當前位置:首頁 » 編程軟體 » 集成化增量調制編解碼系統

集成化增量調制編解碼系統

發布時間: 2023-01-01 16:05:20

⑴ 分析集成化編碼系統組成及各部分的作用

集成化編譯碼系統由六個部分構成作用是濾掉不必要的頻率成分。根據相關資料查詢結果顯示,集成化編解碼系統由收濾波器、發濾波器、編碼器、解碼器、合路、分路構成。六個部件之一濾波器的作用是濾掉不必要的頻率成分,減少雜訊干擾。

⑵ 增量調制編解碼系統有哪些組成

定時部分等。增量調制編解碼系統,它是由定時部分,編解碼器及收/發開關電容濾波器組成。增量調制編解碼技術就是基本的通信調制解調方式之一。

⑶ 基於PCM的編解碼系統

function [out] = pcm_decode(in,v)
% decode the input pcm code
% in:input the pcm code 8 bit sample
% v :quantized level
n = length(in);

in = reshape(in',8,n/8)';
slot(1) = 0;
slot(2) = 32;
slot(3) = 64;
slot(4) = 128;
slot(5) = 256;
slot(6) = 512;
slot(7) = 1024;
slot(8) = 2048;

step(1) = 2;
step(2) = 2;
step(3) = 4;
step(4) = 8;
step(5) = 16;
step(6) = 32;
step(7) = 64;
step(8) = 128;

for i = 1:n/8
ss = 2* in(i,1)-1;
tmp = in(i,2)*4+in(i,3)*2+in(i,4)+1;
st = slot(tmp);
dt = (in(i,5)*8+in(i,6)*4+in(i,7)*2+in(i,8))*step(tmp)+0.5*step(tmp);
out(i) = ss*(st+dt)/4096*v;
end

⑷ 請說明模擬聲音信號數字化過程中的三個基本步驟.

聲音的數字化包括三大步驟:取樣、量化、編碼
以下是我找到的具體內容:
一 取樣
對連續信號按一定的時間間隔取樣.
奈奎斯特取樣定理認為,只要取樣頻率大於等於信號中所包含的最高頻率的兩倍,則可以根據其取樣完全恢復出原始信號,這相當於當信號是最高頻率時,每一周期至少要採取兩個點.
但這只是理論上的定理,在實際操作中,人們用混疊波形,從而使取得的信號更接近原始信號.
二 量化
取樣的離散音頻要轉化為計算機能夠表示的數據范圍,這個過程稱為量化.
量化的等級取決於量化精度,也就是用多少位二進制數來表示一個音頻數據.一般有8位,12位或16位.量化精度越高,聲音的保真度越高.以8位的舉例稍微說明一下其中的原理.若一台計算機能夠接收八位二進制數據,則相當於能夠接受256個十進制的數,即有256個電平數,用這些數來代表模擬信號的電平,可以 有256種,但是實際上采樣後的某一時刻信號的電平不一定和256個電平某一個相等,此時只能用最接近的數字代碼表示取樣信號電平.
三 編碼
對音頻信號取樣並量化成二進制,但實際上就是對音頻信號進行編碼,但用不同的取樣頻率和不同的量化位數記錄聲音,在單位時間中,所需存貯空間是不一樣的.波形聲音的主要參數包括:取樣頻率.量化位數.聲道數.壓縮編碼方案和數碼率等,未壓縮前,波形聲音的碼率計算公式為:波形聲音的碼率=取樣頻率*量化位數*聲道數/8.波形聲音的碼率一般比較大,所以必需對轉換後的數據進行壓縮.常見的方案有如下幾種:
(1) 第一代全頻帶聲音編碼
脈沖編碼調制制( Pulse Code Molation ,PCM )最簡單最基本的編碼方法,直接賦予取樣點一個代碼,沒有進行壓縮,存貯空間大,優點是音質好.
(2) 第二代全頻帶聲音壓縮編碼
MPEG—1的聲音壓縮編碼是國際上第一個高保真聲音數據壓縮的國際標准,分為三個層次:層1主要用於數字盒式錄音磁帶;層2主要應用於數字音頻廣播.VCD.DVD等;層3主要應用於Internet網上高品質聲音的傳輸和MP3音樂.
MPEG—2的聲音壓縮編碼採用與MPEG—1相同的聲音編解碼器,但能支持5.1聲道和7.1聲道的環繞立體聲.
杜比數字AC—3是多聲道全頻帶聲音編碼系統,它提供5個全頻帶聲道,及第6個用以表現超低音效果的.1聲道.6個聲道的信息在製作和還原的過程中全部實現數字化,具有真正的立體聲效果,主要應用於家庭影院.DVD和數字電視中.

⑸ pcm編解碼系統的通信質量如何

好。pcm編解碼系統的通信質量好,PCM編碼的最大的優點就是音質好,最大的缺點就是體積大。pcm編解碼規則是PulseCodeMolation的縮寫,是數字通信的編碼方式之一。

⑹ pcm編解碼系統的頻率響應特性

特性:將頻率不同的正弦信號輸入感測器,相應的輸出信號的幅度和相位與頻率之間的關系稱為頻率響應特性。頻率響應特性可由頻率響應函數表示,它由幅頻特性和相頻特性組成。

本實驗模塊可以傳輸兩路話音信號。採用TP3057編譯器,它包括了圖9-1中的收、發低通濾波器及PCM編解碼器。

編碼器輸入信號可以是本實驗模塊內部產生的正弦信號,也可以是外部信號源的正弦信號或電話信號。本實驗模塊中不含電話機和混合電路,廣義信道是理想的,即將復接器輸出的PCM信號直接送給分接器。

標注方法

放大器在不同的輸出功率下,其頻響是不同的,通常輸出功率越大,其頻響指標就越差。而一個比較負責任的指標標注,應該指「在該放大器的最大不失真功率下測量的指標」,而一些廠家為了迴避大功率輸出下放大器特性的劣化,使得該指標「看起來好看」,往往採用的是「標准測試方式」,也就是說,在給定放大器放大倍數(增益)的條件下進行測試,而這個放大倍數通常是1。

⑺ 集成化(M)編解碼系統有那幾部分構成

⑻ 增量調制編解碼系統有哪些組成

增量調制編解碼系統,它是由定時部分、ΔM 編解碼器及收、發開關電容濾波器組成。

⑼ pcm編譯器系統實驗過程中發現的問題

1. 點到點PCM多路電話通信原理
脈沖編碼調制(PCM)技術與增量調制(ΔM)技術已經在數字通信系統中得到廣泛應用。當信道雜訊比較小時一般用PCM,否則一般用ΔM。目前速率在155MB以下的准同步數字系列(PDH)中,國際上存在A解和μ律兩種PCM編解碼標准系列,在155MB以上的同步數字系列(SDH)中,將這兩個系列統一起來,在同一個等級上兩個系列的碼速率相同。而ΔM在國際上無統一標准,但它在通信環境比較惡劣時顯示了巨大的優越性。
點到點PCM多路電話通信原理可用圖9-1表示。對於基帶通信系統,廣義信道包括傳輸媒質、收濾波器、發濾波器等。對於頻帶系統,廣義信道包括傳輸媒質、調制器、解調器、發濾波器、收濾波器等。
本實驗模塊可以傳輸兩路話音信號。採用TP3057編譯器,它包括了圖9-1中的收、發低通濾波器及PCM編解碼器。編碼器輸入信號可以是本實驗模塊內部產生的正弦信號,也可以是外部信號源的正弦信號或電話信號。本實驗模塊中不含電話機和混合電路,廣義信道是理想的,即將復接器輸出的PCM信號直接送給分接器。
2. PCM編解碼模塊原理
本模塊的原理方框圖圖9-2所示,電原理圖如圖9-3所示(見附錄),模塊內部使用+5V和-5V電壓,其中-5V電壓由-12V電源經7905變換得到。
圖9-2 PCM編解碼原理方框圖
該模塊上有以下測試點和輸入點:
• BS PCM基群時鍾信號(位同步信號)測試點
• SL0 PCM基群第0個時隙同步信號
• SLA 信號A的抽樣信號及時隙同步信號測試點
• SLB 信號B的抽樣信號及時隙同步信號測試點
• SRB 信號B解碼輸出信號測試點
• STA 輸入到編碼器A的信號測試點
• SRA 信號A解碼輸出信號測試點
• STB 輸入到編碼器B的信號測試點
• PCM PCM基群信號測試點
• PCM-A 信號A編碼結果測試點
• PCM-B 信號B編碼結果測試點
• STA-IN 外部音頻信號A輸入點
• STB-IN 外部音頻信號B輸入點
本模塊上有三個開關K5、K6和K8,K5、K6用來選擇兩個編碼器的輸入信號,開關手柄處於左邊(STA-IN、STB-IN)時選擇外部信號、處於右邊(STA-S、STB-S)時選擇模塊內部音頻正弦信號。K8用來選擇SLB信號為時隙同步信號SL1、SL2、SL5、SL7中的某一個。
圖9-2各單元與電路板上元器件之間的對應關系如下:
•晶振 U75:非門74LS04;CRY1:4096KHz晶體
•分頻器1 U78:A:U78:D:觸發器74LS74;U79:計數器74LS193
•分頻器2 U80:計數器74LS193;U78:B:U78:D:觸發器74LS74
•抽樣信號產生器 U81:單穩74LS123;U76:移位寄存器74LS164
•PCM編解碼器A U82:PCM編解碼集成電路TP3057(CD22357)
•PCM編解碼器B U83:PCM編解碼集成電路TP3057(CD22357)
•幀同步信號產生器 U77:8位數據產生器74HC151;U86:A:與門7408
•正弦信號源A U87:運放UA741
•正弦信號源B U88:運放UA741
•復接器 U85:或門74LS32
晶振、分頻器1、分頻器2及抽樣信號(時隙同步信號)產生器構成一個定時器,為兩個PCM編解碼器提供2.048MHz的時鍾信號和8KHz的時隙同步信號。在實際通信系統中,解碼器的時鍾信號(即位同步信號)及時隙同步信號(即幀同步信號)應從接收到的數據流中提取,方法如實驗五及實驗六所述。此處將同步器產生的時鍾信號及時隙同步信號直接送給解碼器。
由於時鍾頻率為2.048MHz,抽樣信號頻率為8KHz,故PCM-A及PCM-B的碼速率都是2.048MB,一幀中有32個時隙,其中1個時隙為PCM編碼數據,另外31個時隙都是空時隙。
PCM信號碼速率也是2.048MB,一幀中的32個時隙中有29個是空時隙,第0時隙為幀同步碼(×1110010)時隙,第2時隙為信號A的時隙,第1(或第5、或第7 —由開關K8控制)時隙為信號B的時隙。
本實驗產生的PCM信號類似於PCM基群信號,但第16個時隙沒有信令信號,第0時隙中的信號與PCM基群的第0時隙的信號也不完全相同。
由於兩個PCM編解碼器用同一個時鍾信號,因而可以對它們進行同步復接(即不需要進行碼速調整)。又由於兩個編碼器輸出數據處於不同時隙,故可對PCM-A和PCM-B進行線或。本模塊中用或門74LS32對PCM-A、PCM-B及幀同步信號進行復接。在解碼之前,不需要對PCM進行分接處理,解碼器的時隙同步信號實際上起到了對信號分路的作用。
3. TP3057簡介
本模塊的核心器件是A律PCM編解碼集成電路TP3057,它是CMOS工藝製造的專用大規模集成電路,片內帶有輸出輸入話路濾波器,其引腳及內部框圖如圖9-4、圖9-5所示。引腳功能如下:
圖9-4 TP3057引腳圖
(1) V一 接-5V電源。
(2) GND 接地。
(3) VFRO 接收部分濾波器模擬信號輸出端。
(4) V+ 接+5V電源。
(5) FSR 接收部分幀同信號輸入端,此信號為8KHz脈沖序列。
(6) DR 接收部分PCM碼流輸入端。
(7) BCLKR/CLKSEL 接收部分位時鍾(同步)信號輸入端,此信號將PCM碼流在FSR上升沿後逐位移入DR端。位時鍾可以為64KHz到2.048MHz的任意頻率,或者輸入邏輯「1」或「0」電平器以選擇1.536MHz、1.544MHz或2.048MHz用作同步模式的主時鍾,此時發時鍾信號BCLKX同時作為發時鍾和收時鍾。
(8) MCLKR/PDN 接收部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKX非同步,但是同步工作時可達到最佳狀態。當此端接低電平時,所有的內部定時信號都選擇MCLKX信號,當此端接高電平時,器件處於省電狀態。
(9) MCLKX 發送部分主時鍾信號輸入端,此信號頻率必須為1.536MHz、1.544MHz或2.048MHz。可以和MCLKR非同步,但是同步工作時可達到最佳狀態。
(10) BCLKX 發送部分位時鍾輸入端,此信號將PCM碼流在FSX信號上升沿後逐位移出DX端,頻率可以為64KHz到2.04MHz的任意頻率,但必須與MCLKX同步。
圖9-5 TP3057內部方框圖
(11) DX 發送部分PCM碼流三態門輸出端。
(12) FSX 發送部分幀同步信號輸入端,此信號為8KHz脈沖序列。
(13) TSX 漏極開路輸出端,在編碼時隙輸出低電平。
(14) GSX 發送部分增益調整信號輸入端。
(15) VFXi- 發送部分放大器反向輸入端。
(16) VFXi+ 發送部分放大器正向輸入端。
TP3057由發送和接收兩部分組成,其功能簡述如下。
發送部分:
包括可調增益放大器、抗混淆濾波器、低通濾波器、高通濾波器、壓縮A/D轉換器。抗混淆濾波器對采樣頻率提供30dB以上的衰減從而避免了任何片外濾波器的加入。低通濾波器是5階的、時鍾頻率為128MHz。高通濾波器是3階的、時鍾頻率為32KHz。高通濾波器的輸出信號送給階梯波產生器(采樣頻率為8KHz)。階梯波產生器、逐次逼近寄存器(S•A•R)、比較器以及符號比特提取單元等4個部分共同組成一個壓縮式A/D轉換器。S•A•R輸出的並行碼經並/串轉換後成PCM信號。參考信號源提供各種精確的基準電壓,允許編碼輸入電壓最大幅度為5VP-P。
發幀同步信號FSX為采樣信號。每個采樣脈沖都使編碼器進行兩項工作:在8比特位同步信號BCLKX的作用下,將采樣值進行8位編碼並存入逐次逼近寄存器;將前一采樣值的編碼結果通過輸出端DX輸出。在8比特位同步信號以後,DX端處於高阻狀態。
接收部分:
包括擴張D/A轉換器和低通濾波器。低通濾波器符合AT&T D3/D4標准和CCITT建議。D/A轉換器由串/並變換、D/A寄存器組成、D/A階梯波形成等部分構成。在收幀同步脈沖FSR上升沿及其之後的8個位同步脈沖BCLKR作用下,8比特PCM數據進入接收數據寄存器(即D/A寄存器),D/A階梯波單元對8比特PCM數據進行D/A變換並保持變換後的信號形成階梯波信號。此信號被送到時鍾頻率為128KHz的開關電容低通濾波器,此低通濾波器對階梯波進行平滑濾波並對孔徑失真(sinx)/x進行補嘗。
在通信工程中,主要用動態范圍和頻率特性來說明PCM編解碼器的性能。
動態范圍的定義是解碼器輸出信噪比大於25dB時允許編碼器輸入信號幅度的變化范圍。PCM編解碼器的動態范圍應大於圖9-6所示的CCITT建議框架(樣板值)。
當編碼器輸入信號幅度超過其動態范圍時,出現過載雜訊,故編碼輸入信號幅度過大時量化信噪比急劇下降。TP3057編解碼系統不過載輸入信號的最大幅度為5VP-P。
由於採用對數壓擴技術,PCM編解碼系統可以改善小信號的量化信噪比,TP3057採用A律13折線對信號進行壓擴。當信號處於某一段落時,量化雜訊不變(因在此段落內對信號進行均勻量化),因此在同一段落內量化信噪比隨信號幅度減小而下降。13折線壓擴特性曲線將正負信號各分為8段,第1段信號最小,第8段信號最大。當信號處於第一、二段時,量化雜訊不隨信號幅度變化,因此當信號太小時,量化信噪比會小於25dB,這就是動態范圍的下限。TP3057編解碼系統動態范圍內的輸入信號最小幅度約為0.025Vp-p。
常用1KHz的正弦信號作為輸入信號來測量PCM編解碼器的動態范圍。
圖9-6 PCM編解碼系統動態范圍樣板值
語音信號的抽樣信號頻率為8KHz,為了不發生頻譜混疊,常將語音信號經截止頻率為3.4KHz的低通濾波器處理後再進行A/D處理。語音信號的最低頻率一般為300Hz。TP3057編碼器的低通濾波器和高通濾波器決定了編解碼系統的頻率特性,當輸入信號頻率超過這兩個濾波器的頻率范圍時,解碼輸出信號幅度迅速下降。這就是PCM編解碼系統頻率特性的含義。
四、實驗步驟
1. 熟悉PCM編解碼單元工作原理,開關K9接通8KHz(置為1000狀態),開關K8置為SL1(或SL5、SL7),開關K5、K6分別置於STA-S、STB-S端,接通實驗箱電源。
2. 用示波器觀察STA、STB,調節電位器R19(對應STA)、R20(對應STB),使正弦信號STA、STB波形不失真(峰峰值小於5V)。
3. 用示波器觀察PCM編碼輸出信號。
示波器CH1接SL0,(調整示波器掃描周期以顯示至少兩個SL0脈沖,從而可以觀察完整的一幀信號)CH2分別接SLA、PCM-A、SLB、PCM-B以及PCM,觀察編碼後的數據所處時隙位置與時隙同步信號的關系以及PCM信號的幀結構(注意:本實驗的幀結構中有29個時隙是空時隙,SL0、SLA及SLB的脈沖寬度等於一個時隙寬度)。
開關K8分別接通SL1、SL2、SL5、SL7,觀察PCM基群幀結構的變化情況。
4. 用示波器觀察PCM解碼輸出信號
示波器的CH1接STA,CH2接SRA,觀察這兩個信號波形是否相同(有相位差)。
5. 用示波器定性觀察PCM編解碼器的動態范圍。
開關K5置於STA-IN端,將低失真低頻信號發生器輸出的1KHz正弦信號從STA-IN輸入到TP3057(U82)編碼器。示波器的CH1接STA(編碼輸入),CH2接SRA(解碼輸出)。將信號幅度分別調至大於5VP-P、等於5VP-P,觀察過載和滿載時的解碼輸出波形。再將信號幅度分別衰減10dB、20dB、30dB、40dB、45dB、50dB,觀察解碼輸出波形(當衰減45dB以上時,解碼輸出信號波形上疊加有較明顯的雜訊)。
也可以用本模塊上的正弦信號源來觀察PCM編解碼系統的過載雜訊(只要將STA-S或STB-S信號幅度調至5VP-P以上即可),但必須用專門的信號源才能較方便地觀察到動態范圍。

⑽ 通信原理實驗 pcm編解碼系統有哪些部分組成

抽樣定理在通信系統、信息傳輸理論方面佔有十分重要的地位。抽樣過程是模擬信號數字化的第一步,抽樣性能的優劣關繫到通信設備整個系統的性能指標。
利用抽樣脈沖把一個連續信號變為離散時間樣值的過程稱為抽樣,抽樣後的信號稱為脈沖調幅(PAM)信號。

熱點內容
絕地求生和賽博朋克2077哪個吃配置 發布:2025-09-18 11:35:20 瀏覽:163
亞索腳本秒風 發布:2025-09-18 11:35:07 瀏覽:431
sql表的復制 發布:2025-09-18 11:02:25 瀏覽:67
三位密碼鎖忘記密碼如何重置 發布:2025-09-18 10:21:52 瀏覽:184
linux怎麼編譯c文件 發布:2025-09-18 09:55:16 瀏覽:305
python安裝後無法運行 發布:2025-09-18 09:45:57 瀏覽:239
安卓手機怎麼剪輯音樂 發布:2025-09-18 09:44:16 瀏覽:784
伺服器地址修改在哪找 發布:2025-09-18 09:42:41 瀏覽:444
sntp伺服器地址 發布:2025-09-18 09:28:36 瀏覽:555
phpunit 發布:2025-09-18 09:25:19 瀏覽:573