理傳輸等完善的功能。
點量Http、FTP下載內核源碼使用高效的c++代碼編寫,提供標準的動態鏈接庫(DLL),可供C/C++、Delphi、C#、Java、VB等語言和各常用開發環境調用,讓您完全像調用系統API一樣的調用。
點量Http/FTP組件的功能簡介:
標准Http和FTP下載支持:完全標準的Http和FTP協議支持,內部通過網址自動區分是Http還是FTP下載。
極速下載(2.0以後版本):超越國內絕大多數下載軟體的下載速度。新版內核在2M ADSL的環境下下載,有些文件的速度可以達到1400K位元組/秒以上,超過了帶寬的極限。下載速度可以用極速形容。
多線程傳輸:可以將文件自動分塊,並採用多線程下載。並可自由設置線程數目。
斷點續傳:點量Http/FTP有優秀的斷點續傳支持,每次啟動自動從上次下載的位置開始,不需要重復下載。
提供詳細的下載詳情介面(2.0以後版本):可以看到整個下載過程的步驟,比如開啟了多少線程、伺服器的應答過程、錯誤信息等。
支持多種高級設置:設置線程數目、磁碟緩存大小、搜索鏡像伺服器的詳細參數設置、下載文件完成後同步文件為伺服器上的文件時間、下載過程中可以自定義文件臨時後綴、未完成的文件設為隱藏屬性。
支持磁碟緩存:點量Http/FTP下載DLL支持設置磁碟緩存,減少對磁碟的讀寫,並提升下載速度。
支持設置Refer:點量Http/FTP下載組件支持設置下載時的Refer,以便可以繞過一些防盜鏈的網站,直接下載內容。
限速功能:點量Http/FTP下載組件可方便的設置下載限速。
多種磁碟分配方式:點量Http/FTP下載組件支持預分配和邊下載邊分配兩種磁碟方式,滿足多種下載需求。
自動搜索鏡像加速:點量Http/FTP內置了鏡像搜索功能,在下載文件的同時,會自動搜索哪些其它網站還有這個文件,自動從其它網址下載加速。
可提供源碼:支付一定的費用,便可以獲得全部的點量Http/FTP下載組件的源代碼,免除您的所有後顧之憂。
良好的服務:作為點量軟體旗下的軟體,可享受到點量軟體的優秀服務,我們的服務讓您如同擁有一個稱心的專業員工。
點量Http/FTP 下載組件可以適用於任何Http和FTP下載的領域,讓您可以在1天內完成一個完整的Http下載軟體的全部功能。比如,您可以用於產品的升級、文件的下載和傳輸等。
點量Http/FTP內核可以為您帶來:
1、大大節省您的開發成本:了解Http和FTP的協議,再去編碼、測試,即使對於一個非常有經驗的開發人員來說,也需要較長期的時間,此間耗費的人力資源成本和管理成本可謂不少。而使用點量Http/FTP,您就不需要從製造輪子開始製造您的汽車,將注意力集中於車的設計而不是基礎設備的建設。何況我們的產品性能是如此優越!
2、強有力的技術支持:作者長期從事下載技術的研發,所提供的技術支持相當於您僱傭了一位具有豐富經驗,無需從頭學習的開發人員,可以在您的系統建設過程中為您提供整體系統架設的意見。
如果您是個人作為非商業目的使用,您可以自由、免費的使用點量Http/FTP下載組件內核庫和演示程序,也期待收到您反饋的意見和建議;如果您是商業使用,那麼您需要聯系作者申請產品的商業授權。
『伍』 淺談linux 多線程編程和 windows 多線程編程的異同
首先我們講講為什麼要採用多線程編程,其實並不是所有的程序都必須採用多線程,有些時候採用多線程,性能還沒有單線程好。所以我們要搞清楚,什麼時候採用多線程。採用多線程的好處如下:
(1)因為多線程彼此之間採用相同的地址空間,共享大部分的數據,這樣和多進程相比,代價比較節儉,因為多進程的話,啟動新的進程必須分配給它獨立的地址空間,這樣需要數據表來維護代碼段,數據段和堆棧段等等。
(2)多線程和多進程相比,一個明顯的優點就是線程之間的通信了,對不同進程來說,它們具有獨立的數據空間,要進行數據的傳遞只能通過通信的方式進行,這種方式不僅費時,而且很不方便。但是對於多線程就不一樣了。他們之間可以直接共享數據,比如最簡單的方式就是共享全局變數。但是共享全部變數也要注意哦,呵呵,必須注意同步,不然後果你知道的。呵呵。
(3)在多cpu的情況下,不同的線程可以運行不同的cpu下,這樣就完全並行了。
反正我覺得在這種情況下,採用多線程比較理想。比如說你要做一個任務分2個步驟,你為提高工作效率,你可以多線程技術,開辟2個線程,第一個線程就做第一步的工作,第2個線程就做第2步的工作。但是你這個時候要注意同步了。因為只有第一步做完才能做第2步的工作。這時,我們可以採用同步技術進行線程之間的通信。
針對這種情況,我們首先講講多線程之間的通信,在windows平台下,多線程之間通信採用的方法主要有:
(1)共享全局變數,這種方法是最容易想到的,呵呵,那就首先講講吧,比如說吧,上面的問題,第一步要向第2步傳遞收據,我們可以之間共享全局變數,讓兩個線程之間傳遞數據,這時主要考慮的就是同步了,因為你後面的線程在對數據進行操作的時候,你第一個線程又改變了數據的內容,你不同步保護,後果很嚴重的。你也知道,這種情況就是讀臟數據了。在這種情況下,我們最容易想到的同步方法就是設置一個bool flag了,比如說在第2個線程還沒有用完數據前,第一個線程不能寫入。有時在2個線程所需的時間不相同的時候,怎樣達到最大效率的同步,就比較麻煩了。咱們可以多開幾個緩沖區進行操作。就像生產者消費者一樣了。如果是2個線程一直在跑的,由於時間不一致,緩沖區遲早會溢出的。在這種情況下就要考慮了,是不讓數據寫入還是讓數據覆蓋掉老的數據,這時候就要具體問題具體分析了。就此打住,呵呵。就是用bool變數控制同步,linux 和windows是一樣的。
既然講道了這里,就再講講其它同步的方法。同樣 針對上面的這個問題,共享全局變數同步問題。除了採用bool變數外,最容易想到的方法就是互斥量了。呵呵,也就是傳說中的加鎖了。windows下加鎖和linux下加鎖是類似的。採用互斥量進行同步,要想進入那段代碼,就先必須獲得互斥量。
linux上互斥量的函數是:
windows下互斥量的函數有:createmutex 創建一個互斥量,然後就是獲得互斥量waitforsingleobject函數,用完了就釋放互斥量ReleaseMutex(hMutex),當減到0的時候 內核會才會釋放其對象。下面是windows下與互斥的幾個函數原型。
HANDLE WINAPI CreateMutex(
__in LPSECURITY_ATTRIBUTES lpMutexAttributes,
__in BOOL bInitialOwner,
__in LPCTSTR lpName
);
可以可用來創建一個有名或無名的互斥量對象
第一參數 可以指向一個結構體SECURITY_ATTRIBUTES一般可以設為null;
第二參數 指當時的函數是不是感應感應狀態 FALSE為當前擁有者不會創建互斥
第三參數 指明是否是有名的互斥對象 如果是無名 用null就好。
DWORD WINAPI WaitForSingleObject(
__in HANDLE hHandle,
__in DWORD dwMilliseconds
);
第一個是 創建的互斥對象的句柄。第二個是 表示將在多少時間之後返回 如果設為宏INFINITE 則不會返回 直到用戶自己定義返回。
對於linux操作系統,互斥也是類似的,只是函數不同罷了。在linux下,和互斥相關的幾個函數也要閃亮登場了。
pthread_mutex_init函數:初始化一個互斥鎖;
pthread_mutex_destroy函數:注銷一個互斥鎖;
pthread_mutex_lock函數:加鎖,如果不成功,阻塞等待;
pthread_mutex_unlock函數:解鎖;
pthread_mutex_trylock函數:測試加鎖,如果不成功就立即返回,錯誤碼為EBUSY;
至於這些函數的用法,google上一搜,就出來了,呵呵,在這里不多講了。windows下還有一個可以用來保護數據的方法,也是線程同步的方式
就是臨界區了。臨界區和互斥類似。它們之間的區別是,臨界區速度快,但是它只能用來同步同一個進程內的多個線程。臨界區的獲取和釋放函數如下:
EnterCriticalSection() 進入臨界區; LeaveCriticalSection()離開臨界區。 對於多線程共享內存的東東就講到這里了。
(2)採用消息機制進行多線程通信和同步,windows下面的的消息機制的函數用的多的就是postmessage了。Linux下的消息機制,我用的較少,就不在這里說了,如果誰熟悉的,也告訴我,呵呵。
(3)windows下的另外一種線程通信方法就是事件和信號量了。同樣針對我開始舉得例子,2個線程同步,他們之間傳遞信息,可以採用事件(Event)或信號量(Semaphore),比如第一個線程完成生產的數據後,就必須告訴第2個線程,他已經把數據准備好了,你可以來取走了。第2個線程就把數據取走。呵呵,這里可以採用消息機制,當第一個線程准備好數據後,就直接postmessage給第2個線程,按理說採用postmessage一個線程就可以搞定這個問題了。呵呵,不是重點,省略不講了。
對於linux,也有類似的方法,就是條件變數了,呵呵,這里windows和linux就有不同了。要特別講講才行。
對於windows,採用事件和信號量同步時候,都會使用waitforsingleobject進行等待的,這個函數的第一個參數是一個句柄,在這里可以是Event句柄,或Semaphore句柄,第2個參數就是等待的延遲,最終等多久,單位是ms,如果這個參數為INFINITE,那麼就是無限等待了。釋放信號量的函數為ReleaseSemaphore();釋放事件的函數為SetEvent。當然使用這些東西都要初始化的。這里就不講了。Msdn一搜,神馬都出來了,呵呵。神馬都是浮雲!
對於linux操作系統,是採用條件變數來實現類似的功能的。Linux的條件變數一般都是和互斥鎖一起使用的,主要的函數有:
pthread_mutex_lock ,
pthread_mutex_unlock,
pthread_cond_init
pthread_cond_signal
pthread_cond_wait
pthread_cond_timewait
為了和windows操作系統進行對比,我用以下表格進行比較:
對照以上表格,總結如下:
(1) Pthread_cleanup_push,Pthread_cleanup_pop:
這一對函數push和pop的作用是當出現異常退出時,做一些清除操作,即當在push和pop函數之間異常退出,包括調用pthread_exit退出,都會執行push裡面的清除函數,如果有多個push,注意是是棧,先執行後面的那個函數,在執行前面的函數,但是注意當在這2個函數之間通過return 退出的話,執不執行push後的函數就看pop函數中的參數是不是為0了。還有當沒有異常退出時,等同於在這裡面return退出的情況,即:當pop函數參數不為0時,執行清除操作,當pop函數參數為0時,不執行push函數中的清除函數。
(2)linux的pthread_cond_signal和SetEvent的不同點
Pthread_cond_singal釋放信號後,當沒有Pthread_cond_wait,信號馬上復位了,這點和SetEvent不同,SetEvent是不會復位的。詳解如下:
條件變數的置位和復位有2種常用模型:第一種模型是當條件變數置位時(signaled)以後,如果當前沒有線程在等待,其狀態會保持為置位(signaled),直到有等待的線程進入被觸發,其狀態才會變為unsignaled,這種模型以採用Windows平台上的Auto-set Event 為代表。
第2種模型則是Linux平台的pthread所採用的模型,當條件變數置位(signaled)以後,即使當前沒有任何線程在等待,其狀態也會恢復為復位(unsignaled)狀態。
條件變數在Linux平台上的這種模型很難說好壞,在實際應用中,我們可以對
代碼稍加改進就可以避免這種差異的發生。由於這種差異只會發生在觸發沒有被線程等待在條件變數的時刻,因此我們只需要掌握好觸發的時機即可。最簡單的做法是增加一個計數器記錄等待線程的個數,在決定觸發條件變數前檢查該變數即可。
示例 使用 pthread_cond_wait() 和 pthread_cond_signal()
pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;
decrement_count()
{
pthread_mutex_lock(&count_lock);
while (count == 0)
pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);
}
increment_count()
{
pthread_mutex_lock(&count_lock);
if (count == 0)
pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);
}
(3) 注意Pthread_cond_wait條件返回時互斥鎖的解鎖問題
extern int pthread_cond_wait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex));
調用這個函數時,線程解開mutex指向的鎖並被條件變數cond阻塞。線程可以被函數pthread_cond_signal和函數 pthread_cond_broadcast喚醒線程被喚醒後,它將重新檢查判斷條件是否滿足,如果還不滿足,一般說來線程應該仍阻塞在這里,被等待被下一次喚醒。如果在多線程中採用pthread_cond_wait來等待時,會首先釋放互斥鎖,當等待的信號到來時,再次獲得互斥鎖,因此在之後要注意手動解鎖。舉例如下:
#include
#include
#include
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /*初始化互斥鎖*/
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; //初始化條件變數
void *thread1(void *);
void *thread2(void *);
int i=1;
int main(void)
{
pthread_t t_a;
pthread_t t_b;
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*創建進程t_a*/
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*創建進程t_b*/
pthread_join(t_b, NULL);/*等待進程t_b結束*/
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
exit(0);
}
void *thread1(void *junk)
{
for(i=1;i<=9;i++)
{
printf("IN one\n");
pthread_mutex_lock(&mutex);//
if(i%3==0)
pthread_cond_signal(&cond);/*,發送信號,通知t_b進程*/
else
printf("thead1:%d\n",i);
pthread_mutex_unlock(&mutex);//*解鎖互斥量*/
printf("Up Mutex\n");
sleep(3);
}
}
void *thread2(void *junk)
{
while(i<9)
{
printf("IN two \n");
pthread_mutex_lock(&mutex);
if(i%3!=0)
pthread_cond_wait(&cond,&mutex);/*等待*/
printf("thread2:%d\n",i);
pthread_mutex_unlock(&mutex);
printf("Down Mutex\n");
sleep(3);
}
}
輸出如下:
IN one
thead1:1
Up Mutex
IN two
IN one
thead1:2
Up Mutex
IN one
thread2:3
Down Mutex
Up Mutex
IN one
thead1:4
Up Mutex
IN two
IN one
thead1:5
Up Mutex
IN one
Up Mutex
thread2:6
Down Mutex
IN two
thread2:6
Down Mutex
IN one
thead1:7
Up Mutex
IN one
thead1:8
Up Mutex
IN two
IN one
Up Mutex
thread2:9
Down Mutex
注意藍色的地方,有2個thread2:6,其實當這個程序多執行幾次,i=3和i=6時有可能多列印幾個,這里就是競爭鎖造成的了。
(4)另外要注意的Pthread_cond_timedwait等待的是絕對時間,這個和WaitForSingleObject是不同的,Pthread_cond_timedwait在網上也有討論。如下:這個問題比較經典,我把它搬過來。
thread_a :
pthread_mutex_lock(&mutex);
//do something
pthread_mutex_unlock(&mutex)
thread_b:
pthread_mutex_lock(&mutex);
//do something
pthread_cond_timedwait(&cond, &mutex, &tm);
pthread_mutex_unlock(&mutex)
有如上兩個線程thread_a, thread_b,現在如果a已經進入了臨界區,而b同時超時了,那麼b會從pthread_cond_timedwait返回嗎?如果能返回,那豈不是a,b都在臨界區?如果不能返回,那pthread_cond_timedwait的定時豈不是就不準了?
大家討論有價值的2點如下:
(1) pthread_cond_timedwait (pthread_cond_t *cv, pthread_mutex_t *external_mutex, const struct timespec *abstime) -- This function is a time-based variant of pthread_cond_wait. It waits up to abstime amount of time for cv to be notified. If abstime elapses before cv is notified, the function returns back to the caller with an ETIME result, signifying that a timeout has occurred. Even in the case of timeouts, the external_mutex will be locked when pthread_cond_timedwait returns.
(2) 2.1 pthread_cond_timedwait行為和pthread_cond_wait一樣,在返回的時候都要再次lock mutex.
2 .2pthread_cond_timedwait所謂的如果沒有等到條件變數,超時就返回,並不確切。
如果pthread_cond_timedwait超時到了,但是這個時候不能lock臨界區,pthread_cond_timedwait並不會立即返回,但是在pthread_cond_timedwait返回的時候,它仍在臨界區中,且此時返回值為ETIMEDOUT。
關於pthread_cond_timedwait超時返回的問題,我也認同觀點2。
附錄:
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);
返回值:若成功則返回0,否則返回出錯編號
返回成功時,由tidp指向的內存單元被設置為新創建線程的線程ID。attr參數用於制定各種不同的線程屬性。新創建的線程從start_rtn函數的地址開始運行,該函數只有一個無指針參數arg,如果需要向start_rtn函數傳遞的參數不止一個,那麼需要把這些參數放到一個結構中,然後把這個結構的地址作為arg的參數傳入。
linux下用C開發多線程程序,Linux系統下的多線程遵循POSIX線程介面,稱為pthread。
由 restrict 修飾的指針是最初唯一對指針所指向的對象進行存取的方法,僅當第二個指針基於第一個時,才能對對象進行存取。對對象的存取都限定於基於由 restrict 修飾的指針表達式中。 由 restrict 修飾的指針主要用於函數形參,或指向由 malloc() 分配的內存空間。restrict 數據類型不改變程序的語義。 編譯器能通過作出 restrict 修飾的指針是存取對象的唯一方法的假設,更好地優化某些類型的常式。
第一個參數為指向線程標識符的指針。
第二個參數用來設置線程屬性。
第三個參數是線程運行函數的起始地址。
第四個參數是運行函數的參數。
因為pthread不是linux系統的庫,所以在編譯時注意加上-lpthread參數,以調用靜態鏈接庫。
終止線程:
如果在進程中任何一個線程中調用exit或_exit,那麼整個進行會終止,線程正常的退出方式有:
(1) 線程從啟動常式中返回(return)
(2) 線程可以被另一個進程終止(kill);
(3) 線程自己調用pthread_exit函數
#include
pthread_exit
線程等待:
int pthread_join(pthread_t tid,void **rval_ptr)
函數pthread_join用來等待一個線程的結束。函數原型為:
extern int pthread_join __P (pthread_t __th, void **__thread_return);
第一個參數為被等待的線程標識符,第二個參數為一個用戶定義的指針,它可以用來存儲被等待線程的返回值。這個函數是一個線程阻塞的函數,調用它的函數將一直等待到被等待的線程結束為止,當函數返回時,被等待線程的資源被收回。
對於windows線程的創建東西,就不列舉了,msdn上 一搜就出來了。呵呵。今天就講到這里吧,希望是拋磚引玉,大家一起探討,呵呵。部分內容我也是參考internet的,特此對原作者表示感謝!
『陸』 windows環境,多線程情況下,C語言向文件寫入數據。
下面的程序,編譯之後,你可以運行很多個實例,目前我將文件寫在了D:\1.txt,每個程序寫1000行數據,這些值你可以自己更改(比如 寫在C:,每個程序寫10000行等),等程序都寫完後,你可以去文件中查看寫文件的結果。補充一下,我是在VC6.0環境中寫的,所以windows.h,如果你不是在這個環境中的話,可能需要修改一些定義,比如DWORD等。其他的API都是windows平台提供的API;
#include <stdio.h>
#include "windows.h"
int main()
{
//獲取進程ID,因為你希望是多個進程運行同時寫一個文件,所以,我們列印出進程ID
DWORD dwProcessID = GetCurrentProcessId();
//初始化我們要寫入文件中的內容,及該內容長度;
char szContent[100] = {0};
sprintf(szContent,"process[%u] write file\r\n",dwProcessID);
DWORD dwContentLen = strlen(szContent);
//創建互斥量,這樣可以進行進程間的互斥,當然用這個也可以做線程間的互斥
HANDLE hMutex = CreateMutex(NULL,FALSE,"MyFileMutex");
if (NULL == hMutex)
{
printf("[%u]Create/Open Mutex error!\r\n",dwProcessID);
return 1;
}
//創建或打開文件
HANDLE hFile = CreateFile("D:\\1.txt",
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_WRITE | FILE_SHARE_READ,NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_ARCHIVE,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
printf("[%u]Creat/Open file error!\r\n",dwProcessID);
return 1;
}
//循環寫入文件
for(int i = 0; i < 1000 ; i++)
{
//等待臨界資源,即鎖定文件
WaitForSingleObject(hMutex,INFINITE);
printf("Process[%u] Get the signal\r\n",dwProcessID);
DWORD len = 0;
//因為是共享寫文件,即多個程序寫一個文件,所以一定要將文件指針偏移到尾部
SetFilePointer(hFile,0,NULL,FILE_END);
//寫入文件
BOOL rnt = WriteFile(hFile,szContent,dwContentLen,&len,NULL);
if (rnt == FALSE)
{
printf("Process[%u] Fail to write file\r\n",dwProcessID);
}
//釋放互斥量,解除鎖定
ReleaseMutex(hMutex);
//加個Sleep便於我們中間觀察結果
Sleep(30);
}
CloseHandle(hMutex);
CloseHandle(hFile);
return 0;
}
應你要求,我把AIP中的宏定義解釋如下:
HANDLE hFile = CreateFile("D:\\1.txt",
GENERIC_READ | GENERIC_WRITE,//表示程序對該文件有讀和寫的許可權
FILE_SHARE_WRITE | FILE_SHARE_READ,//表示可以多個程序共享讀和寫的許可權
NULL,
OPEN_ALWAYS,//表示打開該文件,如果該文件不存在,則創建該文件
FILE_ATTRIBUTE_ARCHIVE,//文件的屬性為存檔
NULL);
WaitForSingleObject(hMutex,INFINITE);
//INFINITE表示永遠等待,直到hMutex有信號為止
SetFilePointer(hFile,0,NULL,FILE_END);
//FILE_END表示從文件尾部開始偏移;實際此舉就是將文件指針偏移到文件尾部;
『柒』 高手進,關於C語言在windows上建立多線程的問題(VC6.0上實現)
東西,往往實例才是最讓人感興趣的,老是學基礎理論,不動手,感覺沒有成就感,呵呵。
下面先來一個實例。我們通過創建兩個線程來實現對一個數的遞加。
或許這個實例沒有實際運用的價值,但是稍微改動一下,我們就可以用到其他地方去拉。
下面是我們的代碼:
/*thread_example.c : c multiple thread programming in linux
*author : falcon
*E-mail : [email protected]
*/
#include <pthread.h>
#include <stdio.h>
#include <sys/time.h>
#include <string.h>
#define MAX 10
pthread_t thread[2];
pthread_mutex_t mut;
int number="0", i;
void *thread1()
{
printf ("thread1 : I'm thread 1\n");
for (i = 0; i < MAX; i++)
{
printf("thread1 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(2);
}
printf("thread1 :主函數在等我完成任務嗎?\n");
pthread_exit(NULL);
}
void *thread2()
{
printf("thread2 : I'm thread 2\n");
for (i = 0; i < MAX; i++)
{
printf("thread2 : number = %d\n",number);
pthread_mutex_lock(&mut);
number++;
pthread_mutex_unlock(&mut);
sleep(3);
}
printf("thread2 :主函數在等我完成任務嗎?\n");
pthread_exit(NULL);
}
void thread_create(void)
{
int temp;
memset(&thread, 0, sizeof(thread)); //comment1
/*創建線程*/
if((temp = pthread_create(&thread[0], NULL, thread1, NULL)) != 0) //comment2
printf("線程1創建失敗!\n");
else
printf("線程1被創建\n");
if((temp = pthread_create(&thread[1], NULL, thread2, NULL)) != 0) //comment3
printf("線程2創建失敗");
else
printf("線程2被創建\n");
}
void thread_wait(void)
{
/*等待線程結束*/
if(thread[0] !=0) { //comment4
pthread_join(thread[0],NULL);
printf("線程1已經結束\n");
}
if(thread[1] !=0) { //comment5
pthread_join(thread[1],NULL);
printf("線程2已經結束\n");
}
}
int main()
{
/*用默認屬性初始化互斥鎖*/
pthread_mutex_init(&mut,NULL);
printf("我是主函數哦,我正在創建線程,呵呵\n");
thread_create();
printf("我是主函數哦,我正在等待線程完成任務阿,呵呵\n");
thread_wait();
return 0;
}
下面我們先來編譯、執行一下
引文:
falcon@falcon:~/program/c/code/ftp$ gcc -lpthread -o thread_example thread_example.c
falcon@falcon:~/program/c/code/ftp$ ./thread_example
我是主函數哦,我正在創建線程,呵呵
線程1被創建
線程2被創建
我是主函數哦,我正在等待線程完成任務阿,呵呵
thread1 : I'm thread 1
thread1 : number = 0
thread2 : I'm thread 2
thread2 : number = 1
thread1 : number = 2
thread2 : number = 3
thread1 : number = 4
thread2 : number = 5
thread1 : number = 6
thread1 : number = 7
thread2 : number = 8
thread1 : number = 9
thread2 : number = 10
thread1 :主函數在等我完成任務嗎?
線程1已經結束
thread2 :主函數在等我完成任務嗎?
線程2已經結束
實例代碼里頭的注釋應該比較清楚了吧,下面我把網路上介紹上面涉及到的幾個函數和變數給引用過來。
引文:
線程相關操作
一 pthread_t
pthread_t在頭文件/usr/include/bits/pthreadtypes.h中定義:
typedef unsigned long int pthread_t;
它是一個線程的標識符。
二 pthread_create
函數pthread_create用來創建一個線程,它的原型為:
extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,
void *(*__start_routine) (void *), void *__arg));
第一個參數為指向線程標識符的指針,第二個參數用來設置線程屬性,第三個參數是線程運行函數的起始地址,最後一個參數是運行函數的參數。這里,我們的函數thread不需要參數,所以最後一個參數設為空指針。第二個參數我們也設為空指針,這樣將生成默認屬性的線程。對線程屬性的設定和修改我們將在下一節闡述。當創建線程成功時,函數返回0,若不為0則說明創建線程失敗,常見的錯誤返回代碼為EAGAIN和EINVAL。前者表示系統限制創建新的線程,例如線程數目過多了;後者表示第二個參數代表的線程屬性值非法。創建線程成功後,新創建的線程則運行參數三和參數四確定的函數,原來的線程則繼續運行下一行代碼。
三 pthread_join pthread_exit
函數pthread_join用來等待一個線程的結束。函數原型為:
extern int pthread_join __P ((pthread_t __th, void **__thread_return));
第一個參數為被等待的線程標識符,第二個參數為一個用戶定義的指針,它可以用來存儲被等待線程的返回值。這個函數是一個線程阻塞的函數,調用它的函數將一直等待到被等待的線程結束為止,當函數返回時,被等待線程的資源被收回。一個線程的結束有兩種途徑,一種是象我們上面的例子一樣,函數結束了,調用它的線程也就結束了;另一種方式是通過函數pthread_exit來實現。它的函數原型為:
extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));
唯一的參數是函數的返回代碼,只要pthread_join中的第二個參數thread_return不是NULL,這個值將被傳遞給 thread_return。最後要說明的是,一個線程不能被多個線程等待,否則第一個接收到信號的線程成功返回,其餘調用pthread_join的線程則返回錯誤代碼ESRCH。
在這一節里,我們編寫了一個最簡單的線程,並掌握了最常用的三個函數pthread_create,pthread_join和pthread_exit。下面,我們來了解線程的一些常用屬性以及如何設置這些屬性。
互斥鎖相關
互斥鎖用來保證一段時間內只有一個線程在執行一段代碼。
一 pthread_mutex_init
函數pthread_mutex_init用來生成一個互斥鎖。NULL參數表明使用默認屬性。如果需要聲明特定屬性的互斥鎖,須調用函數 pthread_mutexattr_init。函數pthread_mutexattr_setpshared和函數 pthread_mutexattr_settype用來設置互斥鎖屬性。前一個函數設置屬性pshared,它有兩個取值, PTHREAD_PROCESS_PRIVATE和PTHREAD_PROCESS_SHARED。前者用來不同進程中的線程同步,後者用於同步本進程的不同線程。在上面的例子中,我們使用的是默認屬性PTHREAD_PROCESS_ PRIVATE。後者用來設置互斥鎖類型,可選的類型有PTHREAD_MUTEX_NORMAL、PTHREAD_MUTEX_ERRORCHECK、 PTHREAD_MUTEX_RECURSIVE和PTHREAD _MUTEX_DEFAULT。它們分別定義了不同的上所、解鎖機制,一般情況下,選用最後一個默認屬性。
二 pthread_mutex_lock pthread_mutex_unlock pthread_delay_np
pthread_mutex_lock聲明開始用互斥鎖上鎖,此後的代碼直至調用pthread_mutex_unlock為止,均被上鎖,即同一時間只能被一個線程調用執行。當一個線程執行到pthread_mutex_lock處時,如果該鎖此時被另一個線程使用,那此線程被阻塞,即程序將等待到另一個線程釋放此互斥鎖。
注意:
1 需要說明的是,上面的兩處sleep不光是為了演示的需要,也是為了讓線程睡眠一段時間,讓線程釋放互斥鎖,等待另一個線程使用此鎖。下面的參考資料1里頭說明了該問題。但是在linux下好像沒有pthread_delay_np那個函數(我試了一下,提示沒有定義該函數的引用),所以我用了sleep來代替,不過參考資料2中給出另一種方法,好像是通過pthread_cond_timedwait來代替,里頭給出了一種實現的辦法。
2 請千萬要注意里頭的注釋comment1-5,那是我花了幾個小時才找出的問題所在。
如果沒有comment1和comment4,comment5,將導致在pthread_join的時候出現段錯誤,另外,上面的comment2和comment3是根源所在,所以千萬要記得寫全代碼。因為上面的線程可能沒有創建成功,導致下面不可能等到那個線程結束,而在用pthread_join的時候出現段錯誤(訪問了未知的內存區)。另外,在使用memset的時候,需要包含string.h頭文件哦
『捌』 C語言多線程編程為什麼要用pthread
因為創建線程的本質行為是調用windowsAPI,而windowsAPI具有平台特性,因此,只能通過調用封裝好的函數來實現。
『玖』 c語言如何編寫一個簡單的多線程程序
這是一個多線程例子,裡面只有兩個線程,是生產者/消費者模式,已編譯通過,注釋很詳細,
如下:
/* 以生產者和消費者模型問題來闡述Linux線程的控制和通信你
生產者線程將生產的產品送入緩沖區,消費者線程則從中取出產品。
緩沖區有N個,是一個環形的緩沖池。
*/
#include <stdio.h>
#include <pthread.h>
#define BUFFER_SIZE 16
struct prodcons
{
int buffer[BUFFER_SIZE];/*實際存放數據的數組*/
pthread_mutex_t lock;/*互斥體lock,用於對緩沖區的互斥操作*/
int readpos,writepos; /*讀寫指針*/
pthread_cond_t notempty;/*緩沖區非空的條件變數*/
pthread_cond_t notfull;/*緩沖區未滿 的條件變數*/
};
/*初始化緩沖區*/
void pthread_init( struct prodcons *p)
{
pthread_mutex_init(&p->lock,NULL);
pthread_cond_init(&p->notempty,NULL);
pthread_cond_init(&p->notfull,NULL);
p->readpos = 0;
p->writepos = 0;
}
/*將產品放入緩沖區,這里是存入一個整數*/
void put(struct prodcons *p,int data)
{
pthread_mutex_lock(&p->lock);
/*等待緩沖區未滿*/
if((p->writepos +1)%BUFFER_SIZE ==p->readpos)
{
pthread_cond_wait(&p->notfull,&p->lock);
}
p->buffer[p->writepos] =data;
p->writepos++;
if(p->writepos >= BUFFER_SIZE)
p->writepos = 0;
pthread_cond_signal(&p->notempty);
pthread_mutex_unlock(&p->lock);
}
/*從緩沖區取出整數*/
int get(struct prodcons *p)
{
int data;
pthread_mutex_lock(&p->lock);
/*等待緩沖區非空*/
if(p->writepos == p->readpos)
{
pthread_cond_wait(&p->notempty ,&p->lock);//非空就設置條件變數notempty
}
/*讀書據,移動讀指針*/
data = p->buffer[p->readpos];
p->readpos++;
if(p->readpos == BUFFER_SIZE)
p->readpos = 0;
/*設置緩沖區未滿的條件變數*/
pthread_cond_signal(&p->notfull);
pthread_mutex_unlock(&p->lock);
return data;
}
/*測試:生產站線程將1 到1000的整數送入緩沖區,消費者線程從緩沖區中獲取整數,兩者都列印信息*/
#define OVER (-1)
struct prodcons buffer;
void *procer(void *data)
{
int n;
for( n=0;n<1000;n++)
{
printf("%d ------>\n",n);
put(&buffer,n);
}
put(&buffer,OVER);
return NULL;
}
void *consumer(void *data)
{
int d;
while(1)
{
d = get(&buffer);
if(d == OVER)
break;
else
printf("----->%d\n",d);
}
return NULL;
}
int main()
{
pthread_t th_p,th_c;
void *retval;
pthread_init(&buffer);
pthread_create(&th_p,NULL,procer,0);
pthread_create(&th_c,NULL,consumer,0);
/*等待兩個線程結束*/
pthread_join(th_p, &retval);
pthread_join(th_c,&retval);
return 0;
}
