編譯動態庫依賴動態庫
❶ linux編譯一個動態庫,將所依賴的其他庫的頭文件包含了進來,但沒指定其他靜態庫的路徑和名稱
編譯能過。因為頭文件的聲明,表示在某個地方這些變數被定義了。既然被定義了,當然編譯能過。但是如果沒有那些庫,鏈接是不能過的。
❷ A動態庫使用了B靜態庫,而B靜態庫依賴於C動態庫。 當編譯A動態庫時,報error LNK2019: 無法解析的外部符號
你好,請詳細說明你的問題!
在你提供的信息中,我只能猜測是你在gcc是你的靜態庫B的位置放在了A的前面,所以導致的問題。
例如:
A依賴於B的函數f
gcc test.c B A C -o test
則,由於你的A使用了B的f,gcc在鏈接時,發現test.c沒有用到B庫的f,所以不會將f鏈接到test,而C已經沒有機會鏈接到B的f(因為gcc按照順序鏈接輸入文件)。
結果導致A所需要的f找不到,就包無法解析外部符號錯誤了。
❸ 我在一個機器上編了個動態庫,在另一個機器上編譯了一個引用這個動態庫的可執行程序,能調用不
什麼語言?C++還是C#?Native還是managed?
一般是沒有問題的,只要保證:
1、你這個動態庫沒有依賴其他動態庫(包括系統的、MFC的、CRT的、VC的、或者.NET Framework的),或者依賴的其他動態庫在另一台機器上也都有;
2、而且不存在32位和64位的兼容問題(即動態庫以及可執行程序都是32位的或者都是64位的,而且操作系統也不存在這個兼容性的差異);
3、可執行程序連接動態庫使用的LIB文件和動態庫是匹配的(如果是native的)
____________________
補充:
哦~~~ Linux我是門外漢了,那就看看其他朋友有沒有Linux大拿幫忙回答一下吧……
❹ 如何編譯動態庫,該動態庫需要鏈接另外一個動態庫
看你的makefile, 猜測是沒有指定動態庫頭文件的路徑. -I編譯參數來指定
❺ 求助,依賴的動態庫包含靜態庫,編譯報錯說找
動態鏈接庫和靜態鏈接庫一般是編譯集成一系列的介面(函數)
在程序源代碼編譯完成後通過編譯器編譯並通過鏈接器與這些庫進行鏈接
動態鏈接庫與靜態鏈接庫的區別在於鏈接器在進行鏈接時靜態庫會被直接編譯進程序里
而動態鏈接庫並不會,我們這里將這些鏈接庫稱作依賴(動態庫和靜態庫)
程序的運行需要這些依賴,程序在靜態鏈接後該程序本身便已包含該依賴
而動態鏈接後的程序本身本不包含該依賴,這些依賴需要執行者自行安裝進操作系統(動態庫、運行時庫)
程序運行時會動態地載入這些庫
linux上動態庫一般的後綴後為.so
靜態庫一般的後綴為.a
由於靜態鏈接會直接將庫編譯進程序里所以靜態編譯後的程序相較於動態鏈接所要大
這就是因為靜態鏈接會將鏈接庫編譯進程序里的原因,所以佔用就要大了
出於這種原因,靜態庫不易於維護與更新,如果鏈接庫中有實現有bug等需要更新則需要更新整個程序,因為靜態庫被編譯進程序中了
但動態庫就沒有這種情況了,因為動態庫是程序運行時動態載入的,所以我們只需要更新動態庫而不需要更新所有依賴該庫的程序(軟體)
另一方面,很多程序的開發都會使用到相同的鏈接庫,也就是很多程序(軟體)會有相同的依賴
如果將這些依賴全部靜態編譯的話將會造成存儲資源佔用過多而造成資源浪費
而使用動態庫的方式這些程序(軟體)則可以共享一個鏈接庫,而不需要每個程序都帶一個鏈接庫,這樣就大大地減少了存儲資源佔用空間
❻ gcc編譯多重依賴動態庫,這樣怎麼會出問題
這只能說明一個問題,你依賴的庫本身有問題,沒有把它的依賴都加進去,也就是你例子中的①libb.so依賴liba.so;,你應該在生成libb.so的時候,把對liba.so的依賴加進去,這樣應該就沒有問題了。
❼ 如何將第三方類庫編譯自己的動態庫文件中
隨著動態庫的流行,靜態庫越來越少了(關於動態庫和靜態庫的介紹請點擊),但是不排除項目中有些依賴的第三方還是使用的靜態庫。
那麼這種情況下就可以考慮,將第三方靜態庫做一個二次封裝。一來和業務代碼進行隔離,方便以後第三方庫的升級,二來將靜態庫封裝進動態庫里便於管理和利用動態庫的優勢。一般情況下,用動態庫封裝靜態庫很簡單,就是將靜態庫直接拖進動態庫的工程里,直接編譯即可。但是有一種情況下這么做是不行的,需要暴露靜態庫的頭文件,也就是雖然靜態庫放在動態庫裡面了,但是靜態庫的頭文件還要提供給上層應用調用。
❽ g++ 編譯命令中依賴的動態庫如果還依賴別的庫,命令怎麼設置
第一步,我先從簡單的調用出發,定義了一個簡單的函數,該函數僅僅實現一個整數加法求和:
LIBEXPORT_API int mySum(int a,int b){ return a+b;}
C# 導入定義:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Auto,CallingConvention=CallingConvention.StdCall)]
public static extern int mySum (int a,int b);
}
在C#中調用測試:
int iSum = RefComm.mySum(,);
運行查看結果iSum為5,調用正確。第一步試驗完成,說明在C#中能夠調用自定義的動態鏈接庫函數。
第二步,我定義了字元串操作的函數(簡單起見,還是採用前面的函數名),返回結果為字元串:
LIBEXPORT_API char *mySum(char *a,char *b){sprintf(b,"%s",a); return a;}
C# 導入定義:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Auto,
CallingConvention=CallingConvention.StdCall)]
public static extern string mySum (string a, string b);
}
在C#中調用測試:
string strDest="";
string strTmp= RefComm.mySum("45", strDest);
運行查看結果 strTmp 為"45",但是strDest為空。我修改動態鏈接庫實現,返回結果為串b:
LIBEXPORT_API char *mySum(char *a,char *b){sprintf(b,"%s",a) return b;}
修改 C# 導入定義,將串b修改為ref方式:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Auto,CallingConvention=CallingConvention.StdCall)]
public static extern string mySum (string a, ref string b);
}
在C#中再調用測試:
string strDest="";
string strTmp= RefComm.mySum("45", ref strDest);
運行查看結果 strTmp 和 strDest 均不對,含不可見字元。再修改 C# 導入定義,將CharSet從Auto修改為Ansi:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Ansi,CallingConvention=CallingConvention.StdCall)]
public static extern string mySum (string a, string b);
}
在C#中再調用測試:
string strDest="";
string strTmp= RefComm. mySum("45", ref strDest);
運行查看結果 strTmp 為"45",但是串 strDest 沒有賦值。第二步實現函數返回串,但是在函數出口參數中沒能進行輸出。再次修改 C# 導入定義,將串b修改為引用(ref):
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Ansi,CallingConvention=CallingConvention.StdCall)]
public static extern string mySum (string a, ref string b);
}
運行時調用失敗,不能繼續執行。
第三步,修改動態鏈接庫實現,將b修改為雙重指針:
LIBEXPORT_API char *mySum(char *a,char **b){sprintf((*b),"%s",a); return *b;}
C#導入定義:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Ansi,CallingConvention=CallingConvention.StdCall)]
public static extern string mySum (string a, ref string b);
}
在C#中調用測試:
string strDest="";
string strTmp= RefComm. mySum("45", ref strDest);
運行查看結果 strTmp 和 strDest 均為"45",調用正確。第三步實現了函數出口參數正確輸出結果。
第四步,修改動態鏈接庫實現,實現整數參數的輸出:
LIBEXPORT_API int mySum(int a,int b,int *c){ *c=a+b; return *c;}
C#導入的定義:
public class RefComm
{
[DllImport("LibEncrypt.dll",
EntryPoint=" mySum ",
CharSet=CharSet.Ansi,CallingConvention=CallingConvention.StdCall)]
public static extern int mySum (int a, int b,ref int c);
}
在C#中調用測試:
int c=0;
int iSum= RefComm. mySum(,, ref c);
運行查看結果iSum 和c均為5,調用正確。
經過以上幾個步驟的試驗,基本掌握了如何定義動態庫函數以及如何在 C# 定義導入,有此基礎,很快我實現了變長加密函數在 C# 中的調用,至此目標實現。
三、結論
在 C# 中調用 C++ 編寫的動態鏈接庫函數,如果需要出口參數輸出,則需要使用指針,對於字元串,則需要使用雙重指針,對於 C# 的導入定義,則需要使用引用(ref)定義。
對於函數返回值,C# 導入定義和 C++ 動態庫函數聲明定義需要保持一致,否則會出現函數調用失敗。定義導入時,一定注意 CharSet 和 CallingConvention 參數,否則導致調用失敗或結果異常。運行時,動態鏈接庫放在 C# 程序的目錄下即可,我這里是一個 C# 的動態鏈接庫,兩個動態鏈接庫就在同一個目錄下運行。
❾ VC程序調用動態庫,編譯時候也跟著編譯動態庫
不太清楚你的工程是如何建立的,想必一個工程是生成動態鏈接庫,另一個是調用程序EXE了。由於VC動態庫有兩種形式,Regular和Extended兩種,其中一種能導出類,另一種只能導出變數和函數。如果導出的是類,你在編譯EXE文件時自然需要用到類得聲明文件,即你前面所說的動態庫本身所引用的文件。如果導出的是函數或變數,有可能出現的情況是:一般為了代碼的重用性,把需要導出的函數或變數單獨放在一個頭文件中,用一個宏控制其導入、導出。編譯動態庫時,宏定義為導出,編譯EXE時,宏變為導入,這個頭文件為兩者共用。如果不小心在這個頭文件中包含了其他頭文件,也可能出現你說的情況。如果動態庫調用直接採用函數入口地址的方法,則什麼都不用聲明,當然,只適用於導出函數與變數的情形。
❿ linux 靜態庫和動態庫編譯的區別
Linux庫有動態與靜態兩種,動態通常用.so為後綴,靜態用.a為後綴。例如:libhello.so libhello.a
為了在同一系統中使用不同版本的庫,可以在庫文件名後加上版本號為後綴,例如: libhello.so.1.0,由於程序連接默認以.so為文件後綴名。所以為了使用這些庫,通常使用建立符號連接的方式。
ln -s libhello.so.1.0 libhello.so.1
ln -s libhello.so.1 libhello.so
動態庫和靜態庫的區別:
當要使用靜態的程序庫時,連接器會找出程序所需的函數,然後將它們拷貝到執行文件,由於這種拷貝是完整的,所以一旦連接成功,靜態程序庫也就不再需要了。然而,對動態庫而言,就不是這樣。動態庫會在執行程序內留下一個標記『指明當程序執行時,首先必須載入這個庫。由於動態庫節省空間,linux下進行連接的預設操作是首先連接動態庫,也就是說,如果同時存在靜態和動態庫,不特別指定的話,將與動態庫相連接。
兩種庫的編譯產生方法:
第一步要把源代碼編繹成目標代碼。以下面的代碼hello.c為例,生成hello庫:
/* hello.c */
#include
void sayhello()
{
printf("hello,world\n");
}
用gcc編繹該文件,在編繹時可以使用任何全法的編繹參數,例如-g加入調試代碼等:
gcc -c hello.c -o hello.o
1.連接成靜態庫
連接成靜態庫使用ar命令,其實ar是archive的意思
$ar cqs libhello.a hello.o
2.連接成動態庫
生成動態庫用gcc來完成,由於可能存在多個版本,因此通常指定版本號:
$gcc -shared -Wl,-soname,libhello.so.1 -o libhello.so.1.0 hello.o
另外再建立兩個符號連接:
$ln -s libhello.so.1.0 libhello.so.1
$ln -s libhello.so.1 libhello.so
這樣一個libhello的動態連接庫就生成了。最重要的是傳gcc -shared 參數使其生成是動態庫而不是普通執行程序。
-Wl 表示後面的參數也就是-soname,libhello.so.1直接傳給連接器ld進行處理。實際上,每一個庫都有一個soname,當連接器發現它正在查找的程序庫中有這樣一個名稱,連接器便會將soname嵌入連結中的二進制文件內,而不是它正在運行的實際文件名,在程序執行期間,程序會查找擁有 soname名字的文件,%B
