linux內核模塊編程
1. 如何編寫一個簡單的 linux 內核模塊
編寫helloworld.c及其對應的Makefile。
helloworld.c:
#include <linux/mole.h>#include <linux/kernel.h>int init_hello_mole(void)
{
printk("***************Start***************\n");
printk("Hello World! Start of hello world mole!\n"); return 0;
}void exit_hello_mole(void)
{
printk("***************End***************\n");
printk("Hello World! End of hello world mole!\n");
}
MODULE_LICENSE("Dual BSD/GPL");
mole_init(init_hello_mole);
mole_exit(exit_hello_mole);
Makefile:
# To build moles outside of the kernel tree, we run "make"# in the kernel source tree; the Makefile these then includes this# Makefile once again.# This conditional selects whether we are being included from the# kernel Makefile or not.# called from kernel build system: just declare what our moles areobj-m := helloworld.oCROSS_COMPILE =
CC = gcc # Assume the source tree is where the running kernel was built
# You should set KERNELDIR in the environment if it's elsewhere
KERNELDIR ?= /usr/src/linux-headers-$(shell uname -r) # The current directory is passed to sub-makes as argument
PWD := $(shell pwd)all: molesmoles:
$(MAKE) -C $(KERNELDIR) M=$(PWD) molesclean:
rm -rf *.o *~ core .depend *.symvers .*.cmd *.ko *.mod.c .tmp_versions $(TARGET)
在Makefile中,在obj-m := helloworld.o這句中,.o的文件名要與編譯的.c文件名一致。
KERNELDIR ?= /usr/src/linux-headers-$(shell uname -r)指示當前linux系統內核的源碼位置。
2. Linux內核編程中有in_ntoa()或者類似的函數嗎
char *inet_ntoa(struct in_addr inaddr )
Linux 庫函數裡面是有這個函數的,可以把32位自接續二進制轉換成點分十進制的字元串
3. Linux內核模塊的優缺點
利用內核模塊的動態裝載性具有如下優點:
·將內核映象的尺寸保持在最小,並具有最大的靈活性;
·便於檢驗新的內核代碼,而不需重新編譯內核並重新引導。
但是,內核模塊的引入也帶來了如下問題:
·對系統性能和內存利用有負面影響;
·裝入的內核模塊和其他內核部分一樣,具有相同的訪問許可權,因此,差的內核模塊會導致系統崩潰;
·為了使內核模塊訪問所有內核資源,內核必須維護符號表,並在裝入和卸載模塊時修改這些符號表;
·有些模塊要求利用其他模塊的功能,因此,內核要維護模塊之間的依賴性。
·內核必須能夠在卸載模塊時通知模塊,並且要釋放分配給模塊的內存和中斷等資源;
·內核版本和模塊版本的不兼容,也可能導致系統崩潰,因此,嚴格的版本檢查是必需的。
盡管內核模塊的引入同時也帶來不少問題,但是模塊機制確實是擴充內核功能一種行之有效的方法,也是在內核級進行編程的有效途徑。

4. linux 模塊編程為什麼要編譯內核源碼樹
當然需要。。。
第一點,就是源碼樹中有相應的頭文件和函數的實現,沒有源碼樹,你哪調用去呢?(PC上編譯的時候內核有導出符號,系統中有頭文件,這樣就可以引用內核給你的介面了,但是只能編譯你PC上版本的內核可載入的模塊)。
第二個,內核模塊中會記錄版本號的部分,需要記錄版本號的原因是不同的內核版本之間,那些介面和調用可能會有比較大的差異,因此必須要保證你的代碼和某個特定的內核對應,這樣編譯出來的模塊就可以(也是只能)在運行這個內核版本的Linux系統中載入,否則一個很簡單的異常就會導致內核崩潰,或者你的代碼根本無法編譯通過(介面名變了)。
我上面說的是編譯模塊的情況,當然如果是把模塊直接編譯到內核當中去的話,那就不用說了,沒有內核源碼,你無法編譯內核。
5. Linux中編寫了內核模塊的C源程序之後怎麼編寫makefile文件的內容
make命令執行時,需要一個 Makefile 文件,以告訴make命令需要怎麼樣的去編譯和鏈接程序。
首先,我們用一個示例來說明Makefile的書寫規則。以便給大家一個感興認識。這個示例來源於GNU的make使用手冊,在這個示例中,我們的工程有8個C文件,和3個頭文件,我們要寫一個Makefile來告訴make命令如何編譯和鏈接這幾個文件。我們的規則是:
1)如果這個工程沒有編譯過,那麼我們的所有C文件都要編譯並被鏈接。
2)如果這個工程的某幾個C文件被修改,那麼我們只編譯被修改的C文件,並鏈接目標程序。
3)如果這個工程的頭文件被改變了,那麼我們需要編譯引用了這幾個頭文件的C文件,並鏈接目標程序。
只要我們的Makefile寫得夠好,所有的這一切,我們只用一個make命令就可以完成,make命令會自動智能地根據當前的文件修改的情況來確定哪些文件需要重編譯,從而自己編譯所需要的文件和鏈接目標程序。
一、Makefile的規則
在講述這個Makefile之前,還是讓我們先來粗略地看一看Makefile的規則。
target ... : prerequisites ...
command
...
...
target也就是一個目標文件,可以是Object File,也可以是執行文件。還可以是一個標簽(Label),對於標簽這種特性,在後續的「偽目標」章節中會有敘述。
prerequisites就是,要生成那個target所需要的文件或是目標。
command也就是make需要執行的命令。(任意的Shell命令)
這
是一個文件的依賴關系,也就是說,target這一個或多個的目標文件依賴於prerequisites中的文件,其生成規則定義在command中。說
白一點就是說,prerequisites中如果有一個以上的文件比target文件要新的話,command所定義的命令就會被執行。這就是
Makefile的規則。也就是Makefile中最核心的內容。
說到底,Makefile的東西就是這樣一點,好像我的這篇文檔也該結束了。呵呵。還不盡然,這是Makefile的主線和核心,但要寫好一個Makefile還不夠,我會以後面一點一點地結合我的工作經驗給你慢慢到來。內容還多著呢。:)
二、一個示例
正如前面所說的,如果一個工程有3個頭文件,和8個C文件,我們為了完成前面所述的那三個規則,我們的Makefile應該是下面的這個樣子的。
edit : main.o kbd.o command.o display.o /
insert.o search.o files.o utils.o
cc -o edit main.o kbd.o command.o display.o /
insert.o search.o files.o utils.o
main.o : main.c defs.h
cc -c main.c
kbd.o : kbd.c defs.h command.h
cc -c kbd.c
command.o : command.c defs.h command.h
cc -c command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
cc -c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command.h
cc -c files.c
utils.o : utils.c defs.h
cc -c utils.c
clean :
rm edit main.o kbd.o command.o display.o /
insert.o search.o files.o utils.o
反
斜杠(/)是換行符的意思。這樣比較便於Makefile的易讀。我們可以把這個內容保存在文件為「Makefile」或「makefile」的文件中,
然後在該目錄下直接輸入命令「make」就可以生成執行文件edit。如果要刪除執行文件和所有的中間目標文件,那麼,只要簡單地執行一下「make
clean」就可以了。
在這個makefile中,目標文件(target)包含:執行文件edit和中間目標文件(*.o),依賴文件
(prerequisites)就是冒號後面的那些 .c 文件和 .h文件。每一個 .o 文件都有一組依賴文件,而這些 .o 文件又是執行文件
edit 的依賴文件。依賴關系的實質上就是說明了目標文件是由哪些文件生成的,換言之,目標文件是哪些文件更新的。
在定義好依賴關系
後,後續的那一行定義了如何生成目標文件的操作系統命令,一定要以一個Tab鍵作為開頭。記住,make並不管命令是怎麼工作的,他只管執行所定義的命
令。make會比較targets文件和prerequisites文件的修改日期,如果prerequisites文件的日期要比targets文件的
日期要新,或者target不存在的話,那麼,make就會執行後續定義的命令。
這里要說明一點的是,clean不是一個文件,它只不過
是一個動作名字,有點像C語言中的lable一樣,其冒號後什麼也沒有,那麼,make就不會自動去找文件的依賴性,也就不會自動執行其後所定義的命令。
要執行其後的命令,就要在make命令後明顯得指出這個lable的名字。這樣的方法非常有用,我們可以在一個makefile中定義不用的編譯或是和編
譯無關的命令,比如程序的打包,程序的備份,等等。
6. 如何編寫一個簡單的linux內核模塊和設備驅動程序
如何編寫Linux設備驅動程序
回想學習Linux操作系統已經有近一年的時間了,前前後後,零零碎碎的一路學習過來,也該試著寫的東西了。也算是給自己能留下一點記憶和回憶吧!由於完全是自學的,以下內容若有不當之處,還請大家多指教。
Linux是Unix操作系統的一種變種,在Linux下編寫驅動程序的原理和思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的區別。在Linux環境下設計驅動程序,思想簡潔,操作方便,功能也很強大,但是支持函數少,只能依賴kernel中的函數,有些常用的操作要自己來編寫,而且調試也不方便。
以下的一些文字主要來源於khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux a-z,還有清華bbs上的有關device driver的一些資料。
一、Linux device driver 的概念
系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:
1、對設備初始化和釋放。
2、把數據從內核傳送到硬體和從硬體讀取數據。
3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據。
4、檢測和處理設備出現的錯誤。
在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。
已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。
最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。
讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據未被處理,則先處理其中的內容。
如何編寫Linux操作系統下的設備驅動程序
二、實例剖析
我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。
#define __NO_VERSION__
#include <linux/moles.h>
#include <linux/version.h>
char kernel_version [] = UTS_RELEASE;
這一段定義了一些版本信息,雖然用處不是很大,但也必不可少。Johnsonm說所有的驅動程序的開頭都要包含<linux/config.h>,一般來講最好使用。
由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:
struct file_operations
{
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。
下面就開始寫子程序。
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include<linux/config.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *node,struct file *file,char *buf,int count)
{
int left;
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考robert著的《Linux內核設計與實現》(第二版)。然而,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。
static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_tibet(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT;
return 0;
}
static void release_tibet(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。
struct file_operations test_fops = {
NULL,
read_test,
write_test,
NULL, /* test_readdir */
NULL,
NULL, /* test_ioctl */
NULL, /* test_mmap */
open_test,
release_test,
NULL, /* test_fsync */
NULL, /* test_fasync */
/* nothing more, fill with NULLs */
};
這樣,設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops);
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。
如果登記成功,返回設備的主設備號,不成功,返回一個負值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。
一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。
下面編譯 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c
得到文件test.o就是一個設備驅動程序。
如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後
ld -r file1.o file2.o -o molename。
驅動程序已經編譯好了,現在把它安裝到系統中去。
$ insmod –f test.o
如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :
$ rmmod test
下一步要創建設備文件。
mknod /dev/test c major minor
c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。
minor是從設備號,設置成0就可以了。
我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
編譯運行,看看是不是列印出全1 ?
以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,dma,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。
如何編寫Linux操作系統下的設備驅動程序
三、設備驅動程序中的一些具體問題
1。 I/O Port。
和硬體打交道離不開I/O Port,老的isa設備經常是佔用實際的I/O埠,在linux下,操作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可對任意的I/O口操作,這樣就很容易引起混亂。每個驅動程序應該自己避免誤用埠。
有兩個重要的kernel函數可以保證驅動程序做到這一點。
1)check_region(int io_port, int off_set)
這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。
參數1:I/O埠的基地址,
參數2:I/O埠佔用的范圍。
返回值:0 沒有佔用, 非0,已經被佔用。
2)request_region(int io_port, int off_set,char *devname)
如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports文件中可以看到你登記的I/O口。
參數1:io埠的基地址。
參數2:io埠佔用的范圍。
參數3:使用這段io地址的設備名。
在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。
在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。
2。內存操作
在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages。 請注意,kmalloc等函數返回的是物理地址!
注意,kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符結構佔用了。
內存映射的I/O口,寄存器或者是硬體設備的ram(如顯存)一般佔用F0000000以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得重新映射以後的地址。
另外,很多硬體需要一塊比較大的連續內存用作dma傳送。這塊程序需要一直駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。
這可以通過犧牲一些系統內存的方法來解決。
3。中斷處理
同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。
int request_irq(unsigned int irq ,void(*handle)(int,void *,struct pt_regs *),
unsigned int long flags, const char *device);
irq: 是要申請的中斷。
handle:中斷處理函數指針。
flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。
device:設備名。
如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的中斷。
4。一些常見的問題。
對硬體操作,有時時序很重要(關於時序的具體問題就要參考具體的設備晶元手冊啦!比如網卡晶元RTL8139)。但是如果用C語言寫一些低級的硬體操作的話,gcc往往會對你的程序進行優化,這樣時序會發生錯誤。如果用匯編寫呢,gcc同樣會對匯編代碼進行優化,除非用volatile關鍵字修飾。最保險的辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現出來。
寫在後面:學習Linux確實不是一件容易的事情,因為要付出很多精力,也必須具備很好的C語言基礎;但是,學習Linux也是一件非常有趣的事情,它裡麵包含了許多高手的智慧和「幽默」,這些都需要自己親自動手才能體會到,O(∩_∩)O~哈哈!
7. Linux操作系統的主要組成部分是什麼
Linux系統
一般有4個主要部分:內核、shell、文件系統和應用程序。內核、shell和文件系統一起形成了基本的
操作系統結構
,它們使得用戶可以運行程序、管理文件並使用系統。
一.
Linux內核
內核是操作系統的核心,具有很多最基本功能,如
虛擬內存
、多任務、共享庫、需求載入、
可執行程序
和TCP/
IP網路
功能。Linux內核的模塊分為以下幾個部分:
存儲管理
、CPU和
進程管理
、文件系統、設備管理和驅動、網路通信、系統的初始化和
系統調用
等。
二.Linux
shell
shell是系統的用戶界面,提供了用戶與內核進行交互操作的一種介面。它接收用戶輸入的命令並把它送入內核去執行,是一個命令
解釋器
。另外,
shell編程
語言具有普通編程語言的很多特點,用這種編程語言編寫的
shell程序
與其他應用程序具有同樣的效果。
三.
Linux文件系統
文件系統是文件存放在磁碟等存儲設備上的組織方法。Linux系統能支持多種目前流行的文件系統,如
EXT2
、
EXT3
、FAT、
FAT32
、VFAT和
ISO9660
。
四.Linux應用程序
標準的Linux系統一般都有一套都有稱為應用程序的
程序集
,它包括
文本編輯器
、編程語言、XWindow、
辦公套件
、Internet工具和資料庫等。
8. ubuntu下怎麼編譯linux內核
Ubuntu 系統
1. 准備工作
切換為管理員許可權,sudo –i 輸入用戶密碼 進入root 許可權
apt-get install build-essential kernel-package libncurses5-dev libqt3-headers
build-essential (基本的編程庫(gcc, make 等)
kernel-package (Debian 系統里生成 kernel-image 的一些配置文件和工具)
libncurses5-dev (meke menuconfig 要調用的)
libqt3-headers (make xconfig 要調用的)
2. 下載特定版本的內核源代碼
3. 復制源碼linux-3.2.12.tar.bz2 到/usr/src 目錄,解壓縮
命令.假設源碼存放在/home 目錄下
cp /home/linux-3.2.12.tar.bz2 /usr/src
cd /usr/src
tar xvjf linux-3.2.12.tar.bz2
解壓後生成 linux-3.2.12 目錄
4. cd linux-3.2.12
接下來配置內核選項
make menuconfig 這一步比較復雜,內核選項很多,可以使用當前內核的配置選項,
但編譯內核的時間會比較長,因為裝系統的時候使用的配置是適應大多數系統的,非定
制選項。關於內核配置選項怎麼定製,網上很多。
5. 把正在使用系統中的內核配置文件/usr/src/linux-headers-2.6.38-13-generic/.config 拷到
/usr/src/linux-3.2.12 目錄下
cp /usr/src/ linux-headers-2.6.38-13-generic/.config /usr/src/ linux-3.2.12
執行:
cd /usr/src/ linux-3.2.12
make menuconfig
終端會彈出一個配置界面
注意主菜單最後有兩項:
load a kernel configuration…
save a kernel configuration…
先選第一項load ….,意思是,利用當前的內核配置詳單來設置將要編譯的內核,然後選save 這一項保存,最後退出配置界面
6. 開如編譯安裝新內核
執行:make mrproper (清除以前曾經編譯過的舊文件,如果是第一次編譯,可不執行)
執行:make (編譯,加-j4,必須加,雙核並行編譯,速度快很多,不過使用原先配置
選項)
然後:make install
再:make moles (編譯模塊)
再:make moles_install (安裝模塊)
最後創建initrd 文件:
mkinitramfs -o /boot/initrd.img-linux-3.2.12
7. make install 以後,系統自動更新了啟動項,可以cat /boot/grub/grub.cfg 看下.之前的啟動項不能刪除,如果編譯內核不成功,之前的啟動項又不見了,系統也就跪了
8. reboot
9. 求大神 講解 linux內核編程 與 linux kernel mole 編程是一個概念嗎有什麼區別
確認的說,不是一個概念!
首先,LKM(linux kernel mole)是作為一個程序模塊被載入到內核運行的,它的特殊之處就表現在很靈活,可載入,可卸載,但它運行的是在內核提供的上下文之中,所以和內核的程序又是一樣的,一樣的環境,函數,數據結構……
但體現在編程上,linux內核編程你在內核源碼的基礎上增刪查改,然後你得重新編譯出一個新的內核,才能載入,運行……
而LKM編程,你只需要寫成一個個的模塊,然後make,insmod就行了!
