當前位置:首頁 » 編程軟體 » 編譯原理function的記號

編譯原理function的記號

發布時間: 2022-12-16 12:38:36

Ⅰ 在編譯中,字元和記號是什麼的概念

編譯原理記號記號。
當掃描程序將字元收集到一個記號中時,它通常是以符號表示這個記號。這也就是說,作為一個枚舉數據類型的值來表示源程序的記號集。
字元與編碼是一個被經常討論的話題。即使這樣,時常出現的亂碼仍然困擾著大家。雖然我們有很多的辦法可以用來消除亂碼,但我們並不一定理解這些辦法的內在原理。

Ⅱ 編譯原理這個符號表示什麼 如圖~~~~

剪頭上加一個星號:S-*->aPb
表示從S可以推出含有非終結符P的形如aPb的句型。
剪頭上加一個加號:S-+->a
表示從S可以推出終結符a。

Ⅲ 編譯原理 求詳細解釋。 我沒看懂 100分

+739227481 你是要解釋,還是要啥?

Ⅳ 編譯原理

編譯原理):利用編譯程序從源語言編寫的源程序產生目標程序的過程; 用編譯程序產生目標程序的動作。 編譯就是把高級語言變成計算機可以識別的2進制語言,計算機只認識1和0,編譯程序把人們熟悉的語言換成2進制的。

編譯程序把一個源程序翻譯成目標程序的工作過程分為五個階段:詞法分析;語法分析;語義檢查和中間代碼生成

(4)編譯原理function的記號擴展閱讀:

編譯程序的語法分析器以單詞符號作為輸入,分析單詞符號串是否形成符合語法規則的語法單位,如表達式、賦值、循環等,最後看是否構成一個符合要求的程序,按該語言使用的語法規則分析檢查每條語句是否有正確的邏輯結構,程序是最終的一個語法單位。

編譯程序的語法規則可用上下文無關文法來刻畫。語法分析的方法分為兩種:自上而下分析法和自下而上分析法。自上而下就是從文法的開始符號出發,向下推導,推出句子。

而自下而上分析法採用的是移進歸約法,基本思想是:用一個寄存符號的先進後出棧,把輸入符號一個一個地移進棧里,當棧頂形成某個產生式的一個候選式時,即把棧頂的這一部分歸約成該產生式的左鄰符號。

Ⅳ 編譯原理學了有什麼用

對大多數人來說,學過編譯原理,應該可以知道對於很多代碼的優化,編譯器其實可以做好,不需要自己寫代碼的時候杞人憂天。在通用、局部的優化上,甚至編譯器往往做得比程序員好。

大概率會意識到編譯原理背後的故事,也許會沉迷在某個方向,也許還會樂於看一些奇妙的parser構建方式。

大概還可能會去學習類型系統,發現形式化的故事似乎在很多方面都有對應的版本,而後,他們也許會嘗試走向研究,去挑戰目前都沒有好好解決的代碼優化問題,也許會走向應用,用起LLVM,在上面加個target,支持一些新硬體,做個新語言的前端等。

編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。

編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象。

編譯可以分為五個基本步驟:詞法分析、語法分析、語義分析及中間代碼的生成、優化、目標代碼的生成。這是每個編譯器都必須的基本步驟和流程, 從源頭輸入高級語言源程序輸出目標語言代碼。

1、詞法分析

詞法分析器是通過詞法分析程序對構成源程序的字元串從左到右的掃描, 逐個字元地讀, 識別出每個單詞符號, 識別出的符號一般以二元式形式輸出, 即包含符號種類的編碼和該符號的值。

詞法分析器一般以函數的形式存在, 供語法分析器調用。當然也可以一個獨立的詞法分析器程序存在。完成詞法分析任務的程序稱為詞法分析程序或詞法分析器或掃描器。

2、語法分析

語法分析是編譯過程的第二個階段。這階段的任務是在詞法分析的基礎上將識別出的單詞符號序列組合成各類語法短語, 如「語句」, 「表達式」等.語法分析程序的主要步驟是判斷源程序語句是否符合定義的語法規則, 在語法結構上是否正確。

而一個語法規則又稱為文法, 喬姆斯基將文法根據施加不同的限制分為0型、1型、2型、3型文法, 0型文法又稱短語文法, 1型稱為上下文有關文法, 2型稱為上下文無關文法, 3型文法稱為正規文法, 限制條件依次遞增。

3、語義分析

詞法分析注重的是每個單詞是否合法, 以及這個單詞屬於語言中的哪些部分。語法分析的上下文無關文法注重的是輸入語句是否可以依據文法匹配產生式。

那麼, 語義分析就是要了解各個語法單位之間的關系是否合法。實際應用中就是對結構上正確的源程序進行上下文有關性質的審查, 進行類型審查等。

4、中間代碼生成與優化

在進行了語法分析和語義分析階段的工作之後, 有的編譯程序將源程序變成一種內部表示形式, 這種內部表示形式叫做中間語言或中間表示或中間代碼。

所謂「中間代碼」是一種結構簡單、含義明確的記號系統, 這種記號系統復雜性介於源程序語言和機器語言之間, 容易將它翻譯成目標代碼。另外, 還可以在中間代碼一級進行與機器無關的優化。

5、目標代碼的生成

根據優化後的中間代碼, 可生成有效的目標代碼。而通常編譯器將其翻譯為匯編代碼, 此時還需要將匯編代碼經匯編器匯編為目標機器的機器語言。

6、出錯處理

編譯的各個階段都有可能發現源碼中的錯誤, 尤其是語法分析階段可能會發現大量的錯誤, 因此編譯器需要做出錯處理, 報告錯誤類型及錯誤位置等信息。

Ⅵ 編譯原理

編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象[1]。

中文名
編譯原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
領域
計算機專業的一門重要專業課[1]
快速
導航
編譯器

編譯原理課程

編譯技術的發展

編譯的基本流程

編譯過程概述
基本概念
編譯原理即是對高級程序語言進行翻譯的一門科學技術, 我們都知道計算機程序由程序語言編寫而成, 在早期計算機程序語言發展較為緩慢, 因為計算機存儲的數據和執行的程序都是由0、1代碼組合而成的, 那麼在早期程序員編寫計算機程序時必須十分了解計算機的底層指令代碼通過將這些微程序指令組合排列從而完成一個特定功能的程序, 這就對程序員的要求非常高了。人們一直在研究如何如何高效的開發計算機程序, 使編程的門檻降低。[2]
編譯器
C語言編譯器是一種現代化的設備, 其需要藉助計算機編譯程序, C語言編譯器的設計是一項專業性比較強的工作, 設計人員需要考慮計算機程序繁瑣的設計流程, 還要考慮計算機用戶的需求。計算機的種類在不斷增加, 所以, 在對C語言編譯器進行設計時, 一定要增加其適用性。C語言具有較強的處理能力, 其屬於結構化語言, 而且在計算機系統維護中應用比較多, C語言具有高效率的優點, 在其不同類型的計算機中應用比較多。[3]
C語言編譯器前端設計
編譯過程一般是在計算機系統中實現的, 是將源代碼轉化為計算機通用語言的過程。編譯器中包含入口點的地址、名稱以及機器代碼。編譯器是計算機程序中應用比較多的工具, 在對編譯器進行前端設計時, 一定要充分考慮影響因素, 還要對詞法、語法、語義進行分析。[3]
1 詞法分析[3]
詞法分析是編譯器前端設計的基礎階段, 在這一階段, 編譯器會根據設定的語法規則, 對源程序進行標記, 在標記的過程中, 每一處記號都代表著一類單詞, 在做記號的過程中, 主要有標識符、關鍵字、特殊符號等類型, 編譯器中包含詞法分析器、輸入源程序、輸出識別記號符, 利用這些功能可以將字型大小轉化為熟悉的單詞。[3]
2 語法分析[3]
語法分析是指利用設定的語法規則, 對記號中的結構進行標識, 這包括句子、短語等方式, 在標識的過程中, 可以形成特殊的結構語法樹。語法分析對編譯器功能的發揮有著重要影響, 在設計的過程中, 一定要保證標識的准確性。[3]
3 語義分析[3]
語義分析也需要藉助語法規則, 在對語法單元的靜態語義進行檢查時, 要保證語法規則設定的准確性。在對詞法或者語法進行轉化時, 一定要保證語法結構設置的合法性。在對語法、詞法進行檢查時, 語法結構設定不合理, 則會出現編譯錯誤的問題。前端設計對精確性要求比較好, 設計人員能夠要做好校對工作, 這會影響到編譯的准確性, 如果前端設計存在失誤, 則會影響C語言編譯的效果。[3]

Ⅶ 編譯原理課程設計

%{

/* FILENAME: C.Y */

%}
#define YYDEBUG_LEXER_TEXT (yylval) /* our lexer loads this up each time */
#define YYDEBUG 1 /* get the pretty debugging code to compile*/
#define YYSTYPE char * /* interface with flex: should be in header file */
/* Define terminal tokens */
/* keywords */
%token AUTO DOUBLE INT STRUCT
%token BREAK ELSE LONG SWITCH
%token CASE ENUM REGISTER TYPEDEF
%token CHAR EXTERN RETURN UNION
%token CONST FLOAT SHORT UNSIGNED
%token CONTINUE FOR SIGNED VOID
%token DEFAULT GOTO SIZEOF VOLATILE
%token DO IF STATIC WHILE
/* ANSI Grammar suggestions */
%token IDENTIFIER STRINGliteral
%token FLOATINGconstant INTEGERconstant CHARACTERconstant
%token OCTALconstant HEXconstant
/* New Lexical element, whereas ANSI suggested non-terminal */
%token TYPEDEFname /* Lexer will tell the difference between this and
an identifier! An identifier that is CURRENTLY in scope as a
typedef name is provided to the parser as a TYPEDEFname.*/
/* Multi-Character operators */
%token ARROW /* -> */
%token ICR DECR /* ++ -- */
%token LS RS /* << >> */
%token LE GE EQ NE /* <= >= == != */
%token ANDAND OROR /* && || */
%token ELLIPSIS /* ... */
/* modifying assignment operators */
%token MULTassign DIVassign MODassign /* *= /= %= */
%token PLUSassign MINUSassign /* += -= */
%token LSassign RSassign /* <<= >>= */
%token ANDassign ERassign ORassign /* &= ^= |= */
%start translation_unit
%%
/* CONSTANTS */
constant:
INTEGERconstant
| FLOATINGconstant
/* We are not including ENUMERATIONconstant here because we
are treating it like a variable with a type of "enumeration
constant". */
| OCTALconstant
| HEXconstant
| CHARACTERconstant
;

string_literal_list:
STRINGliteral
| string_literal_list STRINGliteral
;
/************************* EXPRESSIONS ********************************/
primary_expression:
IDENTIFIER /* We cannot use a typedef name as a variable */
| constant
| string_literal_list
| '(' comma_expression ')'
;
postfix_expression:
primary_expression
| postfix_expression '[' comma_expression ']'
| postfix_expression '(' ')'
| postfix_expression '(' argument_expression_list ')'
| postfix_expression {} '.' member_name
| postfix_expression {} ARROW member_name
| postfix_expression ICR
| postfix_expression DECR
;
member_name:
IDENTIFIER
| TYPEDEFname
;
argument_expression_list:
assignment_expression
| argument_expression_list ',' assignment_expression
;
unary_expression:
postfix_expression
| ICR unary_expression
| DECR unary_expression
| unary_operator cast_expression
| SIZEOF unary_expression
| SIZEOF '(' type_name ')'
;
unary_operator:
'&'
| '*'
| '+'
| '-'
| '~'
| '!'
;
cast_expression:
unary_expression
| '(' type_name ')' cast_expression
;
multiplicative_expression:
cast_expression
| multiplicative_expression '*' cast_expression
| multiplicative_expression '/' cast_expression
| multiplicative_expression '%' cast_expression
;
additive_expression:
multiplicative_expression
| additive_expression '+' multiplicative_expression
| additive_expression '-' multiplicative_expression
;
shift_expression:
additive_expression
| shift_expression LS additive_expression
| shift_expression RS additive_expression
;
relational_expression:
shift_expression
| relational_expression '<' shift_expression
| relational_expression '>' shift_expression
| relational_expression LE shift_expression
| relational_expression GE shift_expression
;
equality_expression:
relational_expression
| equality_expression EQ relational_expression
| equality_expression NE relational_expression
;
AND_expression:
equality_expression
| AND_expression '&' equality_expression
;
exclusive_OR_expression:
AND_expression
| exclusive_OR_expression '^' AND_expression
;
inclusive_OR_expression:
exclusive_OR_expression
| inclusive_OR_expression '|' exclusive_OR_expression
;
logical_AND_expression:
inclusive_OR_expression
| logical_AND_expression ANDAND inclusive_OR_expression
;
logical_OR_expression:
logical_AND_expression
| logical_OR_expression OROR logical_AND_expression
;
conditional_expression:
logical_OR_expression
| logical_OR_expression '?' comma_expression ':'
conditional_expression
;
assignment_expression:
conditional_expression
| unary_expression assignment_operator assignment_expression
;
assignment_operator:
'='
| MULTassign
| DIVassign
| MODassign
| PLUSassign
| MINUSassign
| LSassign
| RSassign
| ANDassign
| ERassign
| ORassign
;
comma_expression:
assignment_expression
| comma_expression ',' assignment_expression
;
constant_expression:
conditional_expression
;
/* The following was used for clarity */
comma_expression_opt:
/* Nothing */
| comma_expression
;
/******************************* DECLARATIONS *********************************/
/* The following is different from the ANSI C specified grammar.
The changes were made to disambiguate typedef's presence in
declaration_specifiers (vs. in the declarator for redefinition);
to allow struct/union/enum tag declarations without declarators,
and to better reflect the parsing of declarations (declarators
must be combined with declaration_specifiers ASAP so that they
are visible in scope).
Example of typedef use as either a declaration_specifier or a
declarator:
typedef int T;
struct S { T T;}; /* redefinition of T as member name * /
Example of legal and illegal statements detected by this grammar:
int; /* syntax error: vacuous declaration * /
struct S; /* no error: tag is defined or elaborated * /
Example of result of proper declaration binding:
int a=sizeof(a); /* note that "a" is declared with a type in
the name space BEFORE parsing the initializer * /
int b, c[sizeof(b)]; /* Note that the first declarator "b" is
declared with a type BEFORE the second declarator is
parsed * /
*/
declaration:
sue_declaration_specifier ';'
| sue_type_specifier ';'
| declaring_list ';'
| default_declaring_list ';'
;
/* Note that if a typedef were redeclared, then a declaration
specifier must be supplied */
default_declaring_list: /* Can't redeclare typedef names */
declaration_qualifier_list identifier_declarator {} initializer_opt
| type_qualifier_list identifier_declarator {} initializer_opt
| default_declaring_list ',' identifier_declarator {} initializer_opt
;

declaring_list:
declaration_specifier declarator {} initializer_opt
| type_specifier declarator {} initializer_opt
| declaring_list ',' declarator {} initializer_opt
;

declaration_specifier:
basic_declaration_specifier /* Arithmetic or void */
| sue_declaration_specifier /* struct/union/enum */
| typedef_declaration_specifier /* typedef*/
;

type_specifier:
basic_type_specifier /* Arithmetic or void */
| sue_type_specifier /* Struct/Union/Enum */
| typedef_type_specifier /* Typedef */
;

declaration_qualifier_list: /* const/volatile, AND storage class */
storage_class
| type_qualifier_list storage_class
| declaration_qualifier_list declaration_qualifier
;

type_qualifier_list:
type_qualifier
| type_qualifier_list type_qualifier
;

declaration_qualifier:
storage_class
| type_qualifier /* const or volatile */
;

type_qualifier:
CONST
| VOLATILE
;

basic_declaration_specifier: /*Storage Class+Arithmetic or void*/
declaration_qualifier_list basic_type_name
| basic_type_specifier storage_class
| basic_declaration_specifier declaration_qualifier
| basic_declaration_specifier basic_type_name
;

basic_type_specifier:
basic_type_name /* Arithmetic or void */
| type_qualifier_list basic_type_name
| basic_type_specifier type_qualifier
| basic_type_specifier basic_type_name
;

sue_declaration_specifier: /* Storage Class + struct/union/enum */
declaration_qualifier_list elaborated_type_name
| sue_type_specifier storage_class
| sue_declaration_specifier declaration_qualifier
;

sue_type_specifier:
elaborated_type_name /* struct/union/enum */
| type_qualifier_list elaborated_type_name
| sue_type_specifier type_qualifier
;

typedef_declaration_specifier: /*Storage Class + typedef types */
typedef_type_specifier storage_class
| declaration_qualifier_list TYPEDEFname
| typedef_declaration_specifier declaration_qualifier
;

typedef_type_specifier: /* typedef types */
TYPEDEFname
| type_qualifier_list TYPEDEFname
| typedef_type_specifier type_qualifier
;

storage_class:
TYPEDEF
| EXTERN
| STATIC
| AUTO
| REGISTER
;

basic_type_name:
INT
| CHAR
| SHORT
| LONG
| FLOAT
| DOUBLE
| SIGNED
| UNSIGNED
| VOID
;

elaborated_type_name:
aggregate_name
| enum_name
;

aggregate_name:
aggregate_key '{' member_declaration_list '}'
| aggregate_key identifier_or_typedef_name
'{' member_declaration_list '}'
| aggregate_key identifier_or_typedef_name
;

Ⅷ 編譯器有哪幾部分構成.編譯原理

1. 詞法分析

詞法分析器根據詞法規則識別出源程序
中的各個記號(token),每個記號代表一類單詞(lexeme)。源程序中常見的記號可以歸為幾大類:關鍵字、標識符、字面量和特殊符號。詞法分析器
的輸入是源程序,輸出是識別的記號流。詞法分析器的任務是把源文件的字元流轉換成記號流。本質上它查看連續的字元然後把它們識別為「單詞」。

2. 語法分析

語法分析器根據語法規則識別出記號流中的結構(短語、句子),並構造一棵能夠正確反映該結構的語法樹。

3. 語義分析

語義分析器根據語義規則對語法樹中的語法單元進行靜態語義檢查,如果類型檢查和轉換等,其目的在於保證語法正確的結構在語義上也是合法的。

4. 中間代碼生成

中間代碼生成器根據語義分析器的輸出生成中間代碼。中間代碼可以有若干種形式,它們的共同特徵是與具體機器無關。最常用的一種中間代碼是三地址碼,它的一種實現方式是四元式。三地址碼的優點是便於閱讀、便於優化。

Ⅸ 編譯原理全部的名詞解釋

書上有別那麼懶!。。。。
編譯過程的六個階段:詞法分析,語法分析,語義分析,中間代碼生成,代碼優化,目標代碼生成
解釋程序:把某種語言的源程序轉換成等價的另一種語言程序——目標語言程序,然後再執行目標程序。解釋方式是接受某高級語言的一個語句輸入,進行解釋並控制計算機執行,馬上得到這句的執行結果,然後再接受下一句。
編譯程序:就是指這樣一種程序,通過它能夠將用高級語言編寫的源程序轉換成與之在邏輯上等價的低級語言形式的目標程序(機器語言程序或匯編語言程序)。
解釋程序和編譯程序的根本區別:是否生成目標代碼
句子的二義性(這里的二義性是指語法結構上的。):文法G[S]的一個句子如果能找到兩種不同的最左推導(或最右推導),或者存在兩棵不同的語法樹,則稱這個句子是二義性的。
文法的二義性:一個文法如果包含二義性的句子,則這個文法是二義文法,否則是無二義文法。
LL(1)的含義:(LL(1)文法是無二義的; LL(1)文法不含左遞歸)
第1個L:從左到右掃描輸入串 第2個L:生成的是最左推導
1 :向右看1個輸入符號便可決定選擇哪個產生式
某些非LL(1)文法到LL(1)文法的等價變換: 1. 提取公因子 2. 消除左遞歸
文法符號的屬性:單詞的含義,即與文法符號相關的一些信息。如,類型、值、存儲地址等。
一個屬性文法(attribute grammar)是一個三元組A=(G, V, F)
G:上下文無關文法。
V:屬性的有窮集。每個屬性與文法的一個終結符或非終結符相連。屬性與變數一樣,可以進行計算和傳遞。
F:關於屬性的斷言或謂詞(一組屬性的計算規則)的有窮集。斷言或語義規則與一個產生式相聯,只引用該產生式左端或右端的終結符或非終結符相聯的屬性。
綜合屬性:若產生式左部的單非終結符A的屬性值由右部各非終結符的屬性值決定,則A的屬性稱為綜合屬
繼承屬性:若產生式右部符號B的屬性值是根據左部非終結符的屬性值或者右部其它符號的屬性值決定的,則B的屬性為繼承屬性。
(1)非終結符既可有綜合屬性也可有繼承屬性,但文法開始符號沒有繼承屬性。
(2) 終結符只有綜合屬性,沒有繼承屬性,它們由詞法程序提供。
在計算時: 綜合屬性沿屬性語法樹向上傳遞;繼承屬性沿屬性語法樹向下傳遞。
語法制導翻譯:是指在語法分析過程中,完成附加在所使用的產生式上的語義規則描述的動作。
語法制導翻譯實現:對單詞符號串進行語法分析,構造語法分析樹,然後根據需要構造屬性依賴圖,遍歷語法樹並在語法樹的各結點處按語義規則進行計算。
中間代碼(中間語言)
1、是復雜性介於源程序語言和機器語言的一種表示形式。
2、一般,快速編譯程序直接生成目標代碼。
3、為了使編譯程序結構在邏輯上更為簡單明確,常採用中間代碼,這樣可以將與機器相關的某些實現細節置於代碼生成階段仔細處理,並且可以在中間代碼一級進行優化工作,使得代碼優化比較容易實現。
何謂中間代碼:源程序的一種內部表示,不依賴目標機的結構,易於代碼的機械生成。
為何要轉換成中間代碼:(1)邏輯結構清楚;利於不同目標機上實現同一種語言。
(2)便於移植,便於修改,便於進行與機器無關的優化。
中間代碼的幾種形式:逆波蘭記號 ,三元式和樹形表示 ,四元式
符號表的一般形式:一張符號表的的組成包括兩項,即名字欄和信息欄。
信息欄包含許多子欄和標志位,用來記錄相應名字和種種不同屬性,名字欄也稱主欄。主欄的內容稱為關鍵字(key word)。
符號表的功能:(1)收集符號屬性 (2) 上下文語義的合法性檢查的依據: 檢查標識符屬性在上下文中的一致性和合法性。(3)作為目標代碼生成階段地址分配的依據
符號的主要屬性及作用:
1. 符號名 2. 符號的類型 (整型、實型、字元串型等))3. 符號的存儲類別(公共、私有)
4. 符號的作用域及可視性 (全局、局部) 5. 符號變數的存儲分配信息 (靜態存儲區、動態存儲區)
存儲分配方案策略:靜態存儲分配;動態存儲分配:棧式、 堆式。
靜態存儲分配
1、基本策略
在編譯時就安排好目標程序運行時的全部數據空間,並能確定每個數據項的單元地址。
2、適用的分配對象:子程序的目標代碼段;全局數據目標(全局變數)
3、靜態存儲分配的要求:不允許遞歸調用,不含有可變數組。
FORTRAN程序是段結構,不允許遞歸,數據名大小、性質固定。 是典型的靜態分配
動態存儲分配
1、如果一個程序設計語言允許遞歸過程、可變數組或允許用戶自由申請和釋放空間,那麼,就需要採用動態存儲管理技術。
2、兩種動態存儲分配方式:棧式,堆式
棧式動態存儲分配
分配策略:將整個程序的數據空間設計為一個棧。
【例】在具有遞歸結構的語言程序中,每當調用一個過程時,它所需的數據空間就分配在棧頂,每當過程工作結束時就釋放這部分空間。
過程所需的數據空間包括兩部分
一部分是生存期在本過程這次活動中的數據對象。如局部變數、參數單元、臨時變數等;
另一部分則是用以管理過程活動的記錄信息(連接數據)。
活動記錄(AR)
一個過程的一次執行所需要的信息使用一個連續的存儲區來管理,這個區 (塊)叫做一個活動記錄。
構成
1、臨時工作單元;2、局部變數;3、機器狀態信息;4、存取鏈;
5、控制鏈;6、實參;7、返回地址
什麼是代碼優化
所謂優化,就是對代碼進行等價變換,使得變換後的代碼運行結果與變換前代碼運行結果相同,而運行速度加快或佔用存儲空間減少。
優化原則:等價原則:經過優化後不應改變程序運行的結果。
有效原則:使優化後所產生的目標代碼運行時間較短,佔用的存儲空間較小。
合算原則:以盡可能低的代價取得較好的優化效果。
常見的優化技術
(1) 刪除多餘運算(刪除公共子表達式) (2) 代碼外提 +刪除歸納變數+ (3)強度削弱; (4)變換循環控制條件 (5)合並已知量與復寫傳播 (6)刪除無用賦值
基本塊定義
程序中只有一個入口和一個出口的一段順序執行的語句序列,稱為程序的一個基本塊。

給我分數啊。。。

Ⅹ C語言程序片段中,按序列出所有的記號,並給每個記號以合理的屬性值

這是一個求最大公約數的遞歸函數,程序邏輯是:如果兩數調用時,第一個參數小,則利用規則交換兩參數;否則判斷是否能夠整除,能則返回第二個參數,否則繼續多第二個參數、第一個參數除第二個參數的余數進行遞歸。

補充:
不好意思,編譯原理當初就沒學好,剛才看了這里http://www.blogcn.com/User13/xjoywag/index.html的文章,收獲不小。

熱點內容
王者榮耀在哪裡顯示賬號密碼 發布:2025-07-12 16:36:42 瀏覽:895
打包sql資料庫 發布:2025-07-12 16:19:27 瀏覽:794
php日誌查看 發布:2025-07-12 16:12:10 瀏覽:212
ftp目錄映射為本地盤符 發布:2025-07-12 16:06:59 瀏覽:645
nas存儲百科 發布:2025-07-12 16:03:17 瀏覽:126
python的sort函數 發布:2025-07-12 15:53:21 瀏覽:50
ensp伺服器怎麼設置web根目錄 發布:2025-07-12 15:47:56 瀏覽:286
安卓怎麼設置二卡發信息 發布:2025-07-12 15:43:50 瀏覽:743
如何看到無線密碼 發布:2025-07-12 15:43:13 瀏覽:677
好網址可緩存 發布:2025-07-12 15:36:07 瀏覽:254