android源碼編譯運行
A. android源碼用64位系統編譯了 怎麼運行在32位的手機上
android源碼編譯64位改成32位的辦法(轉載)
You are attempting to build on a 32-bit system.Only 64-bit build environments are supported beyond froyo/2.2.
需要進行如下修改即可,
將
./external/clearsilver/cgi/Android.mk
./external/clearsilver/java-jni/Android.mk
./external/clearsilver/util/Android.mk
./external/clearsilver/cs/Android.mk
四個文件中的
LOCAL_CFLAGS += -m64
LOCAL_LDFLAGS += -m64
注釋掉,或者將「64」換成「32」
LOCAL_CFLAGS += -m32
LOCAL_LDFLAGS += -m32
然後,將
./build/core/main.mk 中的
ifneq (64,$(findstring 64,$(build_arch)))
改為:
ifneq (i686,$(findstring i686,$(build_arch)))
B. 自己可以編譯安卓源碼嗎
用最新的Ubuntu 16.04,請首先確保自己已經安裝了Git.沒安裝的同學可以通過以下命令進行安裝:
sudo apt-get install git git config –global user.email 「[email protected]」 git config –global user.name 「test」
其中[email protected]為你自己的郵箱.
簡要說明
android源碼編譯的四個流程:1.源碼下載;2.構建編譯環境;3.編譯源碼;4運行.下文也將按照該流程講述.
源碼下載
由於某牆的原因,這里我們採用國內的鏡像源進行下載.
目前,可用的鏡像源一般是科大和清華的,具體使用差不多,這里我選擇清華大學鏡像進行說明.(參考:科大源,清華源)
repo工具下載及安裝
通過執行以下命令實現repo工具的下載和安裝
mkdir ~/binPATH=~/bin:$PATHcurl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repochmod a+x ~/bin/repo
補充說明
這里,我來簡單的介紹下repo工具,我們知道AOSP項目由不同的子項目組成,為了方便進行管理,Google採用Git對AOSP項目進行多倉庫管理.在聊repo工具之前,我先帶你來聊聊多倉庫項目:
我們有個非常龐大的項目Pre,該項目由很多個子項目R1,R2,...Rn等組成,為了方便管理和協同開發,我們為每個子項目創立自己的倉庫,整個項目的結構如下:
這里寫圖片描述
執行完該命令後,再使用make命令繼續編譯.某些情況下,當你執行jack-admin kill-server時可能提示你命令不存在,此時去你去out/host/linux-x86/bin/目錄下會發現不存在jack-admin文件.如果我是你,我就會重新repo sync下,然後從頭來過.
錯誤三:使用emulator時,虛擬機停在黑屏界面,點擊無任何響應.此時,可能是kerner內核問題,解決方法如下:
執行如下命令:
通過使用kernel-qemu-armv7內核 解決模擬器等待黑屏問題.而-partition-size 1024 則是解決警告: system partion siez adjusted to match image file (163 MB >66 MB)
如果你一開始編譯的版本是aosp_arm-eng,使用上述命令仍然不能解決等待黑屏問題時,不妨編譯aosp_arm64-eng試試.
結束吧
到現在為止,你已經了解了整個android編譯的流程.除此之外,我也簡單的說明android源碼的多倉庫管理機制.下面,不妨自己動手嘗試一下.
C. Android源碼編譯是干什麼
編譯Android系統。
D. 怎麼在ubuntu上編譯android源碼
步驟一:
安裝Ubuntu系統。我們既可以通過虛擬機的方式安裝Ubuntu,也可以直接在電腦上安裝,為了獲得更好的Linux操作體驗,我建議直接在電腦上面安裝Ubuntu,我在自己電腦上安裝了win10和Ubunut Server14.04雙系統,使用的時候可以根據自己的需要隨時切換系統,非常方便。關於如何搭建雙系統,網上有很多教程,我就不在此敘述了,但是我想說明的一點是在安裝Ununtu的時候,分配給Ubuntu的磁碟空間一定要盡可能大一點,至少60G,我分配了105G,編譯完成之後還剩下50多G,也就是說差不多用了近50G的空間,所以安裝Ubuntu的時候一定得分配大一點的磁碟空間,不然編譯會因為空間不足而中斷。
步驟二:
搭建好Ubuntu系統之後,我們需要下載一份Android6.0的源碼,網上很多文章都介紹了如何通過repo的方式來下載源碼,但是通過這種方式下載速度可能並不是很理想,直接下載網路雲的Android6.0源碼,
因為Android6.0的源碼所佔空間非常大,所以上傳者把Android源碼分成了很多個文件,待全部下載完畢之後,我們可以通過命令把這些分開的文件合並為一個文件。
步驟三:
如果我們是在Windows上下載的源碼,那麼當我們打開Ubuntu之後,要做的第一件事請就是把Windows中的Android源碼拷貝到Ubuntu系統下面,我直接利用復制粘貼的方式將源碼拷貝到了Ubuntu的Home目錄下面,拷貝之後的目錄結構Home/android6_r1/各個分開的源碼文件。
步驟四:
合並這些被分開的源碼文件。我們按下鍵盤上的ctrl + alt + T打開控制台,通過cd命令進入到Home/android6_r1/目錄下面,然後執行命令:cat Android6_r1_* > M.tgz,不用多久,在Home/android6_r1/目錄下面就會生成一個新的文件——M.tgz,M.tgz就是合並之後的壓縮文件。
步驟五:
解壓步驟四生成的壓縮文件。同樣是在Home/android6_r1/目錄下面,我們在控制台執行命令:tar zxvf M.tgz,開始解壓。解壓的過程大概需要20分鍾左右的時間,請耐心等待。解壓好了之後,在Home/android6_r1/會生成一個mydroid的文件夾,這個文件夾就是Android源碼的根文件夾了,裡面有abi、devices、hardware、packages、sdk、art等文件夾和文件。
步驟六:
安裝編譯源碼所需要的軟體。在控制台中我們通過cd..命令退回到Unbuntu用戶的根目錄下,然後依次執行以下命令:
sudo apt-get update
sudo apt-get install openjdk-7-jdk
sudo update-alternatives --config java
sudo update-alternatives --config javac
以上命令每一條都必須分開單獨執行,目的是為了獲取1.7版本的jdk並設置環境變數。當我們安裝完Ubuntu之後可能會自帶一個jdk,但是如果用自帶的jdk編譯Android源碼很可能會提示jdk版本不符合要求的錯誤,因此我們需要重新下載1.7版本的jdk,我用openjdk-7-jdk編譯未出現任何問題。
接下來繼續執行以下命令,同樣每一行都是分開單獨執行的:
sudo apt-get install git gnupg flex bison gperf build-essential
sudo apt-get install zip curl libc6-dev libncurses5-dev:i386 x11proto-core-dev
sudo apt-get install libx11-dev:i386 libreadline6-dev:i386 libgl1-mesa-glx:i386
sudo apt-get install libgl1-mesa-dev g++-multilib mingw32 tofrodos
sudo apt-get install python-markdown libxml2-utils xsltproc zlib1g-dev:i386
sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so
以上命令主要是安裝編譯源碼時需要用到的各種軟體,如果沒有安裝這些軟體,編譯的過程中會提示缺少必要的軟體而無法繼續編譯,因此,在正式編譯源碼之前,一定要先安裝這些軟體。
步驟七:
開始編譯。在控制台中通過cd命令進入到Home/android6_r1/mydroid/目錄下,然後執行命令:source build/envsetup.sh,導入編譯Android源碼所需的環境變數和其它參數。
步驟八:
在控制台中執行命令:lunch,運行命令之後會提示我們選擇編譯目標。這里我選擇的的默認目標,即aosp_arm_eng。
步驟九:
在控制台中執行命令:make -j8,開始編譯。注意,make -j8命令中的數字8和我們電腦的CPU核心數以及線程數有關系,一般這個數字的數值最大不能超過CPU線程數的2倍,例如我電腦的處理器是i5 6200U,為雙核四線程,因此編譯Android源碼的時候,我可以設置的最大工作線程數量為4 * 2 = 8。在執行make命令的時候我們應該根據自己的CPU參數設置合理的工作線程數值。
以上步驟執行完之後,就是一段非常漫長的等待了,我從中午十二點多開始編譯,一直到晚上九點多編譯完成,整個編譯過程耗時九個多小時,幸好我的運氣還不錯,編譯過程中沒有出現任何錯誤,只是中途意外中斷了一次,但是Android源碼是可以接著上次中斷的位置繼續編譯的,已經編譯的部分不會重復編譯,因此並未對我造成大的影響。同志們,我想說的是,編譯的過程中一定要有耐心喲!
整個源碼編譯完成之後,如果提示如下信息,那麼Congratulations, you are successful!!!
E. 怎麼使用Android源碼編譯c模塊生成可執行文件
1. 在./development目錄下創建一目錄 如:myhello
2. 進入hello目錄,在其下編寫自己的.c文件,如: myhello.c
#include <stdio.h>
int main()
{
printf("hello world\n");
exit(0);
//return 0;
}
3. 在hello目錄中,編寫Android.mk, 內容如下:
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := myhelloworld
LOCAL_SRC_FILES := myhello.c
LOCAL_MODULE_TAGS := optional
include $(BUILD_EXECUTABLE)
4. 回到Android源代碼頂層目錄,進行編譯,make myhelloworld
5. 生成的可執行文件位於:out/target/proct/lotus/system/bin/ 目錄下
6. adb push 到手機 /data 目錄下,然後進入adb shell,到data目錄下,執行./myhelloworld 皆可
手動編譯連接【arm-eabi-gcc 的目錄隨andorid的版本而有變化,還有就是需要鏈接的文件如果比較多時,需要很多-l 就很麻煩了】
7、編譯成目標文件:
#$(yourAndroid)/prebuilt/linux-x86/toolchain/[arm-eabi-4.2.1]/bin/arm-eabi-gcc -I bionic/libc/arch-arm/include/ -I bionic/libc/include -I bionic/libc/kernel/common -I bionic/libc/kernel/arch-arm -g -c helloworld.c -o hello.o
8、生成可執行代碼:
#$(yourAndroid)/prebuilt/linux-x86/toolchain/[arm-eabi-4.2.1]/bin/arm-eabi-gcc -nostdlib -Bdynamic -Wl,-T,build/core/armelf.x -Wl,-dynamic-linker,/system/bin/linker -Wl,--gc-sections -Wl,-z,noreloc -o helloworld -Lout/target/proct/[generic]/obj/lib -Wl,-rpath-link=out/target/proct/[generic]/obj/lib -lc hello.o -entry=main
其中[ ]中部分根據實際情況修改
**************************************************
實驗:
1. 建目錄(my Android)/development/test, 在該目錄下新建 Android.mk和fb_test.c文件
2. Android.mk文件
LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE := myfbtest
LOCAL_SRC_FILES := fb_test.c
LOCAL_MODULE_TAGS := optional
include $(BUILD_EXECUTABLE)
3. 以下為fb_test.c
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#include <linux/kd.h>
#include <stdio.h>
#define FBBIT_PER_PIXEL 32
#define FBBIT_PIXEL_IMAGE 16
#define PIXELS_WIDTH_BYTE 4
#define BYTE_PER_PIXEL 3
#define FB_GRAPHICS_PATH "/dev/graphics/fb0"
#define DEV_TTY0_PATH "/dev/tty0"
#define DISPLAY_ERROR -1
#define DISPLAY_SUCCESS 0
#define GET_BATTERYCAPACITY_ERR -1
#define MAX_STR 255
static struct {
int fd;
void *pixels;
struct fb_fix_screeninfo fixed;
struct fb_var_screeninfo var;
int align_xres;
} fb;
int getBatteryCapacity(void)
{
FILE *in;
char tmpStr[MAX_STR + 1];
char capfile[] = "/sys/class/power_supply/battery/capacity";
if (capfile == NULL)
return GET_BATTERYCAPACITY_ERR;
in = fopen(capfile, "rt");
if (in == NULL)
return GET_BATTERYCAPACITY_ERR;
if (fgets(tmpStr, MAX_STR, in) == NULL) {
printf("Failed to read battery capacity!\n");
fclose(in);
return GET_BATTERYCAPACITY_ERR;
}
printf("Battery capacity(ascii): %s\n", tmpStr);
fclose(in);
return 0;//atoi(tmpStr);
}
static int vt_set_graphicsmode(int graphics)
{
int fd, r;
fd = open(DEV_TTY0_PATH, O_RDWR | O_SYNC);
if (fd < 0)
return DISPLAY_ERROR;
r = ioctl(fd, KDSETMODE, graphics);
close(fd);
return r;
}
int display_init(void)
{
fb.fd = open(FB_GRAPHICS_PATH, O_RDWR);
if (fb.fd < 0)
return DISPLAY_ERROR;
if (ioctl(fb.fd, FBIOGET_FSCREENINFO, &fb.fixed) < 0)
return DISPLAY_ERROR;
if (ioctl(fb.fd, FBIOGET_VSCREENINFO, &fb.var) < 0)
return DISPLAY_ERROR;
fb.align_xres = fb.fixed.line_length /
(fb.var.bits_per_pixel >> BYTE_PER_PIXEL);
fb.pixels = mmap(0, fb.fixed.line_length * fb.var.yres_virtual,
PROT_READ | PROT_WRITE, MAP_SHARED, fb.fd, 0);
if (fb.pixels == MAP_FAILED)
return DISPLAY_ERROR;
vt_set_graphicsmode(KD_GRAPHICS);
memset(fb.pixels, 0, fb.fixed.line_length * fb.var.yres_virtual);
//display_update(fb.pixels, fb.align_xres, fb.var.yres);
fb.var.activate = FB_ACTIVATE_FORCE;
ioctl(fb.fd, FBIOPUT_VSCREENINFO, &fb.var);
printf("display_init ok\n");
return DISPLAY_SUCCESS;
}
void display_on(void)
{
ioctl(fb.fd, FBIOBLANK, FB_BLANK_UNBLANK);
}
void display_off(void)
{
ioctl(fb.fd, FBIOBLANK, FB_BLANK_POWERDOWN);
}
int main()
{
display_init();
display_off();//關顯示屏
getBatteryCapacity();
sleep(5);
display_on();//開顯示屏
return 0;
}
F. Android源碼編譯
在編譯源碼之前需要做一些准備操作, 詳細步驟如下:
1. 安裝JDK, google官方要求編譯2.3源碼需要JDK1.6.
注意: ubuntu自帶的源中速度比較慢, 有些軟體找不到, 所以需要修改為國內的源, 修改源步驟如下:
執行完上面幾步, 數據源就更新完成了, 下面就開始安裝編譯依賴的軟體, 同樣, 在終端中以行為單位依次輸入以下命令:
G. 如何編輯和調試android源碼
在源碼中,存在idegen模塊,該模塊專門用來為idea工具生成系統源碼的project.
在開始編譯該模塊之前,首先確保你已經編譯過Android源碼了,如果沒有,可以參考上篇文章進行編譯.
和編譯普通的模塊一樣,我們用mmm命令編譯idegen.在開始編譯之前,檢查out/host/linux-x86/framework/目錄下是否存在idegen.jar文件,存在則說明你已經編譯過該模塊,否者,則需要編譯.執行如下命令即可:
soruce build/envsetup.sh
mmm development/tools/idegen/
sudo ./development/tools/idegen/idegen.sh123123
其中mmm development/tools/idegen/執行完成後會生成idegen.jar,而sodo ./development/tools/idegen/idegen.sh則會在源碼目錄下生成IEDA工程配置文件:android.ipr,android.iml及android.iws.
簡單的說明一下這三個文件的作用:
android.ipr:通常是保存工程相關的設置,比如編譯器配置,入口,相關的libraries等
android.iml:則是主要是描述了moles,比如moles的路徑,依賴關系等.
android.iws:則主要是包含了一些個人工作區的設置.
H. android編譯命令的說明
android源碼目錄下的build/envsetup.sh文件,描述編譯的命令
- m: Makes from the top of the tree.
- mm: Builds all of the moles in the current directory.
- mmm: Builds all of the moles in the supplied directories.
要想使用這些命令,首先需要設置android腳本編譯環境,在源碼根目錄執行 source build/envsetup.sh
m:編譯所有的模塊
mm:編譯當前目錄下的模塊,當前目錄下要有Android.mk文件
mmm:編譯指定路徑下的模塊,指定路徑下要有Android.mk文件
下面舉個例子說明,假設我要編譯android下的\framework\av\cmds\screenrecord模塊,
當前目錄為源碼根目錄,方法如下:
1、source build/envsetup.sh
2、mmm framework/av/cmds/screenrecord
或者 :
1、source build/envsetup.sh
2、cd framework/av/cmds/screenrecord
3、mm
I. 如何運行打包的android源代碼文件
android源碼目錄下的build/envsetup.sh文件,描述編譯的命令
-
m:
makes
from
the
top
of
the
tree.
-
mm:
builds
all
of
the
moles
in
the
current
directory.
-
mmm:
builds
all
of
the
moles
in
the
supplied
directories.
要想使用這些命令,首先需要在android源碼根目錄執行.
build/envsetup.sh
腳本設置環境
m:編譯所有的模塊
mm:編譯當前目錄下的模塊,當前目錄下要有android.mk文件
mmm:編譯指定路徑下的模塊,指定路徑下要有android.mk文件
下面舉個例子說明,假設我要編譯android下的\hardware\libhardware_legacy\power模塊,當前目錄為源碼根目錄,方法如下:
1、.
build/envsetup.sh
2、mmm
hardware/libhardware_legacy/power/
編譯完後
運行
make
snod
會重新將你改過的模塊打入到system.img中