當前位置:首頁 » 編程軟體 » 美劇編程

美劇編程

發布時間: 2023-01-07 15:12:20

1. python數據分析與應用第三章代碼3-5的數據哪來的

savetxt

import numpy as np

i2 = np.eye(2)

np.savetxt("eye.txt", i2)

3.4 讀入CSV文件

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index從0開始

3.6.1 算術平均值

np.mean(c) = np.average(c)

3.6.2 加權平均值

t = np.arange(len(c))

np.average(c, weights=t)

3.8 極值

np.min(c)

np.max(c)

np.ptp(c) 最大值與最小值的差值

3.10 統計分析

np.median(c) 中位數

np.msort(c) 升序排序

np.var(c) 方差

3.12 分析股票收益率

np.diff(c) 可以返回一個由相鄰數組元素的差

值構成的數組

returns = np.diff( arr ) / arr[ : -1] #diff返回的數組比收盤價數組少一個元素

np.std(c) 標准差

對數收益率

logreturns = np.diff( np.log(c) ) #應檢查輸入數組以確保其不含有零和負數

where 可以根據指定的條件返回所有滿足條件的數

組元素的索引值。

posretindices = np.where(returns > 0)

np.sqrt(1./252.) 平方根,浮點數

3.14 分析日期數據

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)

print "Dates =", dates

def datestr2num(s):

return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

# 星期一 0

# 星期二 1

# 星期三 2

# 星期四 3

# 星期五 4

# 星期六 5

# 星期日 6

#output

Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.

1. 2. 3. 4.]

averages = np.zeros(5)

for i in range(5):

indices = np.where(dates == i)

prices = np.take(close, indices) #按數組的元素運算,產生一個數組作為輸出。

>>>a = [4, 3, 5, 7, 6, 8]

>>>indices = [0, 1, 4]

>>>np.take(a, indices)

array([4, 3, 6])

np.argmax(c) #返回的是數組中最大元素的索引值

np.argmin(c)

3.16 匯總數據

# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800

#得到第一個星期一和最後一個星期五

first_monday = np.ravel(np.where(dates == 0))[0]

last_friday = np.ravel(np.where(dates == 4))[-1]

#創建一個數組,用於存儲三周內每一天的索引值

weeks_indices = np.arange(first_monday, last_friday + 1)

#按照每個子數組5個元素,用split函數切分數組

weeks_indices = np.split(weeks_indices, 5)

#output

[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]

weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)

def summarize(a, o, h, l, c): #open, high, low, close

monday_open = o[a[0]]

week_high = np.max( np.take(h, a) )

week_low = np.min( np.take(l, a) )

friday_close = c[a[-1]]

return("APPL", monday_open, week_high, week_low, friday_close)

np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的數組名、分隔符(在這個例子中為英文標點逗號)以及存儲浮點數的格式。

.png

格式字元串以一個百分號開始。接下來是一個可選的標志字元:-表示結果左對齊,0表示左端補0,+表示輸出符號(正號+或負號-)。第三部分為可選的輸出寬度參數,表示輸出的最小位數。第四部分是精度格式符,以」.」開頭,後面跟一個表示精度的整數。最後是一個類型指定字元,在例子中指定為字元串類型。

numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

>>>def my_func(a):

... """Average first and last element of a 1-D array"""

... return (a[0] + a[-1]) * 0.5

>>>b = np.array([[1,2,3], [4,5,6], [7,8,9]])

>>>np.apply_along_axis(my_func, 0, b) #沿著X軸運動,取列切片

array([ 4., 5., 6.])

>>>np.apply_along_axis(my_func, 1, b) #沿著y軸運動,取行切片

array([ 2., 5., 8.])

>>>b = np.array([[8,1,7], [4,3,9], [5,2,6]])

>>>np.apply_along_axis(sorted, 1, b)

array([[1, 7, 8],

[3, 4, 9],

[2, 5, 6]])

3.20 計算簡單移動平均線

(1) 使用ones函數創建一個長度為N的元素均初始化為1的數組,然後對整個數組除以N,即可得到權重。如下所示:

N = int(sys.argv[1])

weights = np.ones(N) / N

print "Weights", weights

在N = 5時,輸出結果如下:

Weights [ 0.2 0.2 0.2 0.2 0.2] #權重相等

(2) 使用這些權重值,調用convolve函數:

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

sma = np.convolve(weights, c)[N-1:-N+1] #卷積是分析數學中一種重要的運算,定義為一個函數與經過翻轉和平移的另一個函數的乘積的積分。

t = np.arange(N - 1, len(c)) #作圖

plot(t, c[N-1:], lw=1.0)

plot(t, sma, lw=2.0)

show()

3.22 計算指數移動平均線

指數移動平均線(exponential moving average)。指數移動平均線使用的權重是指數衰減的。對歷史上的數據點賦予的權重以指數速度減小,但永遠不會到達0。

x = np.arange(5)

print "Exp", np.exp(x)

#output

Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]

Linspace 返回一個元素值在指定的范圍內均勻分布的數組。

print "Linspace", np.linspace(-1, 0, 5) #起始值、終止值、可選的元素個數

#output

Linspace [-1. -0.75 -0.5 -0.25 0. ]

(1)權重計算

N = int(sys.argv[1])

weights = np.exp(np.linspace(-1. , 0. , N))

(2)權重歸一化處理

weights /= weights.sum()

print "Weights", weights

#output

Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]

(3)計算及作圖

c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)

ema = np.convolve(weights, c)[N-1:-N+1]

t = np.arange(N - 1, len(c))

plot(t, c[N-1:], lw=1.0)

plot(t, ema, lw=2.0)

show()

3.26 用線性模型預測價格

(x, resials, rank, s) = np.linalg.lstsq(A, b) #系數向量x、一個殘差數組、A的秩以及A的奇異值

print x, resials, rank, s

#計算下一個預測值

print np.dot(b, x)

3.28 繪制趨勢線

>>> x = np.arange(6)

>>> x = x.reshape((2, 3))

>>> x

array([[0, 1, 2], [3, 4, 5]])

>>> np.ones_like(x) #用1填充數組

array([[1, 1, 1], [1, 1, 1]])

類似函數

zeros_like

empty_like

zeros

ones

empty

3.30 數組的修剪和壓縮

a = np.arange(5)

print "a =", a

print "Clipped", a.clip(1, 2) #將所有比給定最大值還大的元素全部設為給定的最大值,而所有比給定最小值還小的元素全部設為給定的最小值

#output

a = [0 1 2 3 4]

Clipped [1 1 2 2 2]

a = np.arange(4)

print a

print "Compressed", a.compress(a > 2) #返回一個根據給定條件篩選後的數組

#output

[0 1 2 3]

Compressed [3]

b = np.arange(1, 9)

print "b =", b

print "Factorial", b.prod() #輸出數組元素階乘結果

#output

b = [1 2 3 4 5 6 7 8]

Factorial 40320

print "Factorials", b.cumprod()

#output

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:564
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:853
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:554
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:732
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:655
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:973
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:226
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:85
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:775
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:681