單獨編譯安卓內核
㈠ 如何編譯新添加的netfilter功能模塊
單獨編譯內核的某個模塊可以使用如下命令:
make moles SUBDIRS=yourdir
㈡ 編譯android 源碼需要sdk環境嗎
下面是android學習手冊,可以查看編譯源碼,360手機助手中下載,
編譯環境:ubuntu9.10,widnows平台目前不被支持。
1)安裝必要的軟體環境
$ sudo apt-get install git-core gnupg sun-java5-jdk flex bison gperf libsdl-dev libesd0-dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev zlib1g-dev
官方推薦的就是上面這些,如果在編譯過程中發現某些命令找不到,就apt-get它。可能需要的包還有:
$ sudo apt-get install make
$ sudo apt-get install gcc
$ sudo apt-get install g++
$ sudo apt-get install libc6-dev
$ sudo apt-get install patch
$ sudo apt-get install texinfo
$ sudo apt-get install zlib1g-dev
$ sudo apt-get install valgrind
$ sudo apt-get install python2.5(或者更高版本)
需要注意的是,官方文檔說如果用sun-java6-jdk可出問題,得要用sun-java5- jdk。經測試發現,如果僅僅make(make不包括make sdk),用sun-java6-jdk是沒有問題的。而make sdk,就會有問題,嚴格來說是在make doc出問題,它需要的javadoc版本為1.5。
因此,我們安裝完sun-java6-jdk後最好再安裝sun-java5-jdk,或者只安裝sun-java5-jdk。這里sun-java6-jdk和sun-java5-jdk都安裝,並只修改javadoc.1.gz和javadoc。因為只有這兩個是make sdk用到的。這樣的話,除了javadoc工具是用1.5版本,其它均用1.6版本:
$ sudo apt-get install sun-java6-jdk
修改javadoc的link:
$ cd /etc/alternatives
$ sudo rm javadoc.1.gz
$ sudo ln -s /usr/lib/jvm/java-1.5.0-sun/man/man1/javadoc.1.gz javadoc.1.gz
$ sudo rm javadoc
$ sudo ln -s /usr/lib/jvm/java-1.5.0-sun/bin/javadoc javadoc
2)設置環境變數
$ emacs ~/.bashrc
在.bashrc中新增或整合PATH變數,如下:
#java 程序開發/運行的一些環境變數
JAVA_HOME=/usr/lib/jvm/java-6-sun
JRE_HOME=${JAVA_HOME}/jre
export ANDROID_JAVA_HOME=$JAVA_HOME
export CLASSPATH=.:${JAVA_HOME}/lib:$JRE_HOME/lib:$CLASSPATH
export JAVA_PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin
export JAVA_HOME;
export JRE_HOME;
export CLASSPATH;
HOME_BIN=~/bin/
export PATH=${PATH}:${JAVA_PATH}:${HOME_BIN};
保存後,同步更新:
source ~/.bashrc
3)安裝repo(用來更新android源碼)
創建~/bin目錄,用來存放repo程序,如下:
$ cd ~
$ mkdir bin
並加到環境變數PATH中,在第2步中已經加入。
下載repo腳本並使其可執行:
$ curlhttp://android.git.kernel.org/repo>~/bin/repo
$ chmod a+x ~/bin/repo
4)初始化repo
repo是android對git的一個封裝,簡化了一些git的操作。
創建工程目錄:
$ mkdir android
$ cd android
repo初始化:
$ repo init -u git://android.git.kernel.org/platform/manifest.git
在此過程中需要輸入名字和email地址。初始化成功後,會顯示:
repo initialized in /android
在~/android下會有一個.repo的隱藏目錄。
5)同步源代碼
$ repo sync
這一步要很久很久。
6)編譯android源碼,並得到~/android/out目錄
$ cd ~/andoird
$ make
這一過程很久。
7)在模擬器上運行編譯好的android
編譯好android之後,emulator在~/android/out/host/linux-x86/bin下,ramdisk.img,system.img和userdata.img則在~/android/out/target/proct/generic下。
$ cd ~/android/out/host/linux-x86/bin
增加環境變數
$ emacs ~/.bashrc
在.bashrc中新增環境變數,如下
#java 程序開發/運行的一些環境變數
export ANDROID_PRODUCT_OUT=~/android/out/target/proct/generic
ANDROID_PRODUCT_OUT_BIN=~/android/out/host/linux-x86/bin
export PATH=${PATH}:${ANDROID_PRODUCT_OUT_BIN}:${ANDROID_PRODUCT_OUT};
最後,同步這些變化:
$ source ~/.bashrc
$ cd ~/android/out/target/proct/generic
$ emulator -system system.img -data userdata.img -ramdisk ramdisk.img
最後進入android桌面,就說明成功了。
8)編譯模塊
android中的一個應用程序可以單獨編譯,編譯後要重新生成system.img。
在源碼目錄下執行
$ . build/envsetup.sh (.後面有空格)
就多出一些命令:
- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the moles in the current directory.
- mmm: Builds all of the moles in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.
可以加—help查看用法。
我們可以使用mmm來編譯指定目錄的模塊,如編譯聯系人:
$ mmm packages/apps/Contacts/
編完之後生成兩個文件:
out/target/proct/generic/data/app/ContactsTests.apk
out/target/proct/generic/system/app/Contacts.apk
可以使用
$ make snod
重新生成system.img,再運行模擬器。
9)編譯SDK
直接執行make是不包括make sdk的。make sdk用來生成SDK,這樣,我們就可以用與源碼同步的SDK來開發android了。
a)修改/frameworks/base/include/utils/Asset.h
『UNCOMPRESS_DATA_MAX = 1 * 1024 * 1024』 改為 『UNCOMPRESS_DATA_MAX = 2 * 1024 * 1024』
原因是eclipse編譯工程需要大於1.3M的buffer;
b)編譯ADT
由於本人不使用eclipse,所以沒有進行這步;
c)執行make sdk
注意,這里需要的javadoc版本為1.5,所以你需要在步驟1中同時安裝sun-java5-jdk
$ make sdk
編譯很慢。編譯後生成的SDK存放在out/host/linux-x86/sdk/,此目錄下有android-sdk_eng.xxx_linux- x86.zip和android-sdk_eng.xxx_linux-x86目錄。android-sdk_eng.xxx_linux-x86就是 SDK目錄。
實際上,當用mmm命令編譯模塊時,一樣會把SDK的輸出文件清除,因此,最好把android-sdk_eng.xxx_linux-x86移出來。
此後的應用開發,就在該SDK上進行,所以把7)對於~/.bashrc的修改注釋掉,增加如下一行:
export PATH=${PATH}:~/android/out/host/linux-x86/sdk/android-sdk_eng.xxx_linux-x86/tools
注意要把xxx換成真實的路徑;
d)關於環境變數、android工具的選擇
目前的android工具有:
A、我們從網上下載的Android SDK,如果你下載過的話( tools下有許多android工具,lib/images下有img映像)
B、我們用make sdk編譯出來的SDK( tools下也有許多android工具,lib/images下有img映像)
C、我們用make編譯出來的out目錄( tools下也有許多android工具,lib/images下有img映像)
那麼我們應該用那些工具和img呢?
首先,我們一般不會用A選項的工具和img,因為一般來說它比較舊,也源碼不同步。其次,也不會用C選項的工具和img,因為這些工具和img沒有經過SDK的歸類處理,會有工具和配置找不到的情況;事實上,make sdk產生的很多工具和img,在make編譯出來out目錄的時候,已經編譯產生了,make sdk只是做了而已。
e)安裝、配置ADT
略過;
f)創建Android Virtual Device
編譯出來的SDK是沒有AVD(Android Virtual Device)的,我們可以通過android工具查看:
$ android list
創建AVD:
$ android create avd -t 1 -n myavd
可以android –help來查看上面命令選項的用法。創建中有一些選項,默認就行了。
再執行android list,可以看到AVD存放的位置。
以後每次運行emulator都要加-avd myavd或@myavd選項:
$ emulator -avd myavd
10)編譯linux內核映像
a)准備交叉編譯工具鏈
android代碼樹中有一個prebuilt項目,包含了我們編譯內核所需的交叉編譯工具。
b)設定環境變數
$ emacs ~/.bashrc
增加如下兩行:
export PATH=$PATH:~/android/prebuilt/linux-x86/toolchain/arm-eabi-4.4.0/bin
export ARCH=arm
保存後,同步變化:
$ source ~/.bashrc
c)獲得合適的內核源代碼
$ cd ~/android
獲得內核源代碼倉庫
$ git clone git://android.git.kernel.org/kernel/common.git kernel
$ cd kernel
$ git branch
顯示
* android-2.6.27
說明你現在在android-2.6.27這個分支上,也是kernel/common.git的默認主分支。
顯示所有head分支:
$ git branch -a
顯示
* android-2.6.27
remotes/origin/HEAD -> origin/android-2.6.27
remotes/origin/android-2.6.25
remotes/origin/android-2.6.27
remotes/origin/android-2.6.29
remotes/origin/android-goldfish-2.6.27
remotes/origin/android-goldfish-2.6.29
我們選取最新的android-goldfish-2.6.29,其中goldfish是android的模擬器模擬的CPU。
$ git checkout -b android-goldfish-2.6.29 origin/android-goldfish-2.6.29
$ git branch
顯示
android-2.6.27
* android-goldfish-2.6.29
我們已經工作在android-goldfish-2.6.29分支上了。
d)設定交叉編譯參數
打開kernel目錄下的Makefile文件,把CROSS_COMPILE指向剛才下載的prebuilt中的arm-eabi編譯器.
CROSS_COMPILE ?= arm-eabi-
把
LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,
$(call ld-option, -Wl$(comma)–build-id,))
這一行注釋掉,並且添加一個空的LDFLAGS_BUILD_ID定義,如下:
LDFLAGS_BUILD_ID =
e)編譯內核映像
$ cd ~/android/kernel
$ make goldfish_defconfig
$ make
f)測試生成的內核映像
$ emulator -avd myavd -kernel ~/android/kernel/arch/arm/boot/zImage
㈢ linux編譯內核時怎麼單個編譯一個特定模塊
從網上找一個編譯模塊的makefile,放到你的模塊的文件夾裡面,然後修改裡面的路徑指定編譯的內核,以及目標名稱。make就可以了。
㈣ android 源碼 怎麼只編譯 systemui
Google提供的Android包含了原始Android的目標機代碼,主機編譯工具、模擬環境,下載的代碼包經過解壓後(這里是Android2.2的源碼包),源代碼的第一層目錄結構如下: -- Makefile -- bionic (bionic C庫) -- bootable (啟動引導相關代碼) -- build (存放系統編譯規則及generic等基礎開發包配置) -- cts (Android兼容性測試套件標准) -- dalvik (dalvik JAVA虛擬機) -- development (應用程序開發相關) -- external (android使用的一些開源的模組) -- frameworks (核心框架——java及C++語言) -- hardware (主要保護硬解適配層HAL代碼) -- libcore -- ndk -- device -- out (編譯完成後的代碼輸出與此目錄) -- packages (應用程序包) -- prebuilt (x86和arm架構下預編譯的一些資源) -- sdk (sdk及模擬器) -- system (文件系統庫、應用及組件——c語言) `-- vendor (廠商定製代碼) bionic 目錄 -- libc (C庫) -- arch-arm (ARM架構,包含系統調用匯編實現) -- arch-x86 (x86架構,包含系統調用匯編實現) -- bionic (由C實現的功能,架構無關) -- docs (文檔) -- include (頭文件) -- inet -- kernel (Linux內核中的一些頭文件) -- netbsd (?netbsd系統相關,具體作用不明) -- private (?一些私有的頭文件) -- stdio (stdio實現) -- stdlib (stdlib實現) -- string (string函數實現) -- tools (幾個工具) -- tzcode (時區相關代碼) -- unistd (unistd實現) `-- zoneinfo (時區信息) -- libdl (libdl實現,dl是動態鏈接,提供訪問動態鏈接庫的功能) -- libm (libm數學庫的實現,) -- alpha (apaha架構) -- amd64 (amd64架構) -- arm (arm架構) -- bsdsrc (?bsd的源碼) -- i386 (i386架構) -- i387 (i387架構?) -- ia64 (ia64架構) -- include (頭文件) -- man (數學函數,後綴名為.3,一些為freeBSD的庫文件) -- powerpc (powerpc架構) -- sparc64 (sparc64架構) `-- src (源代碼) -- libstdc++ (libstdc++ C++實現庫) -- include (頭文件) `-- src (源碼) -- libthread_db (多線程程序的調試器庫) `-- include (頭文件) `-- linker (動態鏈接器) `-- arch (支持arm和x86兩種架構) bootable 目錄 -- bootloader (適合各種bootloader的通用代碼) `-- legacy (估計不能直接使用,可以參考) -- arch_armv6 (V6架構,幾個簡單的匯編文件) -- arch_msm7k (高通7k處理器架構的幾個基本驅動) -- include (通用頭文件和高通7k架構頭文件) -- libboot (啟動庫,都寫得很簡單) -- libc (一些常用的c函數) -- nandwrite (nandwirte函數實現) `-- usbloader (usbloader實現) -- diskinstaller (android鏡像打包器,x86可生產iso) `-- recovery (系統恢復相關) -- edify (升級腳本使用的edify腳本語言) -- etc (init.rc恢復腳本) -- minui (一個簡單的UI) -- minzip (一個簡單的壓縮工具) -- mttils (mtd工具) -- res (資源) `-- images (一些圖片) -- tools (工具) `-- ota (OTA Over The Air Updates升級工具) `-- updater (升級器) build目錄 -- core (核心編譯規則) -- history (歷史記錄) -- libs `-- host (主機端庫,有android 「cp」功能替換) -- target (目標機編譯對象) -- board (開發平台) -- emulator (模擬器) -- generic (通用) -- idea6410 (自己添加的) `-- sim (最簡單) `-- proct (開發平台對應的編譯規則) `-- security (密鑰相關) `-- tools (編譯中主機使用的工具及腳本) -- acp (Android "acp" Command) -- apicheck (api檢查工具) -- applypatch (補丁工具) -- apriori (預鏈接工具) -- atree (tree工具) -- bin2asm (bin轉換為asm工具) -- check_prereq (檢查編譯時間戳工具) -- dexpreopt (模擬器相關工具,具體功能不明) -- droiddoc (?作用不明,java語言,網上有人說和JDK5有關) -- fs_config (This program takes a list of files and directories) -- fs_get_stats (獲取文件系統狀態) -- iself (判斷是否ELF格式) -- isprelinked (判斷是否prelinked) -- kcm (按鍵相關) -- lsd (List symbol dependencies) -- releasetools (生成鏡像的工具及腳本) -- rgb2565 (rgb轉換為565) -- signapk (apk簽名工具) -- soslim (strip工具) `-- zipalign (zip archive alignment tool) dalvik目錄 dalvik虛擬機 . -- dalvikvm (main.c的目錄) -- dexmp (dex反匯編) -- dexlist (List all methods in all concrete classes in a DEX file.) -- dexopt (預驗證與優化) -- docs (文檔) -- dvz (和zygote相關的一個命令) -- dx (dx工具,將多個java轉換為dex) -- hit (?java語言寫成) -- libcore (核心庫) -- libcore-disabled (?禁用的庫) -- libdex (dex的庫) -- libnativehelper (Support functions for Android's class libraries) -- tests (測試代碼) -- tools (工具) `-- vm (虛擬機實現) development 目錄 (開發者需要的一些常式及工具) -- apps (一些核心應用程序) -- BluetoothDebug (藍牙調試程序) -- CustomLocale (自定義區域設置) -- Development (開發) -- Fallback (和語言相關的一個程序) -- FontLab (字型檔) -- GestureBuilder (手勢動作) -- NinePatchLab (?) -- OBJViewer (OBJ查看器) -- SdkSetup (SDK安裝器) -- SpareParts (高級設置) -- Term (遠程登錄) `-- launchperf (?) -- build (編譯腳本模板) -- cmds (有個monkey工具) -- data (配置數據) -- docs (文檔) -- host (主機端USB驅動等) -- ide (集成開發環境) -- ndk (本地開發套件——c語言開發套件) -- pdk (Plug Development Kit) -- samples (演示程序) -- AliasActivity () -- ApiDemos (API演示程序) -- BluetoothChat (藍牙聊天) -- BrowserPlugin (瀏覽器插件) -- BusinessCard (商業卡) -- Compass (指南針) -- ContactManager (聯系人管理器) -- CubeLiveWall** (動態壁紙的一個簡單常式) -- FixedGridLayout (像是布局) -- GlobalTime (全球時間) -- HelloActivity (Hello) -- Home (Home) -- JetBoy (jetBoy游戲) -- LunarLander (貌似又是一個游戲) -- MailSync (郵件同步) -- MultiResolution (多解析度) -- MySampleRss (RSS) -- NotePad (記事本) -- RSSReader (RSS閱讀器) -- SearchableDictionary (目錄搜索) -- **JNI (JNI常式) -- SkeletonApp (空殼APP) -- Snake (snake程序) -- SoftKeyboard (軟鍵盤) -- Wiktionary (?維基) `-- Wiktionary**(?維基常式) -- scripts (腳本) -- sdk (sdk配置) -- simulator (?模擬器) -- testrunner (?測試用) `-- tools (一些工具)
㈤ 編譯內核時,出現的問題,使用的是安卓原生態編譯,只編譯kernel
刪除kernel-3.10\include下的config文件夾就可以解決。
㈥ 怎麼修改Android 的Linux內核
Android 產品中,內核格式是Linux標準的zImage,根文件系統採用ramdisk格式。這兩者在Android下是直接合並在一起取名為boot.img,會放在一個獨立分區當中。這個分區格式是Android自行制定的格式。
Android開發時,最標準的做法是重新編譯於內核和根文件系統,然後調用Android給的命令行文件mkbootimg(out/host/linux-x86/bin/)來打包。
在製作手機ROM時,有時會單獨編譯內核或抽出根文件進行修改內容,比如我只編譯內核,其餘的地方不變。這樣重新安裝巨大的Android開發環境實在不劃算。因此很多boot.img解包工具被人開發出來,這一些工具都是把內核和根文件系統從一個現成的boot.img抽取出來,修發後再次打包還原。
一.常見的解包工具
因為boot.img的格式比較簡單,它主要分為三大塊(有的可能有四塊)
因此很多人開發分析工具,有是linux shell腳本,比如repack-zImage,也有人採用perl,還有C語言編寫的 unbootimg,
我使用的是在源碼位置system/core/mkbootimg/ 下的 mkbootimg。為了簡化,藍點工坊把與mkbootimg中打包工具和解包工具以及所包含的libmincrpty庫抽出來,並且重寫一個Makefile,作為開源項目。
使用者只需要在linux(需安裝gcc,make,一般是標配)或windows(需要安裝mingw)的命令行執行make,即可產生可執行文件mkbootimg ,unpackbootimg。
二.解/打包工具使用
解包工具:unpackbootimg
常見格式
unpackbootimg -i .\tmp\boot.img -o .\out
這一句命令行表示把boot.img解包,所有文件輸出到out目錄下
它會解壓出如下文件:
boot.img-zImage (內核文件)
boot.img-ramdisk.gz (根文件系統打包文件)
boot.img-cmdline (mkbootimg cmdline參數)
boot.img-pagesize (mkbootimg pagesize參數)
boot.img-base (mkbootimg base參數)
打包工具:mkbootimg (Android自帶)
常見的命令格式:
./mkbootimg --cmdline 'no_console_suspend=1 console=null' --kernel zImage --ramdisk boot/boot.img-ramdisk.gz -o boot.img --base 02e00000
這句含義是把內核文件zImage和boot目錄下的根文件壓縮包 boot.img-ramdisk.gz打包成boot.img.
其中cmdline和base的值均來源於unpackbootimg的結果
㈦ 自己可以編譯安卓源碼嗎
用最新的Ubuntu 16.04,請首先確保自己已經安裝了Git.沒安裝的同學可以通過以下命令進行安裝:
sudo apt-get install git git config –global user.email 「[email protected]」 git config –global user.name 「test」
其中[email protected]為你自己的郵箱.
簡要說明
android源碼編譯的四個流程:1.源碼下載;2.構建編譯環境;3.編譯源碼;4運行.下文也將按照該流程講述.
源碼下載
由於某牆的原因,這里我們採用國內的鏡像源進行下載.
目前,可用的鏡像源一般是科大和清華的,具體使用差不多,這里我選擇清華大學鏡像進行說明.(參考:科大源,清華源)
repo工具下載及安裝
通過執行以下命令實現repo工具的下載和安裝
mkdir ~/binPATH=~/bin:$PATHcurl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repochmod a+x ~/bin/repo
補充說明
這里,我來簡單的介紹下repo工具,我們知道AOSP項目由不同的子項目組成,為了方便進行管理,Google採用Git對AOSP項目進行多倉庫管理.在聊repo工具之前,我先帶你來聊聊多倉庫項目:
我們有個非常龐大的項目Pre,該項目由很多個子項目R1,R2,...Rn等組成,為了方便管理和協同開發,我們為每個子項目創立自己的倉庫,整個項目的結構如下:
這里寫圖片描述
執行完該命令後,再使用make命令繼續編譯.某些情況下,當你執行jack-admin kill-server時可能提示你命令不存在,此時去你去out/host/linux-x86/bin/目錄下會發現不存在jack-admin文件.如果我是你,我就會重新repo sync下,然後從頭來過.
錯誤三:使用emulator時,虛擬機停在黑屏界面,點擊無任何響應.此時,可能是kerner內核問題,解決方法如下:
執行如下命令:
通過使用kernel-qemu-armv7內核 解決模擬器等待黑屏問題.而-partition-size 1024 則是解決警告: system partion siez adjusted to match image file (163 MB >66 MB)
如果你一開始編譯的版本是aosp_arm-eng,使用上述命令仍然不能解決等待黑屏問題時,不妨編譯aosp_arm64-eng試試.
結束吧
到現在為止,你已經了解了整個android編譯的流程.除此之外,我也簡單的說明android源碼的多倉庫管理機制.下面,不妨自己動手嘗試一下.
㈧ 深入理解Binder
之前一直對 Binder 理解不夠透徹,僅僅知道一些皮毛,所以最近抽空深入理解一下,並在這里做個小結。
Binder 是 Android 系統中實現 IPC (進程間通信)的一種機制。Binder 原意是「膠水、粘合劑」,所以可以想像它的用途就是像膠水一樣把兩個進程緊緊「粘」在一起,從而可以方便地實現 IPC 。
那麼為什麼會有進程通信呢?這是因為在 Linux 中進程之間是隔離的,也就是說 A 進程不知道有 B 進程的存在,相應的 B 進程也不知道 A 進程的存在。A 、B 兩進程的內存是不共享的,所以 A 進程的數據想要傳給 B 進程就需要用到 IPC 。
在這里再科普一下進程空間的知識點:進程空間可以分為用戶空間和內核空間。簡單的說,用戶空間是用戶程序運行的空間,而內核空間就是內核運行的空間了。因為像內核這么底層、至關重要的東西肯定是不會簡單地讓用戶程序隨便調用的,所以需要把內核保護起來,就創造了內核空間,讓內核運行在內核空間中,這樣就不會被用戶空間隨便干擾到了。兩個進程之間的用戶空間是不共享的,但是內核空間是共享的。
所以到這里,有些同學會有個大膽的想法,兩個進程間的通信可以利用內核空間來實現啊,因為它們的內核空間是共享的,這樣數據不就傳過去了嘛。但是接著又來了一個問題:為了保證安全性,用戶空間和內核空間也是隔離的。那麼如何把數據從發送方的用戶空間傳到內核空間呢?
針對這個問題提供了 系統調用 來解決,可以讓用戶程序調用內核資源。系統調用是用戶空間訪問內核空間的唯一方式,保證了所有的資源訪問都是在內核的控制下進行的,避免了用戶程序對系統資源的越權訪問,提升了系統安全性和穩定性(這段話來自 《寫給 Android 應用工程師的 Binder 原理剖析》 )。我們平時的網路、I/O操作其實都是通過系統調用在內核空間中運行的(也就是 內核態 )。
至此,關於 IPC 我們有了一個大概的實現方案:A 進程的數據通過系統調用把數據傳輸到內核空間(即_from_user),內核空間再利用系統調用把數據傳輸到 B 進程(即 _to_user)。這也正是目前 Linux 中傳統 IPC 通信的實現原理,可以看到這其中會有兩次數據拷貝。
(圖片來自於 《寫給 Android 應用工程師的 Binder 原理剖析》 )
Linux 中的一些 IPC 方式:
通過上面的講解我們可以知道,IPC 是需要內核空間來支持的。Linux 中的管道、socket 等都是在內核中的。但是在 Linux 系統裡面是沒有 Binder 的。那麼 Android 中是如何利用 Binder 來實現 IPC 的呢?
這就要講到 Linux 中的 動態內核可載入模塊 。動態內核可載入模塊是具有獨立功能的程序,它可以被單獨編譯,但是不能獨立運行。它在運行時被鏈接到內核作為內核的一部分運行。這樣,Android 系統就可以通過動態添加一個內核模塊運行在內核空間,用戶進程之間通過這個內核模塊作為橋梁來實現通信。(這段話來自 《寫給 Android 應用工程師的 Binder 原理剖析》 )在 Android 中,這個內核模塊也就是 Binder 驅動。
另外,Binder IPC 原理相比較上面傳統的 Linux IPC 而言,只需要一次數據拷貝就可以完成了。那麼究竟是怎麼做到的呢?
其實 Binder 是藉助於 mmap (內存映射)來實現的。mmap 用於文件或者其它對象映射進內存,通常是用在有物理介質的文件系統上的。mmap 簡單的來說就是可以把用戶空間的內存區域和內核空間的內存區域之間建立映射關系,這樣就減少了數據拷貝的次數,任何一方的對內存區域的改動都將被反應給另一方。
所以,Binder 的做法就是建立一個虛擬設備(設備驅動是/dev/binder),然後在內核空間創建一塊數據接收的緩存區,這個緩存區會和內存緩存區以及接收數據進程的用戶空間建立映射,這樣發送數據進程把數據發送到內存緩存區,該數據就會被間接映射到接收進程的用戶空間中,減少了一次數據拷貝。具體可以看下圖理解
(圖片來自於 《寫給 Android 應用工程師的 Binder 原理剖析》 )
Binder 的優點
在整個 Binder 通信過程中,可以分為四個部分:
其中 Client 和 Server 是應用層實現的,而 Binder 驅動和 ServiceManager 是 Android 系統底層實現的。
具體流程如下:
(Binder通信過程示意圖來自於 《寫給 Android 應用工程師的 Binder 原理剖析》 )
㈨ android 怎樣編譯kernel 命令 make
方法如下:
在Linux的環境下:
建立目錄:
mkdir ~/android-kernel cd android-kernel
下載源代碼, 大概有280MB, 慢慢等哈~~~ (當然你要先安裝git) git clone git://git.linuxtogo.org/home/groups/mobile-linux/kernel.git
類似的屏幕信息:
Initialized empty Git repository in /home/user/android-kernel/kernel/.git/ remote: Counting objects: 908251, done.
remote: Compressing objects: 100% (153970/153970), done.
remote: Total 908251 (delta 755115), reused 906063 (delta 753016) Receiving objects: 100% (908251/908251), 281.86 MiB | 292 KiB/s, done. Resolving deltas: 100% (755115/755115), done. Checking out files: 100% (22584/22584), done.
然後去到htc-msm branch: cd kernel
git checkout -b htc-msm origin/htc-msm
屏幕信息:
Branch htc-msm set up to track remote branch refs/remotes/origin/htc-msm. Switched to a new branch "htc-msm"
下載ARM的toolchain, 大概64MB左右, 下到~/android-kernel: 下
載
:
http://www.codesourcery.com/gnu_toolchains/arm/portal/package2549/public/arm-none-linux-gnueabi/arm-2008q1-126-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
cd ~/android-kernel
tar xjf arm-2008q1-126-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
編譯kernel
准備預設的Kaiser 配置文件.config
cd ~/android-kernel/kernel
make htckaiser_defconfig ARCH=arm
然後編譯zImage:
export PATH=~/android-kernel/arm-2008q1/bin:$PATH
make zImage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
編譯好的在: ~/android-kernel/kernel/arch/arm/boot/zImage
如果你的機器是多核的, 可以編譯的時候用-j <cores/cpus_number>來加速:
比如, 雙核的可以:
make -j 2 zImage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi
滿意請採納謝謝
㈩ 如何單獨編譯內核模塊
第一點,就是源碼樹中有相應的頭文件和函數的實現,沒有源碼樹,你哪調用去呢?(PC上編譯的時候內核有導出符號,系統中有頭文件,這樣就可以引用內核給你的介面了,但是只能編譯你PC上版本的內核可載入的模塊)。
第二個,內核模塊中會記錄版本號的部分,需要記錄版本號的原因是不同的內核版本之間,那些介面和調用可能會有比較大的差異,因此必須要保證你的代碼和某個特定的內核對應,這樣編譯出來的模塊就可以(也是只能)在運行這個內核版本的Linux系統中載入,否則一個很簡單的異常就會導致內核崩潰,或者你的代碼根本無法編譯通過(介面名變了)。